
Quantum Computing

an introduction for computing scientists

LPC, 17 April 2020, Clermont-Ferrand

Bogdan Vulpescu

Laboratoire de Physique de Clermont

Service Informatique

 2

Summary of the talk

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 3

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 4

Semiconductors

Coming out from a childhood of heavy electro-mechanical devices, the “classical”

computing technology succeeded in building commuting devices based on

semiconductors: their conductivity can be

controlled by doping and driven with electric

fields. This lead to the discovery of the

“transistor effect” in 1947.

The Ebers-Moll equations of the bipolar

junction transistor :

a silicon
crystal

https://en.wikipedia.org/wiki/Bipolar_junction_transistor

h
tt

p
s:

//
co

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
/

w
/i

n
d

e
x
.p

h
p

?c
u

ri
d

=
7

3
5

3
9
1
1

https://commons.wikimedia.org/

 5
https://en.wikipedia.org/wiki/Flip-flop_(electronics)

The flip-flop circuit (a bi-stable circuit)

With such a device we can store a single bit of data (0 or 1) :

 6

Inverter (0 ⇒1, 1 ⇒ 0) with transistor-transistor logic (TTL)

Ib = 0mA Ib > 0

 7

a = a

IDENTITY

ā = 1−a

NOT FANOUT (COPY)

Elementary logic gates: one-bit logic gates

f :{0,1}→{0,1}

 8

Elementary logic gates: two-bit logic gates

f :{0,1}2→{0,1}

a∧b = ab a∨b = a+b−ab a⊕b = a+b (mod 2)

AND OR XOR

 9

Elementary logic gates: two-bit logic gates (cont.)

f :{0,1}2→{0,1}

a↑b = a∧b = ab = 1−ab a↓b = a∨b = a+b−ab
= 1−a−b+ab

NAND NOR

 10

A circuit for computing the sum (with carry bit)

Full adder

 11

Universal (classical) gates

f : {0,1}m→{0,1}nAny function can be constructed from the elementary gates :

 AND, OR, NOT, FANOUT

We say that AND, OR, NOT and FANOUT constitute a universal set of gates for

the classical computation.

A smaller universal set is NAND and FANOUT :

OR can be obtained from NOT and AND: (De Morgan's identities)

and NOT can be obtained from NAND and FANOUT :

a∨b = ā∧b̄

a↑a = a∧a = 1−a2
= 1−a = ā

here we have FANOUT followed by NAND

 12

Classical reversible computing

 irreversible function :

 reversible function :

 defined such that :

where x represents m bits, while y and f(x) represent n bits. Since the embedding

function is bijective, it will be reversible! So at the logic level it is possible, with

the price of introducing more dimensions in the calculations (ancillary bits y).

f : {0,1}m → {0,1}n

It is possible to embed any irreversible function into a reversible function :

~
f :{0,1}m+n

→ {0,1}m+n

~
f (x , y) = (x ,[y+ f (x)](mod 2n))

m>n

 13

A simple reversible classical gate: the controlled-NOT (CNOT)

 14

the control bit:

the target bit:

reversibility

The circuit representation of the classical CNOT gate

(CNOT)2
=I , CNOT−1

=CNOT

(a ,b) → (a ,a⊕b) → (a ,a⊕(a⊕b))=(a ,b)
a) two CNOT gates, applied

one after the other :

 CNOT is self-inverse :

b) if the target bit is set to 0 (b=0), CNOT reproduces the FANOUT gate :

(a ,0) → (a ,a)

Two-bit reversible gates are not enough for universal computation !

 (we can not construct the NAND gate ...)

 15

Three-bit reversible gates: the Toffoli gate

(controlled-controlled-NOT, or C2NOT)

control bit [0]:

control bit [1]:

target bit [2]:

The Toffoli gate is a universal gate!

a=b=1 , c '=c̄

c=0 , c '=a∧b

a→ ā , b→ b̄ , c=1 , c '=a∨b

NOT:

AND:

OR:

 16

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 17

Quantum bits (qubits)

A qubit is a quantum object: a microscopic system whose state and evolution

are governed by the laws of quantum mechanics. In order to keep a good

resemblance with the classical bit, this system will be chosen to have only two

possible quantum states, corresponding to some measurable physical property.

