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Why investigate λ
hhh

?
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Probing the shape of the Higgs potential

➢ Since the Higgs discovery, the existence of the Higgs potential is 
confirmed, but at the moment we only know:
→ the location of the EW minimum: 

v = 246 GeV
→ the curvature of the potential around the EW minimum: 

m
h
 = 125 GeV

However we still don’t know the shape of the potential, away from 
EW minimum →  depends on λ

hhh

➢ λ
hhh

 determines the nature of the EWPT!

 ⇒ O(20%) deviation of λ
hhh

 from its SM prediction needed to have a 

strongly first-order EWPT → necessary for EWBG [Grojean, 
Servant, Wells ’04], [Kanemura, Okada, Senaha ’04]
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Distinguish aligned scenarios with or without decoupling

➢ Aligned scenarios already seem to be favoured → Higgs couplings are SM-like at tree-level
➢ Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using synergy 

of HL-LHC and ILC!
→ Alignment through decoupling? or alignment without decoupling?

➢ If alignment without decoupling, Higgs couplings like λ
hhh

 can still exhibit large deviations from SM 

predictions because of non-decoupling effects from BSM loops

➢ Current best limit (at 95% CL):
−1.0 < λ

hhh
 /(λ

hhh
)SM < 6.6 [ATLAS-CONF-2021-052] 

➢ Improvement at future colliders: 
• HL-LHC: λ

hhh
 /(λ

hhh
)SM within  50-100%∼ ; 

• At lepton colliders – ILC, CLIC –  within some tens of %; 
• At a 100-TeV hadron collider, down to 5-7%

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], 
[Chang et al. 1804.07130,1908.00753], etc. 
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Non-decoupling effects
at one loop
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The Two-Higgs-Doublet Model

➢ 2 SU(2)
L
 doublets Φ

1,2
 of hypercharge ½ 

➢ CP-conserving 2HDM, with softly-broken Z
2
 symmetry (Φ

1
→Φ

1
, Φ

2
→ -Φ

2
) to avoid tree-level 

FCNCs   

➢ 7 free parameters in scalar sector: m
3
, λ

i 
(i=1,..,5), tanβ≡v

2
/v

1

➢ Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H±: charged Higgs

➢ λ
i 
 (i=1,..,5) traded for mass eigenvalues m

h
, m

H
, m

A
, m

H±
 and CP-even Higgs mixing angle α

➢ m
3
 replaced by a Z

2
 soft-breaking mass scale
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One-loop λ
hhh

 and non-decoupling effects
➢ Leading one-loop corrections to λ

hhh
 in models with extended sectors (e.g. 2HDM):

                                           SM top quark loop                              BSM scalar loops 

: BSM mass scale, e.g. soft breaking scale M of Z
2
 symmetry in 2HDM

: # of d.o.f of field Φ

➢ Size of new effects depends on how the BSM scalars acquire their mass: 

Huge BSM 
effects possible!
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➔ Such large 1L deviations can appear in a range of BSM models: 
e.g. 2HDM, Inert Doublet Model, Singlet extension, etc.

➔ What happens at two loops??

➔ Such large 1L deviations can appear in a range of BSM models: 
e.g. 2HDM, Inert Doublet Model, Singlet extension, etc.

➔ What happens at two loops??



Our calculations
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Our setup

➢ We want to know how large the two-loop corrections to λ
hhh

 can become:
➔ Effective Higgs trilinear coupling 

(i.e. neglect subleading effects from ext. momentum,
but corresponds to κ

λ
, used by experimentalists)

➔ Dominant two-loop corrections to V
eff 

= diagrams involving heavy BSM scalars and top quark

➔ Aligned scenarios → no mixing + compatible with experimental results

➔ Results expressed in terms of physical (OS) parameters (details in backup)

 

                       

e.g. for 
2HDM



Numerical results
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BSM deviation of λ
hhh

 in an aligned 2HDM
Taking degenerate BSM scalar masses: M

Φ
=M

H
=M

A
=M

H
+

[JB, Kanemura ‘19]

● M̃ = 0 → maximal non-
decoupling effects

● δ(2)λhhh typically 10-20% 
of δ(1)λhhh for most of 
mass range, at most 
30% 
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Maximal BSM deviation in an aligned 2HDM scenario
[JB, Kanemura ‘19]

● Maximal δR (1l+2l) allowed while fulfilling perturbative 
unitarity [Kanemura, Kubota, Takasugi ’93]

