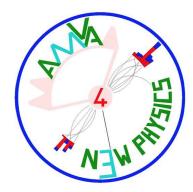
Two Machine Learning techniques for Model Independent New Physics searches at the LHC

LLR Seminar

Fabricio Jiménez

20th of April, 2020

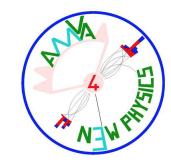
Former support



Supervisor: Prof. Julien Donini

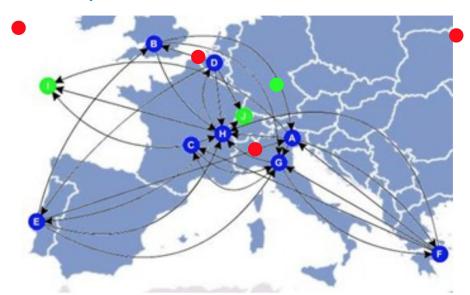
AMVA4NewPhysics

Research sponsored by



Advanced Multivariate Analysis for New Physics (2015 - 2019)

- 10 students across European nodes
- Academic & industrial partners
- Secondments
 - University of Padova (1.5 months)
 - University of California (2 months)
 - The MathWorks, Inc. (3 months)
 - o CERN (2 months)



Outline

- 1. Searching for New Physics at the LHC
 - The Standard Model, the LHC and ATLAS
 - Model Independent searches for New Physics
 - Monitoring generic physics channels
- 2. Methods for Model Independent searches for New Physics
 - A Semi-supervised approach for anomaly detection
 - Gaussian Processes for resonance searches

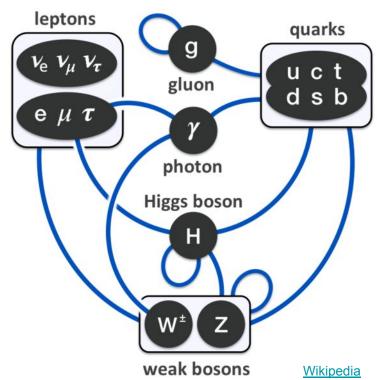
The Standard Model (SM)

Successful theory of fundamental particles + interactions

Describes three of the four forces in nature

- Electromagnetism
- Weak interactions
- Electroweak
- Strong interactions

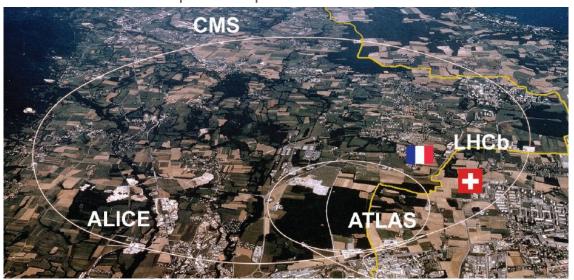
Experimentally tested for decades



Fabricio Jiménez - LLR / CNRS

The Large Hadron Collider (LHC)

The **LHC** is the most powerful particle collider



- 27 km (main) ring
- 100 m underground
- Proton beams in opposite directions
- Collisions at an energy of 13 TeV every 25 ns

IEEE Spectrum

Probe the SM and search for New Physics

Fabricio Jiménez - LLR / CNRS

What is New Physics (NP)?

The SM is not complete: no gravity, no dark matter, matter-antimatter asymmetry,...

New Physics → phenomena beyond the SM

Theoretical extensions of the SM

- New symmetries:
 - Between fermions and bosons (SUSY), left/right symmetry of weak sector,...
- Extra dimensions:
 - Warped Extra Dimensions, Large Extra Dimensions (ADD),...
- Compositeness
- Extended Higgs sector:
 - Two Higgs doublets,...

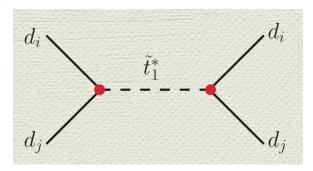
Example: RPV-MSSM

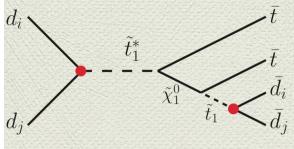
R-Parity Violating - Minimal Supersymmetric Standard Model

Conventional SUSY, R-parity is introduced:

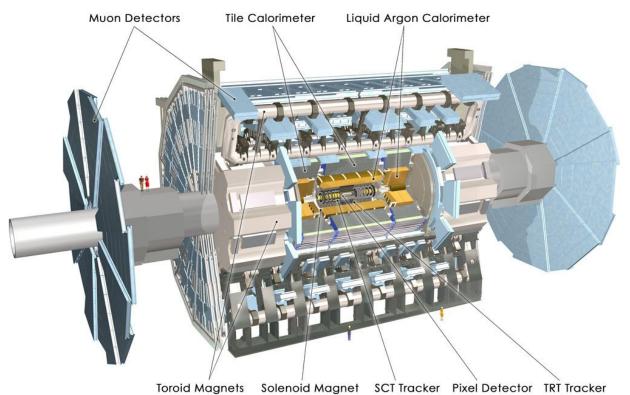
$$R = (-1)^{3B+L+2s}$$

More generally, R need not be imposed



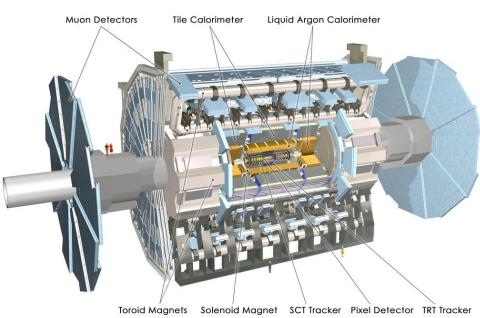


A Toroidal LHC ApparatuS (ATLAS)

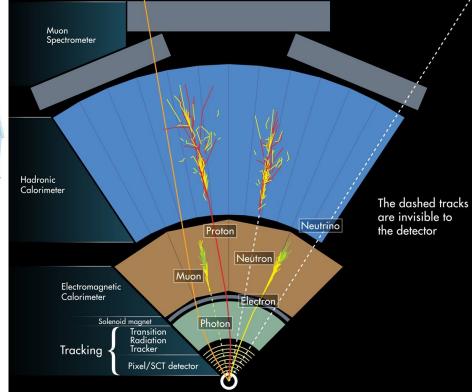


Fabricio Jiménez - LLR / CNRS https://cds.cern.ch/record/1095924

A Toroidal LHC ApparatuS (ATLAS)



https://cds.cern.ch/record/1095924

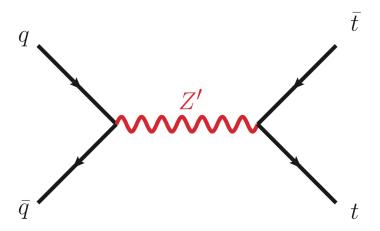


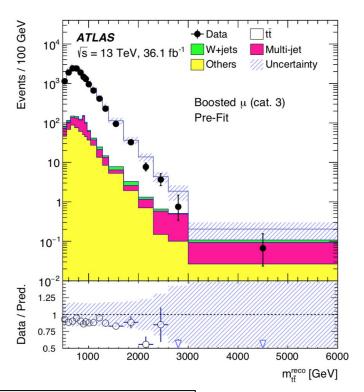
Outline

- 1. Searching for New Physics at the LHC
 - The Standard Model, the LHC and ATLAS
 - Model Independent searches for New Physics
 - Monitoring generic physics channels
- 2. Methods for Model Independent searches for New Physics
 - A Semi-supervised approach for anomaly detection
 - Gaussian Processes for resonance searches

Searching for New Physics - Model Dependent

- Select a NP model, simulate signal
- Probe specific signatures/hypotheses





Searching for New Physics - Model independent

All accessible signatures

General Searches Not feasible Model dependent Model independent "Popular" signatures: Most LHC New Physics searches Two objects: Dijet, ee, tt,... (e.g. previous slide) E₋miss + jets

What are General Searches?

