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Introduction: Microservices Challenges 

The Eight fallacies of Distributed 
Systems

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn’t change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

• Network Reliability
• Network latency / bandwidth
• Transport cost
• Topology and administration

• Fault Tolerance
• Avoid cascading failure
• Retries
• Circuit breaking

• Monitoring
• Services interactions
• Trace requests and identify potential 

hotspots
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Introduction: Code Oriented Solution
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Introduction: Code Oriented Solutions Limits

• Language oriented.

• Error prone (implementation).

• Hard to upgrade each microservice when system grow.

• Add technical challenges and duties to development teams.

• Different team in the same organization may have different 
implementation.

• Each team should maintain his implementation.
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Service mesh: Definitions

•A service mesh is a configurable infrastructure layer for 
microservices application that makes communication 
flexible, reliable, and fast.

Buoyant (Linkerd vendor)

•A service mesh provides a transparent and 
language-independent way to flexibly and easily automate 
application network functions.
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Service mesh: Why?

• Need to add the following capabilities to our services without requiring 

changes to the underlying services:

• automated baseline traffic resilience, 

• service metrics collection, 

• distributed tracing, 

• traffic encryption, 

• protocol upgrades, 

• advanced routing functionality
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Service mesh: Implementations

• Linkerd by Buoyant

• Conduit (joined Linkerd2) by Buoyant

• Consul Connect by HashiCorp 

• Istio
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https://linkerd.io/1/overview/
https://conduit.io/
https://linkerd.io/2/overview/
https://www.consul.io/docs/connect/index.html
https://istio.io/


ISTIO
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Istio: What is it ?

• Started by teams from Google and IBM in partnership with the Envoy 

team from Lyft

• Open source under Apache License 2.0 license.

• Platform-independent: Kubernetes (v1.9 or greater) and Nomad 

(with Consul)

• First major version released in July 2018
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Istio: Architecture

Envoy: Sidecar Network proxy to intercept 

communication and apply policies.

Pilot: Control plane to configure and push 

service communication policies.

Mixer: Provides telemetry collection as well 

as sophisticated policy checks.

Citadel: Service-to-service auth[n,z] using 

mutual TLS, with built-in identity and 

credential management. 

Galley: Configuration validation, distribution
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Istio: Installation

See https://istio.io/docs/setup/getting-started/
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https://istio.io/docs/setup/getting-started/


Svc-BSvc-A

Istio: How It Works?
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Istio: Sidecar Injection

• The port names MUST be of the form protocol-suffix in order to take advantage 
of Istio’s routing features

• Protocols example: http, http2, grpc, mongo, or redis.

• Unrecognized prefix or unnamed ports => port is treated as plain TCP traffic.

• UDP is not supported yet (due to Envoy)

• Manual injection: The sidecar Envoy proxy is injected manually (using Istioctl CLI) 
into yaml files before deployment 

• Automatic injection: If enabled (requires Kubernetes 1.9 or later), the sidecar 
proxy is injected seamlessly.
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https://github.com/istio/istio/issues/1430


CORE FEATURES
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Istio capabilities

Connect

Istio can intelligently 
control the flow of 
traffic between 
services, conduct a 
range of tests and 
upgrade gradually 
with blue/green 
deployments.
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Secure

Automatically secure 
your services through 
managed 
authentication, 
authorization, and 
encryption of 
communication 
between services.

Control

Apply policies and 
ensure that they are 
enforced and that 
resources are fairly 
distributed among 
consumers.

Observe

See what’s 
happening with rich 
automatic tracing, 
monitoring, logging 
of all your services.



Connect: Traffic Management

• Service discovery and load balancing (client side)

• Request Routing, Traffic Shifting

• Resiliency: Retry, Fault Injection, Circuit breaking, Timeout
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  SvcA

 SvcB-Pod1

 SvcB-Pod3

 SvcB-Pod2

 SvcB-Pod4

Version: v1.5, us-prod

Version: v2.0-alpha, us-staging

99%

1%

Canary deployment

Ingress and Egress Gateways 



Secure: TLS

• Authentication: Mutual TLS

• Authorization: Could be ON or OFF per service or per namespace

• Three access control levels: 

• namespace 

• service 

• method

• CRD: ServiceRole and ServiceRoleBinding
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apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRole

metadata:

  name: products-viewer

  namespace: default

spec:

  rules:

  - services: ["products.default.svc.cluster.local"]

    methods: ["GET", "HEAD"] 



Secure: Authorization & Network Policy

• Istio has no requirement on the underlying CNI
• Network Policy could be used in concert with Istio
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Istio Authorization Network Policy

Layer “RPC” — L7 “Network” — L3-4

Based on Envoy proxy Iptables

Particularity Flexible Universal, Fast



Control

Control where and how requests flow, and which requests are 
allowed.
• Fine grained traffic control

• L7, not L4!
• Route by headers, destination or source ID, etc

• Policy on requests
• Authn/z, rate limiting, arbitrary policy based on L7 request 

metadata
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Observe: Metrics, tracing and logging

Monitoring is a MUST:

• RED Method: Rate, Errors and Duration of requests.

• USE Method: Utilization, Saturation and Errors of resources

• The Four Golden Signals: Latency, Traffic, Errors and Saturation

We can understand what’s actually happening in our deployment thanks to:

• Metrics (Prometheus and Grafana)

• Logs (Kibana)

• Tracing (Jaeger)

• Service Graph
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https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
http://www.brendangregg.com/usemethod.html
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals


Performance benchmark

See Linkerd Benchmarks
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https://linkerd.io/2019/05/18/linkerd-benchmarks/


DEMO

See https://github.com/k8s-school/istio-example

And https://istio.io/docs/examples/bookinfo/
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https://github.com/k8s-school/istio-example
https://istio.io/docs/examples/bookinfo/


Demo: Bookinfo Application
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