● Max. deviations for low tanβ and MΦ~600-800 GeV 
→heavy BSM scalars acquiring their mass from  
Higgs VEV only
➢ 1 loop: up to ~300% deviation at most
➢ 2 loops: additional 100% (for same points)

● For increasing tanβ, unitarity constraints become 
more stringent → smaller δR

● Blue region: probed at HL-LHC (50% accuracy on 
λhhh)

● Green region: probed at lepton colliders, e.g. ILC 
(50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 
1 TeV)
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λ
hhh

 at two loops in more models [JB, Kanemura ‘19]

➢ Calculations in several other models: IDM, singlet extension of SM
➢ Each model contains a new parameter appearing from two loops → can large enhancements occur?

Aligned 2HDM → tanβ IDM → λ
2 
(quartic coupling of inert doublet)

tanβ constrained by perturbative unitarity
→ only small effects

λ
2
 is less contrained → enhancement is possible

(but 2L effects remains well smaller than 1L ones)



Theories with classical scale 
invariance (CSI)
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Classical scale invariance
• CSI: forbid mass-dimensionful parameters at classical (= tree) level 

→ tree-level potential: 

• However broken explicitly at loop level

• EW symmetry breaking: (c.f. [Coleman, Weinberg ‘73], [Gildener, Weinberg ‘76])
➢ Must occur along a flat direction of V(0) (= Higgs/scalon direction)
➢ EW sym. broken à la Coleman-Weinberg along flat direction
➢ EW scale generated by dimensional transmutation

• Here: CSI assumed around EW scale, for phenomenology
➢ Higgs (scalon) automatically aligned at tree level → compatible with current exp. results
➢ BSM states can’t be decoupled (no BSM mass term!)
➢ CSI scenarios: alignment with decoupling
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One-loop effective potential and λ
hhh

• Only source of mass = coupling to Higgs and its VEV:

• Greatly simplifies the one-loop potential along Higgs (scalon) direction:

with

• Taking successive derivatives of the potential

➢ 1st derivative = tadpole equation → fix A in terms of v and B

➢ 2nd derivative = Higgs (effective potential) mass             →  fix B in terms of v and M
h

➢ 3rd derivative = λ
hhh

 but V(1) is entirely determined by A, B   →  

Universal one-loop result in CSI theories!
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Effective potential at two loops

• Form of V
eff

 changes at two loops: 

• New type of contribution:
new log^2 term!



Page 23| IRN Terascale @ LPC-Clermont | Johannes Braathen (DESY) | November 23, 2021

λ
hhh

 at two loops in CSI models

 Follow same procedure as at one loop:

 Eliminate A with tadpole equation, B with Higgs mass

 Still, C remains! 

 One finds:

  Deviation in λ
hhh

 depends on log^2 term in V
eff

  Universality found at one loop is lost at two loops! 

[JB, Kanemura, Shimoda ‘20]



Numerical results
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Comparing λ
hhh

 in 2HDM scenarios with or without CSI
Taking degenerate BSM masses: M

Φ
=M

H
=M

A
=M

H
+

From 
[JB, Kanemura ‘19]

From 
[JB, Kanemura, Shimoda ‘20]

[JB, Kanemura, Shimoda ‘20]

We can now 
distinguish CSI 
scenarios with 

different 
values of tanβ 

or M
Φ
!
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Allowed range of BSM deviations in a CSI-2HDM
Perturbative unitarity and M

h
 strongly constrain the allowed range of BSM parameters!

[JB, Kanemura, Shimoda ‘20]

To correctly reproduce M
h
=125 GeV

(M
h
 loop generated in CSI theories)

Range of M
Φ
 constrained by 

pert. unitarity and M
h
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Allowed range of BSM deviations in a CSI-2HDM
Perturbative unitarity and M

h
 strongly constrain the allowed range of BSM parameters!

[JB, Kanemura, Shimoda ‘20]

To correctly reproduce M
h
=125 GeV

(M
h
 loop generated in CSI theories)

Range of M
Φ
 constrained by 

pert. unitarity and M
h

Could also be 
obtained in a 
non-CSI 2HDM
[JB, Kanemura ‘19]
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Comparing λ
hhh

 in 2HDM scenarios with or without CSI
Taking once again degenerate BSM masses: M

Φ
=M

H
=M

A
=M

H
+

[JB, Kanemura, Shimoda ‘20]

Difficult to distinguish

CSI vs non-CSI!