Multi-signature + Model independent → General

Multi-signature

- Final states from combinations of objects
- Classify events using final states
- Number of classes:
 - 8-object final states with 5 kinds of objects:

$$\sum_{k=1}^{8} {\binom{5}{k}} > 1200$$

Automated analysis of high volumes of data!

All LHC model-dependent NP searches ~ 200 classes

Fabricio Jiménez - LLR / CNRS

Counting data and Monte Carlo

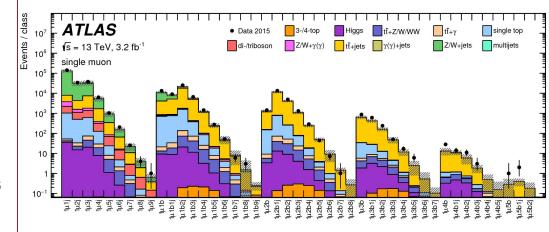
Multi-signature + Model independent → General

Model independent

- Search for data deviations to the SM
- Count data and SM in 622 classes
- Scan kinematic distributions:
 - → Quantify deviations
- Not as sensitive as dedicated analyses

Assumption:

New Physics will appear in final states with high-p_⊤ objects



- Good agreement in most channels
- Examine regions w/ largest deviations

Aaboud, M., Aad, G., Abbott, B. et al. Eur. Phys. J. C (2019) 79: 120.

15

Outline

- 1. Searching for New Physics at the LHC
 - The Standard Model, the LHC and ATLAS
 - Model Independent searches for New Physics
 - Monitoring generic physics channels
- 2. Methods for Model Independent searches for New Physics
 - A Semi-supervised approach for anomaly detection
 - Gaussian Processes for resonance searches

TADA: A Fast Monitoring System for ATLAS

Monitoring (Python/C++) software for ATLAS → early warning system

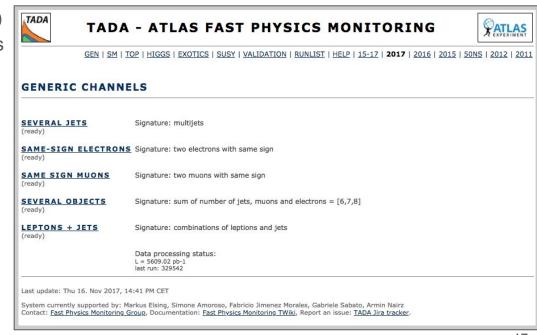
- Hundreds of selections (more histograms)
- Data quality and sim. performance studies

TADA has a web interface

→ updated daily during data taking

Qualification task:

- Data and SM simulation validation
- Software maintenance
- Generic Search system and webpage



Fabricio Jiménez - LLR / CNRS

TADA: monitoring generic signatures

Monitoring Generic Channels

Idea: monitor automated generic selections

- Inspired by General Searches
- Four physics variables monitored

$$M_{
m inv}$$
, $E_T^{
m miss}$ $H_T = \sum_{
m objects} |p_{T,
m object}|$ $M_{
m eff} = H_T + E_T^{
m miss}$

- Selections transparent to TADA
- Automatic web page generation

Group	# Selections	Variables	
Multijets	10	Number of jets = $\{6,7,8,9,10\}$ $H_T > \{1,2\}$ TeV	
Multiobjects	3	Number of objects = $\{6,7,8\}$	
Several Photons	4	Number of photons = $\{2,3\}$ $H_T > \{250,500\}$ GeV	
Leptons plus jets	16	Number of leptons $(e, \mu) = \{1, 2\}$ Number of jets = $\{2, 3, 4, 5\}$ $H_T > \{1, 2\}$ TeV	

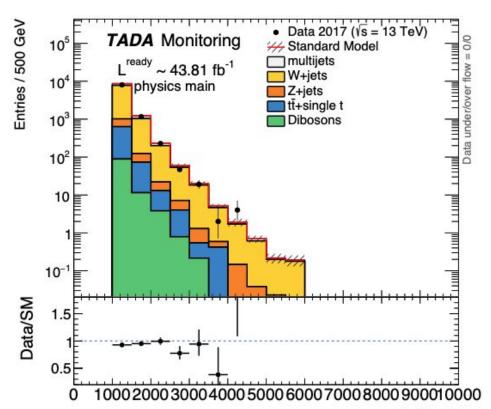
Monitoring Generic Channels

Example: leptons + jets (plot)

Number of leptons $(e, \mu) = \{1, 2\}$ Number of jets = $\{2, 3, 4, 5\}$ $H_T > \{1, 2\}$ TeV

Monitored during 2017 data-taking

- No significant excess or feature in data
- Multijet bkg difficult to model
- Luminosity doubled in the short term



TADA: monitoring generic signatures

Monitoring Generic Channels - conclusion

- Fast monitoring crucial during data-taking
- Generic signatures:
 - Proof of concept system
 - Easily extensible
 - o Run-3?
- No systematic errors included
- No data-driven techniques for bkg. estimation

Fabricio Jiménez - LLR / CNRS

Outline

1. Searching for New Physics at the LHC

- The Standard Model, the LHC and ATLAS
- Model Independent searches for New Physics
- Monitoring generic physics channels

2. Methods for Model Independent searches for New Physics

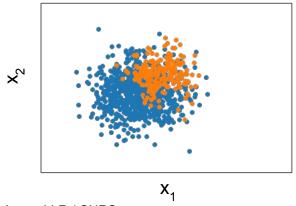
- A Semi-supervised approach for anomaly detection
- Gaussian Processes for resonance searches

Gaussian Mixtures and Gaussian Processes

Two methods for model independent searches

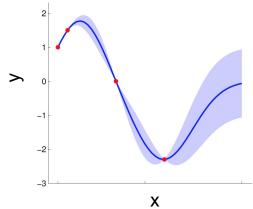
Penalized Anomaly Detection

- Multiple dimensions (variable selection)
- Semi-supervised learning



Gaussian Processes for resonance searches

- Focus on one dimension
 - Smooth background + signal ID
- Resonance searches

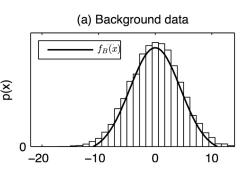


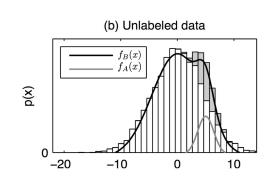
Fabricio Jiménez - LLR / CNRS X

Detecting anomalies - Gaussian Mixture Models*

Fixed Background Model (FBM)