The two states are orthogonal and any arbitrary state of the system can be

described as a linear combination (superposition) of those two states :

|α|
2
+|β

2
|=1 α ,β∈ℂ

(the decomposition of a general vector in a 2-dim Hilbert

space using the computational basis)

 18

The state vector (or wave function) completely describes the state of

the physical system.

The evolution in time of the state vector

is governed by the Schrödinger equation:

(H is the Hamiltonian, a self-adjoint operator)

The coefficients α and β multiplying

the vectors of the computational

basis are functions of time:

The 1st postulate of quantum mechanics

the 6th postulate

ℏ≈6.626×10−34 Joule⋅sec

i=√−1

 19

Vector algebra with qubits

Since we describe our space with two coordinates, we can write the two basis

vectors like this :

= (10) = (01)

and their superposition in the state vector : = α(10)+β(
0
1) = (

α
β)

The vectors of the

computational

basis are normalized

orthogonal

vectors :

and (“ket” vectors)

product of a “bra” vector and a “ket” vector

 20

The 2nd and 3rd postulates of quantum mechanics

We associate with any observable a self-adjoint operator on the Hilbert

space of the states. The only possible outcome of a measurement is one of

the eigen-values of the corresponding operator (3rd postulate).

A single-qubit operator can be represented as a 2x2 matrix :

(described within a given orthonormal vector base)

σ z = (1 0
0 −1)

σ z = (1 0
0 −1) (10) = (10) = +1

σ z = (1 0
0 −1) (01) = (0

−1) = −1

and are eigen-vectors of the operator with eigen-values “+1” and “-1”σ z

 21

The probability of a given measurement outcome

(the 4th postulate)

If we expand the state vector over the orthonormal basis formed by the

eigen-vectors of the operator corresponding to the observable:

then the probability that a measurement at time t results in outcome

“+1” or “-1” is given, respectively, by :

Note: global phase factors do not affect physical predictions!

 22

z

The quantified spin and the choice of

the direction of the measurement

σ z = (1 0
0 −1)

+1

-1

 23

x

z
σ x = (0 1

1 0)

The quantified spin and the choice of

the direction of the measurement

 24

x

z

y

σ y = (0 −i
i 0)

The quantified spin and the choice of

the direction of the measurement

 25

x

z

y

σ x , σ y , σ z = Pauli matrices (operators), also σ1 , σ2 , σ3

The quantified spin and the choice of

the direction of the measurement

 26

The eigen-vectors of the Pauli operators

corresponding to eigen-values “+1” and “-1”

 27

The circuit symbol for a measurement

Note: double line means that this is a classical information (a bit).

 28

The 5th postulate of quantum mechanics

If a system is described by the state vector

and we measure σ
z
 obtaining the outcome (spin projection) +1 or -1,

then, immediately after the measurement, the state of the system is

given by the eigen-vector corresponding to that eigen-value : or

 , respectively.

The expected value of an observable will be (4th postulate):

from the outcome probabilities:

with the projector operators:

 29

x

z

y

Before the measurement of the z spin component

 30

z

After the measurement

z

or

z-spin = +1 z-spin = -1

 31

The Stern-Gerlach experiment

 http://web.stanford.edu/class/rad226a/Lectures/Lecture5-2017-Quantum-III.pdf

 32

z

Selection of one z-state

z

or

z-spin = +1 z-spin = -1

 33

x

After the second measurement

or

x-spin = +1

x x-spin = -1

 34

x

Selection of one x-state

or

x-spin = +1

x x-spin = -1

 35

z

After the last measurement

z

or

z-spin = +1 z-spin = -1

?

 36

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 37

Contrary to the classical case, it is not possible to clone (FANOUT, COPY)

a generic quantum state.

The equivalent of this : does not exist in the quantum case!

It is impossible to build a machine that operates unitary transformations and

is able to clone the generic state of a qubit.

This has important consequences and leads to interesting applications, like

the possibility to do quantum cryptography.

The possibility of cloning would also invalidate the uncertainty relation of

Heisenberg, because it would be possible to simultaneously measure with

infinite precision two physical properties of the system on two identical copies

of the same quantum state.

