
ISTIO
SERVICE MESH

K8S-SCHOOL - Formations Kubernetes - https://k8s-school.fr

Karim AMMOUS and Fabrice JAMMES

https://k8s-school.fr

https://k8s-school.fr

Agenda

• Introduction

• Service mesh

• Istio
• Architecture
• Installation

• Core features
• Connect
• Secure
• Control
• Observe

• Demo

K8S-SCHOOL 2

Introduction: Microservices Challenges

The Eight fallacies of Distributed
Systems

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn’t change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

• Network Reliability
• Network latency / bandwidth
• Transport cost
• Topology and administration

• Fault Tolerance
• Avoid cascading failure
• Retries
• Circuit breaking

• Monitoring
• Services interactions
• Trace requests and identify potential

hotspots

K8S-SCHOOL 3

Introduction: Code Oriented Solution

K8S-SCHOOL 4

Introduction: Code Oriented Solutions Limits

• Language oriented.

• Error prone (implementation).

• Hard to upgrade each microservice when system grow.

• Add technical challenges and duties to development teams.

• Different team in the same organization may have different
implementation.

• Each team should maintain his implementation.

K8S-SCHOOL 5

Service mesh: Definitions

•A service mesh is a configurable infrastructure layer for
microservices application that makes communication
flexible, reliable, and fast.

Buoyant (Linkerd vendor)

•A service mesh provides a transparent and
language-independent way to flexibly and easily automate
application network functions.

K8S-SCHOOL 6

Service mesh: Why?

• Need to add the following capabilities to our services without requiring

changes to the underlying services:

• automated baseline traffic resilience,

• service metrics collection,

• distributed tracing,

• traffic encryption,

• protocol upgrades,

• advanced routing functionality

K8S-SCHOOL 7

Service mesh: Implementations

• Linkerd by Buoyant

• Conduit (joined Linkerd2) by Buoyant

• Consul Connect by HashiCorp

• Istio

K8S-SCHOOL 8

https://linkerd.io/1/overview/
https://conduit.io/
https://linkerd.io/2/overview/
https://www.consul.io/docs/connect/index.html
https://istio.io/

ISTIO

K8S-SCHOOL 9

Istio: What is it ?

• Started by teams from Google and IBM in partnership with the Envoy

team from Lyft

• Open source under Apache License 2.0 license.

• Platform-independent: Kubernetes (v1.9 or greater) and Nomad

(with Consul)

• First major version released in July 2018

K8S-SCHOOL 10

Istio: Architecture

Envoy: Sidecar Network proxy to intercept

communication and apply policies.

Pilot: Control plane to configure and push

service communication policies.

Mixer: Provides telemetry collection as well

as sophisticated policy checks.

Citadel: Service-to-service auth[n,z] using

mutual TLS, with built-in identity and

credential management.

Galley: Configuration validation, distribution

K8S-SCHOOL 11

Istio: Installation

See https://istio.io/docs/setup/getting-started/

K8S-SCHOOL 12

https://istio.io/docs/setup/getting-started/

Svc-BSvc-A

Istio: How It Works?

K8S-SCHOOL 13

Initial call
(http) h

ttp
https

h
ttp

Istio: Sidecar Injection

• The port names MUST be of the form protocol-suffix in order to take advantage
of Istio’s routing features

• Protocols example: http, http2, grpc, mongo, or redis.

• Unrecognized prefix or unnamed ports => port is treated as plain TCP traffic.

• UDP is not supported yet (due to Envoy)

• Manual injection: The sidecar Envoy proxy is injected manually (using Istioctl CLI)
into yaml files before deployment

• Automatic injection: If enabled (requires Kubernetes 1.9 or later), the sidecar
proxy is injected seamlessly.

K8S-SCHOOL 14

https://github.com/istio/istio/issues/1430

CORE FEATURES

K8S-SCHOOL 15

Istio capabilities

Connect

Istio can intelligently
control the flow of
traffic between
services, conduct a
range of tests and
upgrade gradually
with blue/green
deployments.

K8S-SCHOOL 16

Secure

Automatically secure
your services through
managed
authentication,
authorization, and
encryption of
communication
between services.

Control

Apply policies and
ensure that they are
enforced and that
resources are fairly
distributed among
consumers.

Observe

See what’s
happening with rich
automatic tracing,
monitoring, logging
of all your services.

Connect: Traffic Management

• Service discovery and load balancing (client side)

• Request Routing, Traffic Shifting

• Resiliency: Retry, Fault Injection, Circuit breaking, Timeout

K8S-SCHOOL 17

 SvcA

 SvcB-Pod1

 SvcB-Pod3

 SvcB-Pod2

 SvcB-Pod4

Version: v1.5, us-prod

Version: v2.0-alpha, us-staging

99%

1%

Canary deployment

Ingress and Egress Gateways

Secure: TLS

• Authentication: Mutual TLS

• Authorization: Could be ON or OFF per service or per namespace

• Three access control levels:

• namespace

• service

• method

• CRD: ServiceRole and ServiceRoleBinding

K8S-SCHOOL 18

apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRole

metadata:

 name: products-viewer

 namespace: default

spec:

 rules:

 - services: ["products.default.svc.cluster.local"]

 methods: ["GET", "HEAD"]

Secure: Authorization & Network Policy

• Istio has no requirement on the underlying CNI
• Network Policy could be used in concert with Istio

K8S-SCHOOL 19

Istio Authorization Network Policy

Layer “RPC” — L7 “Network” — L3-4

Based on Envoy proxy Iptables

Particularity Flexible Universal, Fast

Control

Control where and how requests flow, and which requests are
allowed.
• Fine grained traffic control

• L7, not L4!
• Route by headers, destination or source ID, etc

• Policy on requests
• Authn/z, rate limiting, arbitrary policy based on L7 request

metadata

K8S-SCHOOL 20

Observe: Metrics, tracing and logging

Monitoring is a MUST:

• RED Method: Rate, Errors and Duration of requests.

• USE Method: Utilization, Saturation and Errors of resources

• The Four Golden Signals: Latency, Traffic, Errors and Saturation

We can understand what’s actually happening in our deployment thanks to:

• Metrics (Prometheus and Grafana)

• Logs (Kibana)

• Tracing (Jaeger)

• Service Graph

K8S-SCHOOL 21

https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
http://www.brendangregg.com/usemethod.html
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals

Performance benchmark

See Linkerd Benchmarks

K8S-SCHOOL 22

https://linkerd.io/2019/05/18/linkerd-benchmarks/

DEMO

See https://github.com/k8s-school/istio-example

And https://istio.io/docs/examples/bookinfo/

K8S-SCHOOL 23

https://github.com/k8s-school/istio-example
https://istio.io/docs/examples/bookinfo/

Demo: Bookinfo Application

K8S-SCHOOL 24

Cluster

Ingress

Product Page

Ratings
V2-mysql

User
Traffic

Reviews (v1)

Reviews (v2)

Reviews (v3)

Details
v1

Ratings
v1