- a. Learn a background model $f_{R}(x)$
- b. Fit data keeping $f_B(x)$ fixed $\rightarrow f_{FB}(x)$





mixing coefficient

$$f_{FB}(x) = (1 - \lambda)f_B(x) + \lambda f_A(x)$$

Max. likelihood while keeping background fixed

 $f_A(x)$ is the anomaly model

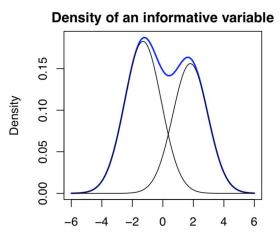
The anomaly could point to New Physics

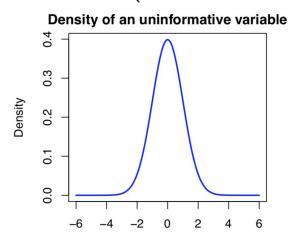
Penalized model-based clustering

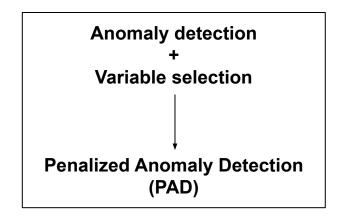
GMMs are difficult to fit in high dimensions → Standard approach: Use Principal Components

Alternative: use regularization → **dimensionality reduction**

$$\log \mathcal{L}_p(\theta) = \sum_{i=1}^{N} \left(\sum_{k=1}^{K} \pi_k \mathcal{N}\left(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right) \right) - \gamma p(\boldsymbol{\Theta}) \qquad \left[\boldsymbol{\Theta} \subset \theta\right]$$







Mean And Eigenvalue Shrinkage

$$\log \mathcal{L}_p\left(oldsymbol{ heta}_B
ight) = \sum_{i=1}^N \log \left(\sum_{k=1}^K \pi_k \mathcal{N}\left(oldsymbol{x}_i | oldsymbol{\mu}_k, \Sigma_k
ight)
ight)$$

Regular GMM likelihood

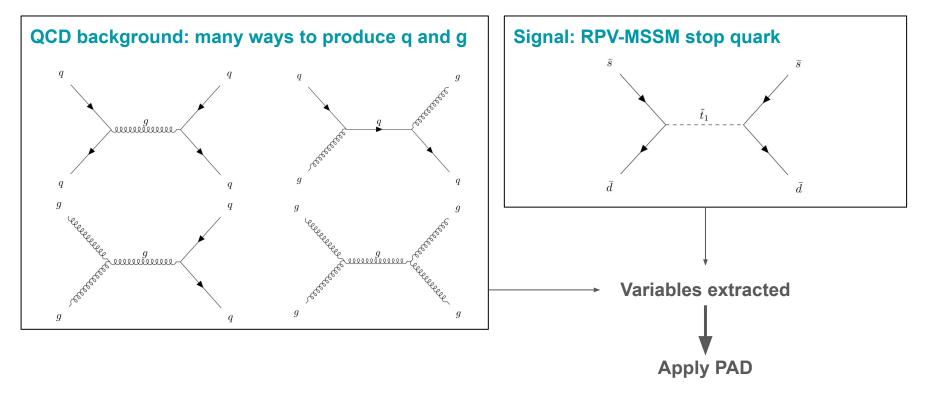
$$+\left.\gamma_{1}\sum_{j=1}^{D}\sqrt{\sum_{k=1}^{K}\pi_{k}\mu_{kj}^{2}}
ight.$$

Shrinks the (squares of the) Gaussian means

$$+ \gamma_2 \sum_{k=1}^K \sum_{j=1}^D \max\left(\delta_{kj}, \epsilon_k\right)$$

Shrinks the eigenvalue δ_k of covariance matrix Σ_k

Simple physics scenario: dijet simulation



Fabricio Jiménez - LLR / CNRS

Variables

11 variables extracted from the simulation describe the physics in the event:

Event wide Object (jet) information Dijet system 0.025 $RPV-MSSM \tilde{t} \rightarrow jj$ RPV-MSSM t̃→jj 10^{-2} $\mathsf{RPV}\text{-}\mathsf{MSSM}\,\tilde{\mathsf{t}}\!\to\! jj$ 2.5 QCD dijet QCD dijet QCD dijet 0.020 2.0 10^{-3} 0.015 1.5 0.010 -1.0 10^{-4} 0.005 0.5 10^{-5} 0.000 100 125 150 175 100 200 300 500 25 ΔR (j1, j2) $p_T(j2)$ [GeV] E_Tmiss [GeV]

Fabricio Jiménez - LLR / CNRS

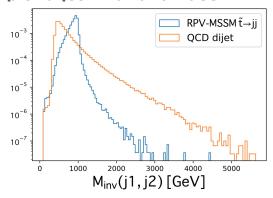
Sample preprocessing

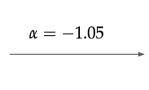
GMMs: flexible, but skewed data require many Gaussian components

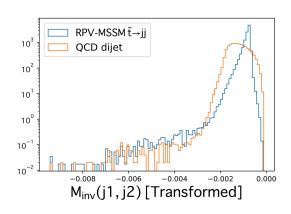
→ Tukey ladder of powers transformation, makes distribution more Gaussian

$$f(x) = \begin{cases} x^{\alpha}, & \text{for } \alpha > 0 \\ -x^{\alpha}, & \text{for } \alpha < 0 \\ \ln(x), & \text{for } \alpha = 0 \end{cases}$$

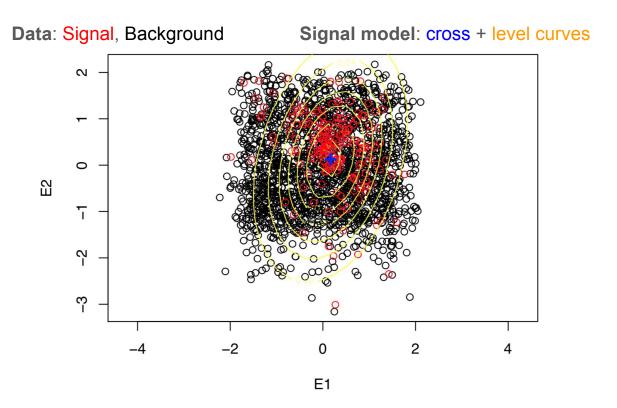
Example: dijet invariant mass







PAD - transformed jet energies



PAD - signal extraction

Apply the method → estimate signal strength, classify observations

Method	λ	Average estimate $\hat{\lambda}$	Average AUC
PAD	0 (spurious)	0.10(0.03)	-
PAD	0.05	0.04(0.01)	0.7(0.1)
PAD	0.10	0.06(0.01)	0.81(0.01)
PAD	0.15	0.09(0.01)	0.87(0.02)
PAD	0.20	0.112(0.006)	0.88(0.01)
FBM	0 (spurious)	0.12(0.03)	-
FBM	0.05	0.025(0.009)	0.7(0.1)
FBM	0.10	0.046(0.008)	0.76(0.08)
FBM	0.15	0.070(0.006)	0.77(0.07)
FBM	0.20	0.10(0.01)	0.78(0.05)

- PAD is able to identify uninformative variables, in this case 2 (p_{T2} and E_T^{miss})
- Better performance than FBM in classification

PAD - Conclusion and Outlook

- Novel method for Collective Anomaly Detection
- Results promising but signal underestimated
- Possible improvement directions
 - Simplify pre-processing step
 - Use penalty terms added for the shrinkage of (mean and covariance) parameters
 - Consider non gaussian finite mixture models