The no-cloning theorem

 38

Flipping a qubit using a constant magnetic field

The Schrödinger equation :

The time-evolution operator :

The Hamiltonian of a spin interacting with a magnetic field is :

in this particular case, U is a unitary operator :

 39

Flipping a qubit with a constant magnetic field (cont.)

Using the

notations :

We obtain for the

time-evolution

operator :

 40

Flipping a qubit with a constant magnetic field (cont.)

For instance, with a magnetic field :

we can flip the state into the state if :

which is fulfilled when :

 41

Unitary errors

Any quantum computation is given by a sequence of quantum gates applied to

some initial state :

If the errors are unitary (there is no coupling to the environment, although

any realistic implementation of a unitary operation will still involve some

error, since unitary operators form a continuous set), instead of the

operators U
i
 we apply slightly different operators V

i
:

exact transformation and with error vector E
i

 42

Unitary errors (cont.)

we start from the product of “real” unitary operators

and calculate recurrently the result of each

member of the product

 43

Unitary errors (cont.)

this means that we can upper limit the error on the final state like this

σ
2
=∑
i=1

n

σ i
2

→ σ < √n ϵ

In the “classical” case, from the rule of the errors propagation, we have a

weaker increase of the overall error with the number of operations :

Each product of unitary operators V
i
 does not change the amplitude of the

error vectors E
i
, which we can consider to be upper bounded by some value ε :

 44

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 45

Single-qubit gates σ x , σ y , σ z

(Pauli operators)

 46

The Hadamard gate

Transforms the

computational basis :

 47

The exponential power of the states superposition

3 qubits in a network :

the application of the 3 Hadamard

gates is synchronized and in the total

product state we have a superposition

of the values from 0 to 7.

 48

The generic state of a qubit in spherical coordinates

We can write this because :

● the two coefficients and are complex α and β are complex β are complex

● we have the total probability normalization condition

● a state vector is defined only up to a global phase of no physical significance

(we can take one of the coefficients to be real)

 49

The phase-shift gate

 50

Universality of Hadamard and phase-shift gates

Any unitary operation on a single qubit can be constructed using only

Hadamard and phase-shift gates. In particular, the generic state can be

reached starting from in the following way:

 51

Two-qubit states and gates

α
2
+β

2
+γ

2
+δ

2
=1

The total vector space of two qubits is the result of a tensor product, the

computational base of the resulting space is given by the 4 possible

combinations of the computational basis vectors of each of the two qubits:

with the probability normalization constraint:

 52

The quantum CNOT gate

The state of target qubit (y) flips only if the control qubit (x) is in the state.

 53

Obtaining a SWAP gate from CNOT gates

=

The CNOT gate generates entanglement of two qubits

(the final state is non-separable, it can not be expressed as a

single product of two single-qubit states)

 54

Universal quantum gates

Any unitary operation in the Hilbert space of n qubits, U(n) can be

decomposed into one-qubit gates and (two-qubit) CNOT gates.

● we need few more special gates, like

the controlled-U gate, where the U

operator is applied to the target qubit

only if the control qubit is in the

 state

● the controlled-U gate can be generalized

to the Ck-U gate, with k control qubits

● the three-qubit C2-NOT gate is the

Toffoli gate

.....

C3-U

Ck-U

 55

Universal quantum gates (cont.)

The Toffoli gate can be implemented using the Hadamard gate and

a special unitary operator V :

Toffoli

V is a single-qubit operator, so we know how to decompose it in

Hadamard and phase-shift gates.

 56

U(n) Ck-U

C2-NOT

C-U

k C-NOT C-V

C-NOT A,B,C

C-NOT C-V H

C-U

C2-U

Ck-U

Universal quantum gates (cont.)

+
+ +

+

+

(the full proof is
 not shown)

CNOT and

single-qubit

controlled-U

 57

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 58

Suppose Alice owns a qubit in some unknown generic state :

and wishes to send to Bob this qubit state (not the physical realization of the

qubit), using only a classical communication channel (send only classical bits).