➢ Separating models with or without CSI difficult with only λ
hhh

 , but possible with synergy of λ
hhh

 and either collider 

or GW signals (see e.g. [Hashino, Kakizaki, Kanemura, Matsui ‘16])
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Summary

Explicit two-loop calculation of λ
hhh

 in theories with extended scalar sectors

 ⇒ Size of the two-loop corrections remain well below that of the one-loop corrections – typically 
to 10-20% of one-loop contributions (max.  30%)∼

 ⇒ Non-decoupling effects found at one loop are not drastically changed

 ⇒ Computations beyond one loop will be necessary given the expected accuracy of the 
measurement of λ

hhh
 at future colliders

 ⇒ Precise calculation of Higgs couplings (λ
hhh

 , etc.) can allow distinguishing aligned scenarios 

with or without decoupling, by accessing non-decoupling effects!

 ⇒ Matching level of accuracy now achieved for results in CSI theories → two-loop corrections 
allow distinguishing different scenarios with CSI

 



Thank you for your attention!



Backup slides



Page 32| IRN Terascale @ LPC-Clermont | Johannes Braathen (DESY) | November 23, 2021

Future determination of λ
hhh

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 
1901.05897], [Chang et al. 1804.07130,1908.00753], etc.

Expected sensitivities in literature, assuming λ
hhh

 = (λ
hhh

)SM

Plot taken from 
[de Blas et al., 1905.03764]

di-Higgs exclusive result

single-Higgs 
exclusive

single-Higgs global
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Future determination of λ
hhh

Higgs production cross-sections (here double Higgs production) depend on λ
hhh 

Plots taken from 
[de Blas et al., 1905.03764]
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Future determination of λ
hhh

See also [Dürig, DESY-THESIS-2016-027]

Achieved accuracy actually depends on the value of λ
hhh

 

[J. List et al. ‘21],
see also talk by 
G. Weiglein on 
Tuesday

https://indico.cern.ch/event/995633/contributions/4265722/attachments/2209697/3739459/lcws_21_bsm.pdf
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The Two-Higgs-Doublet Model
➢ 2 SU(2)

L
 doublets Φ

1,2
 of hypercharge ½ 

➢ CP-conserving 2HDM, with softly-broken Z
2
 symmetry (Φ

1
→Φ

1
, Φ

2
→ -Φ

2
) to avoid tree-level 

FCNCs   

➢ m
1
,m

2
 eliminated with tadpole equations, and 

➢ 7 free parameters in scalar sector: m
3
, λ

i 
(i=1,..,5), tanβ≡v

2
/v

1

➢ Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H±: charged Higgs, α: CP-even 
Higgs mixing angle

➢ λ
i 
 (i=1,..,5) traded for mass eigenvalues m

h
, m

H
, m

A
, m

H±
 and angle α

➢ m
3
 replaced by a Z

2
 soft-breaking mass scale



Page 36| IRN Terascale @ LPC-Clermont | Johannes Braathen (DESY) | November 23, 2021

MS to OS scheme conversion

 V
eff

: we use expressions in MS scheme hence results for λ
hhh

 also in MS scheme

 We include finite counterterms to express the Higgs trilinear coupling in terms of 
physical quantities

 

 Also we include finite WFR effects → OS scheme 
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Theoretical and experimental constraints in [JB, Kanemura, 
Shimoda ‘20]

● Perturbative unitarity: we constrain parameters entering only at two loops 
→ tree-level perturbative unitarity suffices [Kanemura, Kubota, Takasugi ‘93]

● EW vacuum must be true minimum of V
eff

, i.e. check that

● M
h
, generated at loop level, must be 125 GeV

→ imposes a relation between SM parameters, M
H
, M

A
, M

H
+, tanβ, e.g. we can extract: 

● Limits from collider searches with HiggsBounds and HiggsSignals
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No constraints
Taking degenerate BSM masses: M

Φ
=M

H
=M

A
=M

H
+

[JB, Kanemura, Shimoda ‘20]
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Unitarity and constraint from M
h
 in the CSI-2HDM

MΦ=MΦ(tanβ) to ensure Mh=125 GeV

Excluded by 
pert. unitarity

Allowed

(Zoom)

[JB, Kanemura, Shimoda ‘20]
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