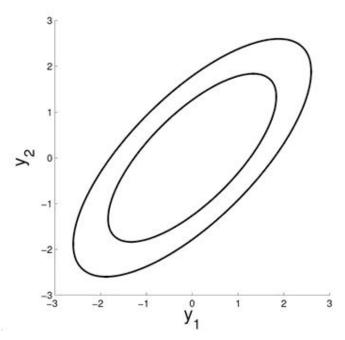
Outline

- 1. Searching for New Physics at the LHC
 - The Standard Model, the LHC and ATLAS
 - Model Independent searches for New Physics
 - Monitoring generic physics channels
- 2. Methods for Model Independent searches for New Physics
 - A Semi-supervised approach for anomaly detection
 - Gaussian Processes for resonance searches

Bivariate Gaussian

$$p(\mathbf{y}|\Sigma) \propto \exp\left(-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\Sigma^{-1}\mathbf{y}\right)$$

$$\Sigma = \left[\begin{array}{cc} 1 & .7 \\ .7 & 1 \end{array} \right]$$

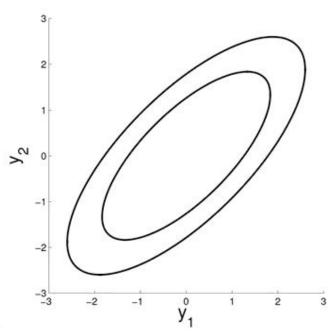


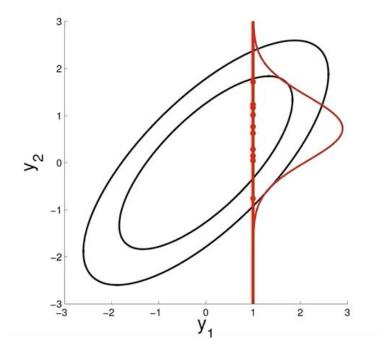
Bivariate Gaussian

$$p(\mathbf{y}|\boldsymbol{\Sigma}) \propto \exp\left(-\tfrac{1}{2}\mathbf{y}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{y}\right)$$

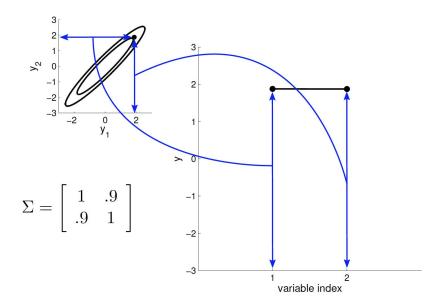
$$\Sigma = \left[\begin{array}{cc} 1 & .7 \\ .7 & 1 \end{array} \right]$$

$$\Sigma = \begin{bmatrix} 1 & .7 \\ .7 & 1 \end{bmatrix} \qquad p(\mathsf{y}_2|\mathsf{y}_1, \Sigma) \propto \exp\left(-\frac{1}{2}(\mathsf{y}_2 - \mu_*){\Sigma_*}^{-1}(\mathsf{y}_2 - \mu_*)\right)$$

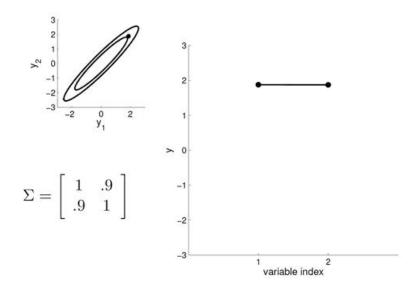




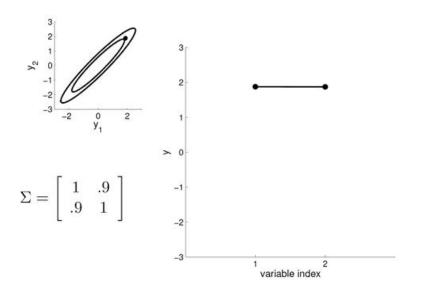
MacKay's visualization of N-dim Gaussians

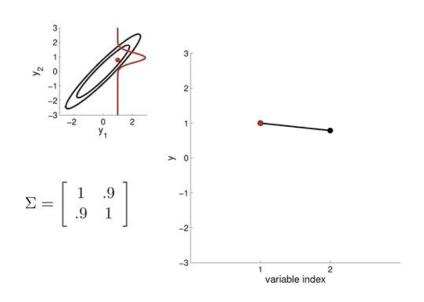


MacKay's visualization of N-dim Gaussians

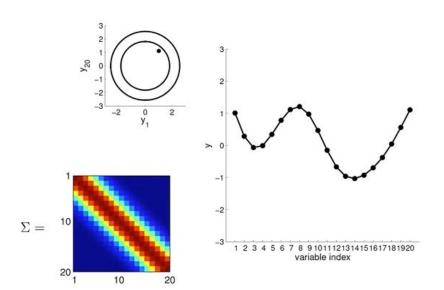


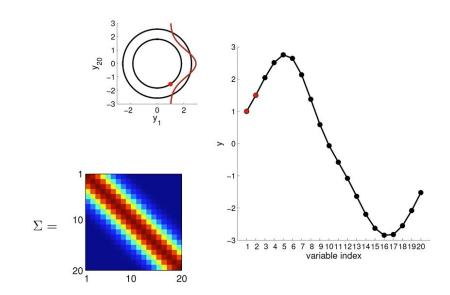
MacKay's visualization of N-dim Gaussians





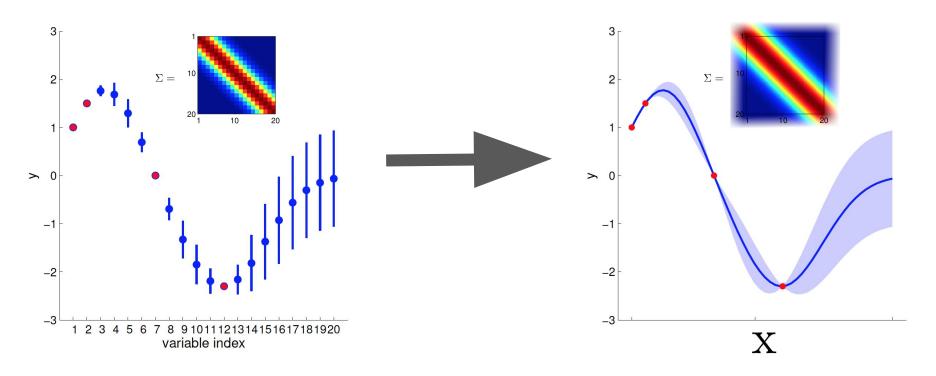
20-dimensional Gaussian





10

Infinite dimensions - Gaussian Process (GP)



Fabricio Jiménez - LLR / CNRS

https://youtu.be/92-98SYOdIY

Gaussian Processes (GPs)

GP: associate a multivariate gaussian distribution to a set of random variables

→ The gaussian will have as many dimensions as random variables we have

A set of N values (bin counts) **y** can be associated with _ _

$$oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_N \end{bmatrix} \sim \operatorname{Gaus}(oldsymbol{\mu}, \Sigma)$$

Infer new values y_{*} by extending (the dim. of) the Gaussian distribution

Use a *kernel* or *measure of similarity* between points (bin centers) and a *mean function*

 \rightarrow A kernel example is the exponential squared

$$k(x_i, x_j) = A \exp\left(-\frac{(x_i - x_j)^2}{2l^2}\right)$$

where A and I are (hyper)parameters to be fixed

Gaussian Processes (GPs)