● Alice can not simply measure the state of her qubit, because this will

immediately destroy that state, with the price of obtaining only one

bit of information, while describing the generic state requires an infinite

amount of classical information

● we also know that Alice can not clone that state ; if she could do that, she

could do as many clones and measurements needed to describe the full state

(even if, in practice, this would not be really possible)

Quantum information : teleportation

 59

q
2

q
1

q
0

Quantum teleportation is possible, providing that Alice and Bob share

at the beginning a pair of entangled qubits.

For instance, starting from the computational basis, we can create an

entangled state of two qubits in this way :

Quantum information : teleportation (cont.)

(Bell pair)bit
0

bit
1

the Bell pair

the state to be teleported

 60

Quantum information : teleportation (cont.)

The three-qubit state obtained by putting in the same register the two qubits

and the qubit to be teleported is given by the tensor product :

Alice will let her qubit interact with her half of the Bell pair, which means

that she will perform a measurement not in the computational basis but

in the Bell basis (see appendix) :

 61

bit
0

bit
1

q
2

q
1

q
0

Quantum information : teleportation (cont.)

and after the application of the two last gates we obtain :

 62

bit
0

bit
1

q
2

q
1

q
0

Quantum information : teleportation (cont.)

Finally, Alice makes a measurement on his two qubits in the computational

basis “z” and sends the result to Bob, in the form of two classical bits over a

classical transmission channel :

 63

Quantum information : teleportation (cont.)

Now it is Bob’s turn to act : he chooses a unitary operator U and applies it

to his qubit, doing this according to the pair of bits sent by Alice and having

a look in a table like this one :

As a consequence of this last operation, he will obtain exactly the initial

generic state which Alice wanted to transmit (he does not need to check,

he must have full confidence in the theory…).

 64

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 65

The Fourier Transform (FT), continuous and discrete

direct : time domain

to frequence domain

inverse : frequence domain

to time domain

(discrete, DFT)

 66

The discrete quantum Fourier transform (QFT)

How to do the Fourier transform of (a vector of) N complex values :

Build a generic state with n = log
2
N qubits, in the computational basis :

a vector of the computational basis is the tensor product :

 67

The discrete quantum Fourier transform (cont.)

Define a unitary operator F, fully described by its action on the “n” vectors

of the computational basis :

With this definition, an arbitrary state is transformed into :

where the coefficients are

exactly the discrete transform

we were looking for :

 68

The discrete quantum Fourier transform (cont.)

We introduce the following notations for the binary representations of

the indices of the n-qubit vectors from the computational basis :

and we notice that we can re-write the terms of the sum by taking

into account that :

and

 69

The discrete quantum Fourier transform (cont.)

Finally we obtain the expression for the result of the action of the F

operator on a vector of the n-qubit computational basis in this form :

We notice that this state is not entangled, since it can be factorized in “n”

single-qubit states.

Starting from this expression, it is possible to create the circuit which

performs the transformation describing the operator F.

 70

The discrete quantum Fourier transform (cont.)

with the unitary operator :

It is using n Hadamard gates and n(n-1)/2 single qubit gates, so the

computation requires O(n2) elementary quantum gates.

The classical Fast Fourier Transform on a vector of N = 2n complex values,

needs O(N logN) elementary operations.

The “brute-force” Discrete Fourier Transform needs O(N2) operations.

 71

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transform

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 72

The unbreakable cypher

Gilbert Vernam (AT&T Bell Labs engineer, 1917):

● the text is written as a binary sequence

of 0’s and 1’s

● the secret key is a completely random binary

sequence of the same length as the text

● the cypher text is obtained by adding the

secret key bitwise modulo 2 to the plain text

and to go back to the text:

Note: a key must not be reused

for another message!

 73

The BB84 quantum protocol (Bennett and Brassard, 1984)

BB84 is using four quantum states of a single qubit and is coding the

classical bits into states of a qubit, by using two alphabets :

which are the eigen-states of the Pauli matrices and respectively

(the z-alphabet and the x-alphabet), a pair on non-commuting observables.