Infer a new value y, located in x, using the following

$$p(m{y}_*|m{x}_*,m{x},m{y}) = \mathrm{Gaus}(m{y}_*|m{\mu}_*,\Sigma_*)$$
 $m{\mu}_* = m(m{x}_*) + m{K}_*^T \Sigma^{-1}(m{y} - m(m{x}))$ $\Sigma_* = m{K}_{**} - m{K}_*^T \Sigma^{-1} m{K}_*$ With $m{K}_* = k(m{x},m{x}_*)$, $m{K}_{**} = k(m{x}_*,m{x}_*)$

Note:

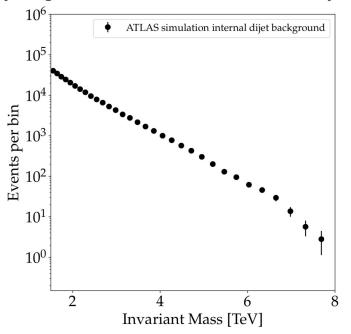
- Kernel hyperparameters are optimized using e.g. Maximum Likelihood
- GPs are flexible enough to model the mean of the distribution having m(x) = 0

Two use cases in invariant mass spectra:

two jets & jets and leptons (top pair)

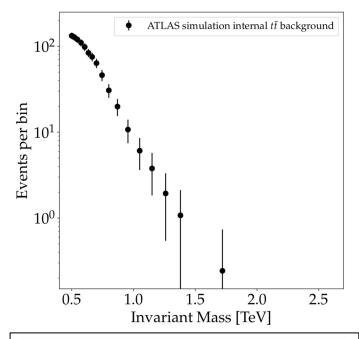
Mass spectra used

Dijet signature from General Search Analysis



Aaboud, M., Aad, G., Abbott, B. et al. Eur. Phys. J. C (2019) 79: 120.

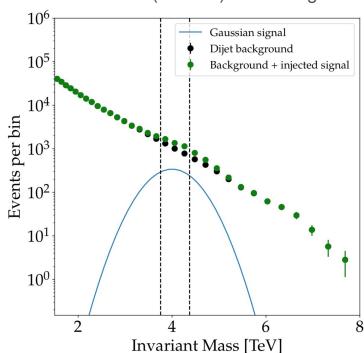
Lepton+jets signature from X→tt Search



Aaboud, M., Aad, G., Abbott, B. et al. Eur. Phys. J. C (2018) 78: 565.

Injecting signals

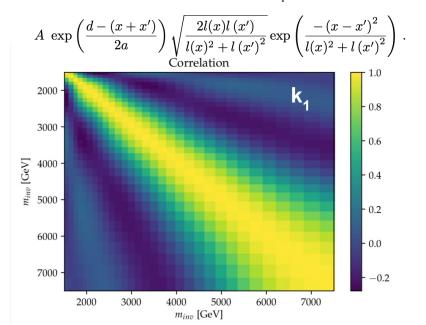
Construct a window (dashed) around signal mean



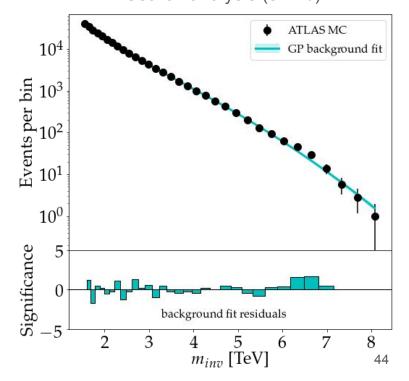
 $R = \frac{\text{Injected signal events in the window}}{\text{Background events in the window}}$

2-step procedure in the dijet spectrum*

- GP fit for SM background
 - \rightarrow Use background kernel k_1 and mean m(x) = 0



Dijet data from the 2015 General Search analysis (3.2/fb)

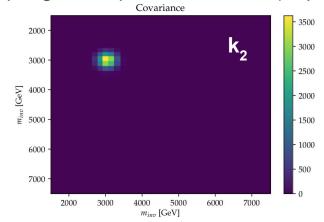


2-step procedure*

2. GP fit using background pseudodata and injected signal

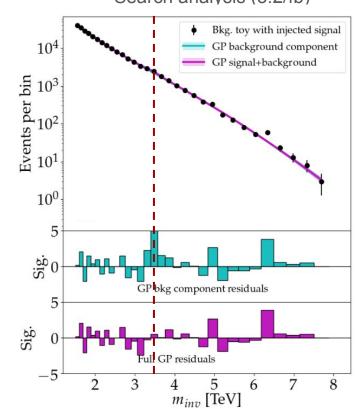
$$A_S \exp\left(-\frac{1}{2}(x-x')^2/l^2\right) \exp\left(-\frac{1}{2}((x-m)^2+(x'-m)^2)/t^2\right).$$

- \rightarrow Use background + signal kernel \rightarrow k₁+ k₂
- → Keep bkg. kernel parameters frozen (step 1)

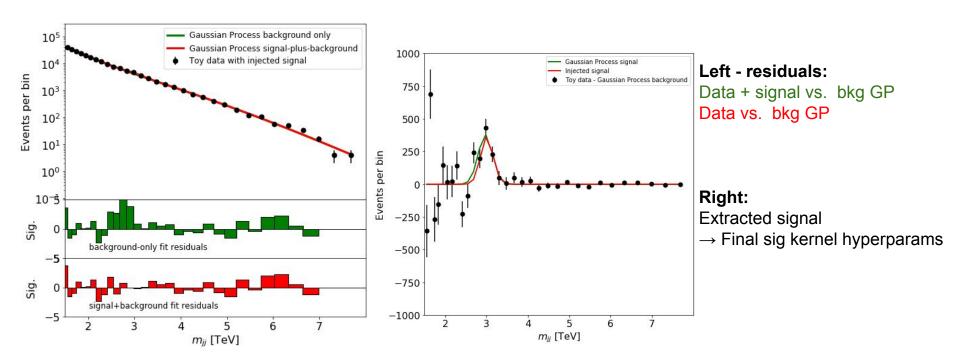


Extract signal parameters from signal kernel

Dijet data from the 2015 General Search analysis (3.2/fb)

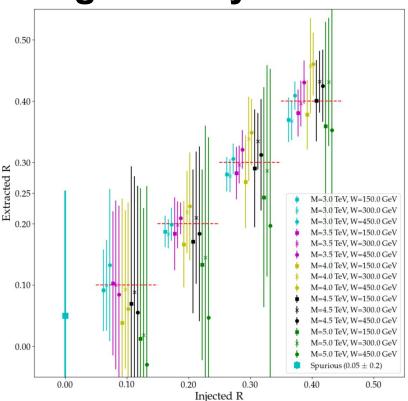


2-jet mass spectrum with signal injected



Tested 60 signal hypotheses with 100 toys each

Testing linearity



Points and errors extracted:

→ the mean and deviation from values (all toys)

Extract information from spurious signal fitting

Further tests of this GP method:

- Variations of the 2-step procedure
- 3-step procedure for m_{tt} spectrum

Two-step procedure in the m_{tt} spectrum

Case: mass spectrum from (<u>1804.10823</u>)

Search for $X \rightarrow$ top pair (signature w/ jets and leptons)

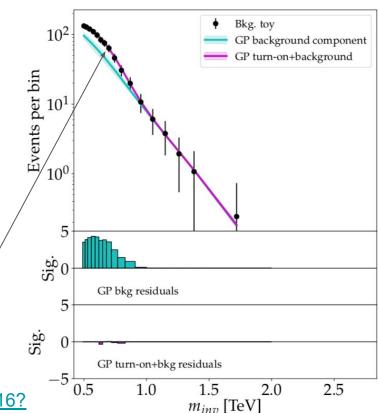
One top decays hadronically

Another into b-jet and muon+neutrino

ATLAS simulations (36.1 /fb analysis)

The background spectrum presents a turn-on in the low-mass region

Kernel in the second step (k₂) accommodates turn on



Three-step procedure

- 1. On background data: use $\mathbf{k} = \mathbf{k}_1$
- 2. On same background data, use $\mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$ (keep \mathbf{k}_1 parameters fixed)
- 3. On background+signal data: use $\mathbf{k} = \mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}$ (params $\mathbf{k_1}$, $\mathbf{k_2}$ fixed) Where $\mathbf{k_3}$ is the same as $\mathbf{k_2}$ with e.g. a constraint on small widths

Three-step procedure in the m_{tt} spectrum

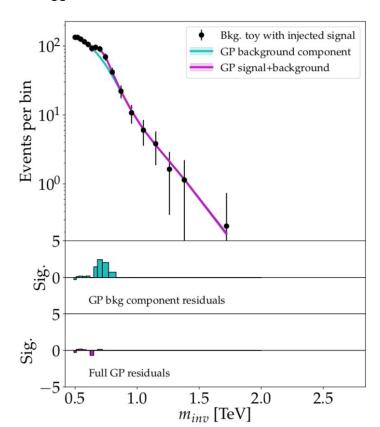
Third step is used for signal extraction

Signal benchmarks

Z' @ 750 GeV with an amplitude of 1.85 pb (right plot)

Z' @ 1250 GeV with an amplitude of 1 pb

Note: Need to amplify the signal to achieve detection



Three-step procedure in the m_{tt} spectrum

Hypothesis (factor)	injected R	m [GeV]	R
No signal	0	610 ± 50	0.04 ± 0.05
750 GeV (5)	0.1	630 ± 20	0.16 ± 0.06
750 GeV (10)	0.2	680 ± 20	0.36 ± 0.08
750 GeV (15)	0.3	700 ± 10	0.39 ± 0.07
1250 GeV (5)	0.18	900 ± 100	0.01 ± 0.01
1250 GeV (10)	0.35	1000 ± 100	0.19 ± 0.07
1250 GeV (15)	0.53	1110 ± 30	0.35 ± 0.07

GPs in resonance searches - conclusion+outlook

- Method working in two different mass spectra
 - Background modelling
 - Signal extraction possible (biased)
- Future improvements
 - Towards data-driven background estimation
 - Choice of kernels
 - Automated procedure for other signatures

Conclusions

- Abundance of data at the LHC and upgrade for probing the Standard Model and beyond
- Time is ripe for devoting effort in developing Model-Independent methods
 - Methods presented in this work plus several other
 - Profit from advances in the Machine Learning community

This Report is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°675440

Thank you!

Backup

General Search approach

HERA proposed a 1-D (one variable in a class) search algorithm, used in ATLAS

Calculate the value of the estimator **p** given by

$$p = \begin{cases} A \int_0^\infty db G(b, N_{SM}, \delta N_{SM}) \sum_{i=N_{obs}}^\infty \frac{e^{-b}b^i}{i!} & N_{obs} > N_{SM} \\ A \int_0^\infty db G(b, N_{SM}, \delta N_{SM}) \sum_{i=0}^{i=N_{obs}} \frac{e^{-b}b^i}{i!} & N_{obs} < N_{SM} \end{cases}$$

Gaussian pdf with mean N_{SM} and width δN_{SM}

Poisson pdf

in all possible regions (connected bins), with:

 N_{SM} = expected number of events

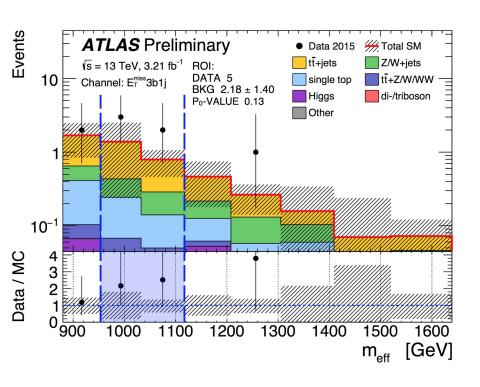
 δN_{SM} = systematic unc. on N_{SM}

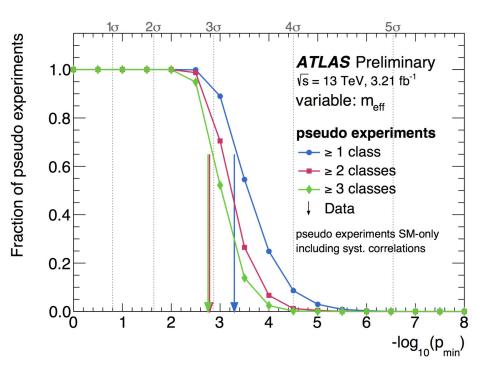
N_{obs} = observed number of events

A = norm. constant

Probability of a N_{SM} fluctuation as extreme as N_{obs} in the region $\mathbf{p} \rightarrow \mathbf{local} \ \mathbf{p-value}$

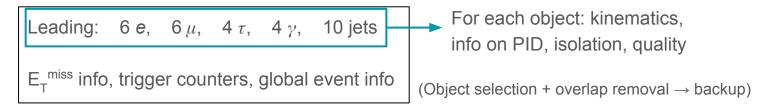
General Search @ ATLAS





TADA: format, data + simulations

TAG: Condensed data format produced at ATLAS Tier-0



MC simulations (detail in backup)

- Top pairs + single top
- Dibosons
- W/Z+jets
- Multijets
- Diphoton

Data

- pp collisions @ \sqrt{s} = 13 TeV
- Period monitored: 2017 (43.8 / fb)
- Athena release 21
- Updated twice a day when runs available

Object selection requirements in TADA

Object	p_T	$ \eta $	Other requirements	
e	> 10 GeV	\in (0, 1.37) \cup (1.52, 2.47)	ElectronIDLikelihoodLoose	
			isCombined	
1,	> 10 GeV	< 2.7	LooseID	
μ	$\mu > 10 \mathrm{GeV}$	< 2.7	Cosmics veto	
			Reject second muons with $dR < 0.01$	
γ	> 20 GeV	\in (0, 1.37) \cup (1.52, 2.37)	PhotonIDLoose	
			AntiKt4TopoJets	
(b-)jet	> 40 GeV	< 2.8	LooseBadTool	
			(mv2c10 b-jet tagger)	
τ	> 20 GeV	\in (0, 1.37) \cup (1.52, 2.5)	JetBDTSigMedium	

TADA: monitoring generic signatures

Overlap removal in TADA

Rank	Overlap removal	separation
1	remove jets overlapping with electrons	dR < 0.2
2	remove taus overlapping with muons	dR < 0.2
3	remove jets overlapping with taus	dR < 0.4
4	remove electrons overlapping with jets	dR < 0.4
5	remove muons overlapping with jets	dR < 0.4
6	remove photons overlapping with electrons	dR < 0.2
7	remove jets overlapping with photons	dR < 0.4

MC simulations for TADA

- $t\bar{t}$ +single-t. Samples for top quark pairs ($t\bar{t}$) were produced using Powheg [48, 49] (limiting the hdamp parameter to 1.5 times the top mass), Pythia 8 [50, 51] (using the A14 tune [52] and nnpdf23 [53] at leading-order (LO)) and EvtGen [54]. Single top-quark (single-t) samples were generated using Powheg [48, 49], Pythia 6 [50] (with the Perugia 2012 tune [55]) and EvtGen [54].
- Dibosons. These samples, corresponding to processes generating *WW*, *ZW* or *ZZ*, were generated using Sherpa 2.2.1 [56] using nnpdf30 at next-to-next-to-leading-order (NNLO).
- *W*/*Z*+jets. The processes corresponding to final states with a weak boson plus jets, were also generated with Sherpa 2.2.1 [56] using nnpdf30 at NNLO for leptonic decays and Sherpa 2.1.1 and the CT10 pdf [57].
- Multijets. These were dijet samples generated with Pythia 8 [50, 51] using the A14 tune [52] and nnpdf23 [53] LO and EvtGen [54]. Multijet samples are the combination of samples generated at different ranges of the leading jet p_T value (known as *slices*).