0 =

, z-alphabet

, x-alphabet

1 =

, z-alphabet

, x-alphabet

The coding rules :

 74

The first part of the BB84 protocol

1. Alice generates a random sequence of 0’s and 1’s

 75

The first part of the BB84 protocol

2. Alice encodes each data bit in a qubit, by choosing

randomly between the z- and the x-alphabet

 76

The first part of the BB84 protocol

3. The resulting string of qubits is sent by Alice and received by Bob

(by teleportation)

 77

The first part of the BB84 protocol

4. For each qubit, Bob decides at random which alphabet (axis) to

use for the measurement, z or x.

 78

The first part of the BB84 protocol

If Bob chooses the same alphabet as Alice, he gets the same bit value

(if there are no eavesdroppers or noise) ; this happens on average for half

of his choices. When Bob chooses a different axis, the resulting bit will

agree with the one of Alice only half of the time, on average.

 79

The first part of the BB84 protocol

These are Bob’s results following his choice of alphabets.

 80

The first part of the BB84 protocol

5. Bob communicates to Alice over a classical public channel his choices

of the alphabet (but not the results of his measurements!)

6. Alice communicates to Bob over a classical public channel which

alphabet she used for the transmitted qubits.

7. Alice and Bob delete all bits corresponding to the cases in which they

used different alphabets. The remaining bits form the “raw key” (or

rather a part of it).

The key is smaller in size than it was initially intended, so, probably they

have to repeat the procedure several times, and there are other steps

performed in order to minimize the effects of eavesdropping and especially

the transmission noise.

 81

The first part of the BB84 protocol

The raw key is now: 10010 (because in this process 5 bits out of 10 were lost)

 82

● Classical bits and classical computing

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum (Discrete) Fourier Transformation

● Quantum cryptography

● IBM Q Experience, programming languages for QC

 83

The IBM Q project (launched in March 2017, [1], [2])

[1] “An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures”

Alwin Zulehner, Alexandru Paler, Robert Wille https://arxiv.org/abs/1712.04722

[2] http://iic.jku.at/eda/research/ibm_qx_mapping/

Processor Qubits

IBM QX2 5

IBM QX3 16

IBM QX4 5

IBM QX5 16

The coupling-maps

https://arxiv.org/abs/1712.04722

 84

Approximating continuous gates with discrete gates

One of the gates necessary for describing any unitary operation on a set

of qubits is the phase-shift gate, which is a continuous gate.

Its practical implementation will raise technical problems, for the reasons

discussed before.

However, it is possible to approximate such a transformation with an

arbitrary accuracy ε using a discrete set of quantum gates. It is possible

to show that using Hadamard and T gates (T is a π/4 phase-shift around

the z-axis) we can approximate any single-qubit rotation in

steps, where ε is the desired accuracy (Nielsen and Chuang, 2000).

Such T gates are implemented in the IBM QX processors and together

with the Hadamard and the CNOT gates form a universal set.

O(logc(1 /ϵ)) , c∼2

 85

The programming language

For the programming of its QX devices, IBM provides a Software Development

Kit (SDK) written in Python, named Qiskit (https://qiskit.org):

 $ pip install qiskit

Qiskit has several components (“elements”):

● Terra = is the foundation on which the Qiskit

framework lies

● Aer = provides a simulation framework for

quantum circuits (contains a C++ simulator

backend)

● Ignis = characterization of errors, improving

gates, and computing in the presence of noise

● Aqua = applications and algorithms

Bodleian Library, MS. Digby 107
William de Conchis, Dragmaticon
France, 13th century, end

https://qiskit.org/

 86

Running an example on IBM QX2

Create the 3-qubit entangled state GHZ (Greenberger-Horne-Zeilinger):

classical bits

 87

The final state should contain only (000) and (111), in reality we see other states,

(001, 010, 011, …) with smaller probability:

The GHZ state

Running an example on IBM QX2 (cont.)

Showing also

Aer simulation

results (without

noise).