Monitoring generic channels

```
# Selections
                                 Variables
    Group
                                 Number of leptons (e, \mu) = \{1, 2\}
                                 Number of jets = \{2, 3, 4, 5\}
Leptons plus jets
                        16
                                 H_T > \{1,2\} \text{ TeV}
       'Selection': '''
            ( TrigEmuOneMu || TrigEmuOneEl) &&
            ( IsGoodJetMET ) &&
            ( (NLooseElectron + NLooseMuon) == {nlep} ) &&
            ( LooseElectronPt1 > 26000 || LooseMuonPt1 > 26000 ) &&
            ( NJet == {njet} ) &&
            ( HT >= {ht} )
       1.1.1
       'SelectionFunc': [require good lepton, require good jet],
        'Variables': {
10
            'nlep' : [1,2],
11
            'njet' : [2,3,4,5],
12
            'ht' : [1000* GeV, 2000* GeV],
13
14
```

ML in model independent NP searches

A number of applications:

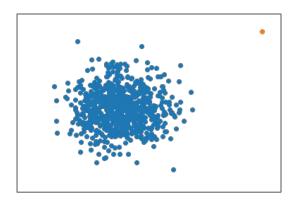
- Variational Autoencoders for outlier detection
- Compare B and S+B samples using Nearest Neighbors and Kullback-Leibler divergence
- Neural Networks as universal approximators for comparing B and S+B samples
- Using auxiliary measurements to improve Bump Hunting

Anomalies

Departure from some "normal" behavior in data

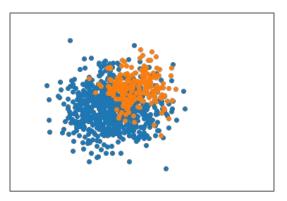
Point anomaly

Observation* that differs from other



Collective anomaly

Individual observations that are not (necessarily) anomalous, but a set of which is unusual



Expectation-Maximization (EM) for GMM

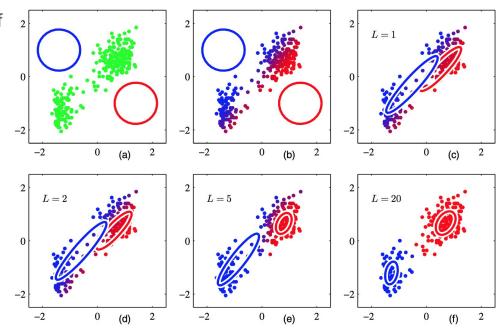
Start with a mixture of J multivariate Gaussian pdf

$$f(x|\theta) = \sum_{j=1}^{J} \pi_{j} \mathcal{N}\left(x_{i}|\mu_{j}, \Sigma_{j}\right)$$

At each iteration, there are two steps (backup):

- E expectation: assign prob. to data
- M maximization: update model

⇒ Increase likelihood



Extend this to fit the anomaly model (two step procedure)

Expectation-Maximization (EM) algorithm for GMM

Start with a mixture of J multivariate Gaussian pdfs:

$$f(x|\theta) = \sum_{j=1}^{J} \pi_j \phi(x_i|\mu_j, \Sigma_j)$$

 θ is the set of parameters π_i , μ_i , Σ_i ; ϕ is a Gaussian

At each iteration, there are two steps (see backup):

• E - expectation step:

Prob. for each point x_i to have been generated by the jth Gaussian

M - maximization step:

Update the θ values using the probability from E step

L = 2

From Bishop's "Pattern recognition and machine learning," Figure 9.8

Explore θ values until a local maximum of the (log) likelihood $I(\theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{J} \pi_j \phi(x_i | \mu_j, \Sigma_j) \right)$ is found

Extend this to fit the anomaly model f

Expectation-Maximization (EM) algorithm for GMM

Start with a mixture of J multivariate Gaussian distributions:

$$p(x| heta) = \sum_{j=1}^J \pi_j \phi(x_i|\mu_j, \Sigma_j)$$
 where $heta$ is the set of parameters π_j , μ_j , Σ_j

Expectation step (kth iteration):

Compute prob for each point x_i to have been generated by the jth Gaussian

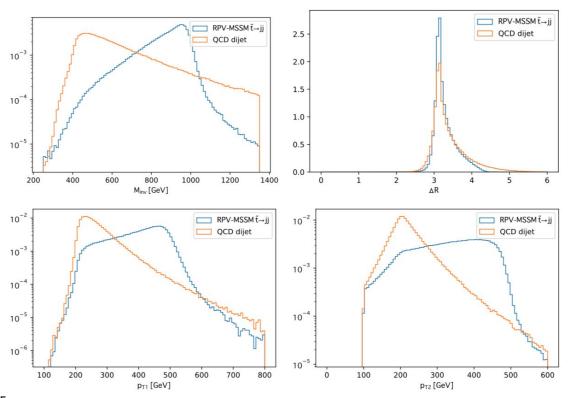
$$p(z_{ij}|x_i,\theta^k) = \frac{\pi_j^k \phi(x_i|\mu_j^k, \Sigma_j^k)}{\sum_{j'=1}^J \pi_{j'}^k \phi(x_i|\mu_{j'}^k, \Sigma_{j'}^k)} \equiv \gamma_{ij}^k$$

Maximization step: update the values

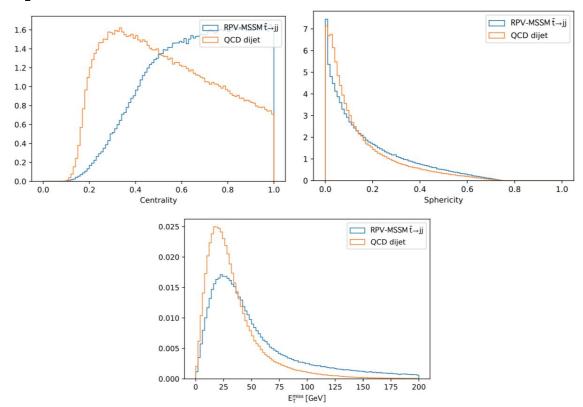
$$\pi_j^{k+1} = rac{1}{N} \sum_{i=1}^N \gamma_{ij}^k, \qquad \mu_j^{k+1} = rac{\sum_{i=1}^N \gamma_{ij}^k x_i}{\sum_{i=1}^N \gamma_{ij}^k} \ \Sigma_j^{k+1} = rac{\sum_{i=1}^N \gamma_{ij}^k (x_i - \mu_j^{k+1}) (x_i - \mu_j^{k+1})^T}{\sum_{i=1}^N \gamma_{ii}^k}$$