 88

from qiskit import *

circ = QuantumCircuit(3) ; create a circuit with 3 qubits

 (qubits are initialized in state)

circ.h(0) ; apply Hadamard gate to Q0

 (put Q0 in superposition)

circ.cx(0, 1) ; apply CNOT Q0 Q1→Q1
 (put Q0 and Q1 in a Bell state)

circ.cx(0, 2) ; apply CNOT Q0 Q2→Q1
 (put Q0, Q1 and Q2 in a GHZ state)

circ.draw() ; draw the circuit (with matplotlib)

The Qiskit code

This was a basic example from:

https://github.com/Qiskit/qiskit-iqx-tutorials.git

Jupyter notebook: 1_getting_started_with_qiskit.ipynb

https://github.com/Qiskit/qiskit-iqx-tutorials.git

 89

The Qiskit code (cont.)

Doing a simulation with Qiskit Aer:

from qiskit import Aer

backend = Aer.get_backend('statevector_simulator')

job = execute(circ, backend)

result = job.result()

outputstate = result.get_statevector(circ, decimals=3)

print(outputstate)

 [0.707+0.j

 0. +0.j

 0. +0.j

 0. +0.j

 0. +0.j

 0. +0.j

 0. +0.j

 0.707+0.j]

complex coefficients of the 8 basis vectors (without errors)

 90

The Qiskit code (cont.)

Doing a simulation with Qiskit Aer and OpenQASM as a back-end:

meas = QuantumCircuit(3, 3) ; add 3 classical bits to the 3 qubits

meas.barrier(range(3)) ; set a size 3 barrier over the 3 qubits

meas.measure(range(3),range(3)) ; map the 3 qubits to the 3 bits

qc = circ+meas ; add the previous circuit with the gates

qc.draw()
OpenQASM = an intermediate representation

for quantum instructions, a kind of “hardware

description language”

(IBM, "Open Quantum Assembly Language".

ArXiv:1707.03429)

Example:

H q[0] measure q[0] → c[0]

CX q[0],q[1] etc.

CX q[0],q[2]

barrier q

 91

The Qiskit code (cont.)

Doing a simulation with Qiskit Aer and OpenQASM as a back-end:

backend_sim = Aer.get_backend('qasm_simulator')

job_sim = execute(qc, backend_sim, shots=1024)

result_sim = job_sim.result()

counts = result_sim.get_counts(qc)

print(counts)

 {'000': 515, '111': 509} (without errors)

 92

The Qiskit code (cont.)

Running on a IBM QX device:

from qiskit import IBMQ

IBMQ.load_account() ; user account

provider = IBMQ.get_provider(group='open') ; device providers

backend = provider.get_backend('ibmqx2') ; select device

from qiskit.tools.monitor import job_monitor

job_exp = execute(qc, backend=backend)

job_monitor(job_exp) ; launch on cloud

result_exp = job_exp.result() ; wait for result

counts_exp = result_exp.get_counts(qc) ; count statistics

{'001': 3, '100': 5, '111': 524, '101': 34,

'011': 12, '010': 6, '110': 10, '000': 430}

 93

 94

E x t r a s l i d e s

 95

IBM QX2 device information

https://github.com/Qiskit/ibmq-device-information/tree/master/backends/yorktown/V1

 96

The Josephson junction

In a structure formed by a thin layer of non-superconducting material (or

even an insulator) placed between two layers of superconducting material,

pairs of superconducting electrons could “tunnel” through the non-super-

conducting barrier from one superconductor to the other (Brian Josephson,

1962, Nobel Prize 1973).

Superconductivity: below a critical temperature (depending on the material)

the overall interaction between two electrons becomes slightly attractive.

Josephson structure in electronic circuits: SQUID = Superconducting Quantum

Interference Device.

https://commons.wikimedia.org/w/index.php?curid=13302040

A, B = superconductors

C = insulator

 97

G
a

b
ri

e
l

P
o
p

k
in

,
Q

u
e
st

 f
o
r

Q
u

b
it

s,
 i

n
 S

ci
e
n

ce
 M

a
g
a
z
in

e
,

D
e
ce

m
b

e
r

2
0
1
6

 98

Universal gates for classical computation

 99

Universal gates for classical computation (cont.)

 100

Universal gates for classical computation (example)

 101

The Bell (EPR) basis

This circuit:

transforms the computational

basis states into the Bell states:

(EPR = Einstein-Podolski-Rosen, a paradox about the quantum nature of the reality)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