EM algo. increases the (log) likelihood
$$I(\theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{J} \pi_j \phi(x_i | \mu_j, \Sigma_j) \right)$$
 until a local minimum is found

Dijet sample

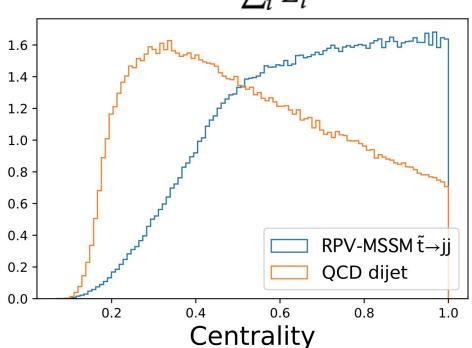


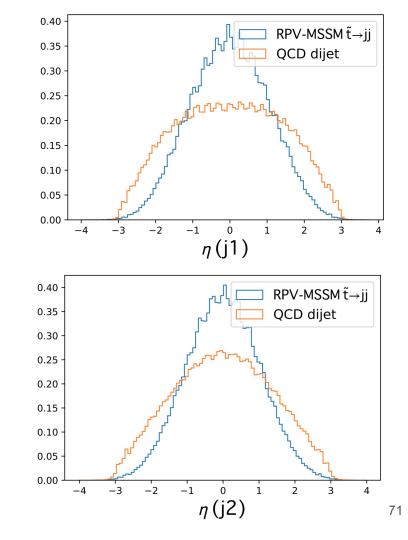
Dijet sample



Centrality in simulated dijet

$$C = \frac{\sum_{i} E_{Ti}}{\sum_{i} E_{i}}$$

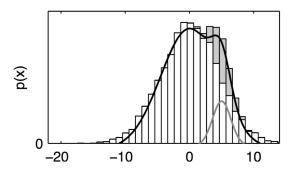




Gaussian Mixture Models & Gaussian Processes

In my work, I have used mainly two methods for model-independent searches. More below

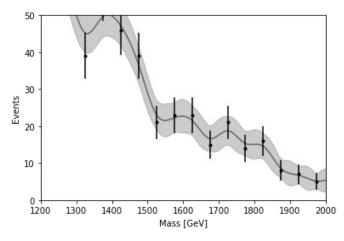
- 1. Semi-supervised anomaly detection using **Gaussian Mixture Models**:
 - Model background and background+signal prob. distribution of events
 - Use a linear combination of Gaussian pdfs + penalized maximum likelihood



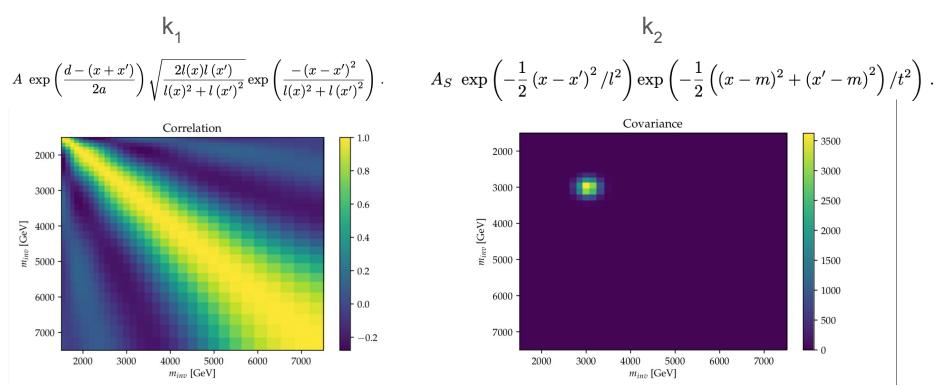
Gaussian Mixture Models & Gaussian Processes

In my work, I have used mainly two methods for model-independent searches. More below

- 2. Model smooth backgrounds and generic signals in 1-D distributions with Gaussian Processes
 - Associate a multivariate Gaussian with as many dimensions as data points bins in a histogram
 - Use Maximum Likelihood to estimate the correlations between points



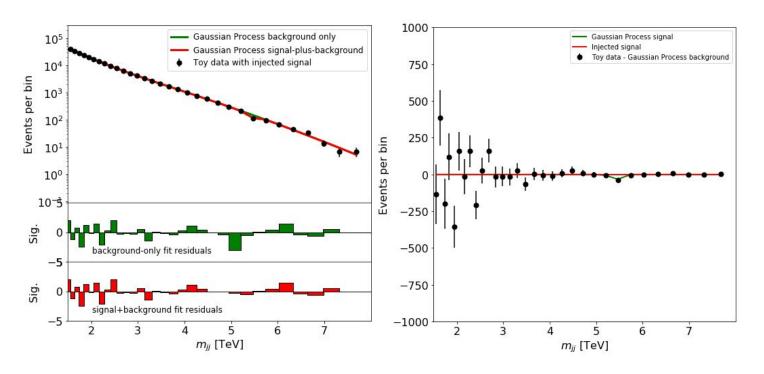
Kernels used (after fit example)



Fabricio Jiménez - LLR / CNRS

74

2-jet mass spectrum with no signal injected



Dijet simulated sample

Produced a fast simulation of signal and background events:

→ Use an object/event selection inspired in the one from ATLAS dijet analysis

11 variables extracted from the simulation describe the physics in the event:

Event wide

Dijet system

Object (jet) information

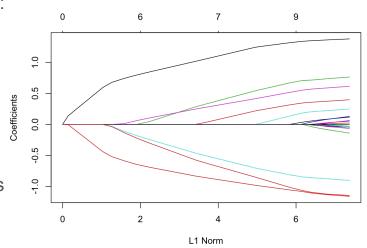
Penalized model-based clustering

Penalized likelihood approach → Add a term to the likelihood:

$$l(\theta) = \sum_{i=1}^{N} \left(\sum_{j=1}^{J} \pi_j \phi(x_i | \mu_j, \Sigma_j) \right) - \gamma p(\Theta)$$

p(.) is a penalty function, γ a regularization coefficient

→ The penalty term contains (combinations of) parameters
 O that are constrained in the model



Used for variable selection, i.e. **remove uninformative variables**; some choices are penalties on:

- The means of the gaussians, e.g. L2 norm: $p(\mu) = \sum_{k=1}^{p} \sqrt{\sum_{j=1}^{J} \mu_{jk}^2}$ for p variables
- The values on the covariances

Sample preprocessing

Mixtures of Gaussians: Flexible model, but skewed data requires many Gaussian components

→ Use the Tukey ladder of powers transformation, makes distribution more Gaussian

$$f(x) = \begin{cases} x^{\alpha}, & \text{for } \alpha > 0 \\ -x^{\alpha}, & \text{for } \alpha < 0 \\ \ln(x), & \text{for } \alpha = 0 \end{cases}$$

Variable	E_1	η_1	ϕ_1	p_{T1}
α	-0.65	0.6	0.775	-2.1
Variable	E_2	η_2	ϕ_2	p_{T2}
α	-0.6	0.55	0.825	-0.475

	x is	the	variable	to b	e transform	ned
--	------	-----	----------	------	-------------	-----

- α is a parameter to be found (maximizes Shapiro-Wilk test statistic)
- Data is then standardized with respect to the background distribution

Variable	$\Delta R(j_1, j_2)$	$M_{\mathrm{inv}}(j_1,j_2)$	$E_T^{ m miss}$	Sphericity	Centrality
α	-0.05	-1.05	0.125	0.25	0.5