Recent progress in the calculation of the Higgs trilinear coupling in models with extended scalar sectors

Based on JB, Kanemura, PLB 796 (2019) 38-46 & EPJC 80 (2020) 3, 227 and JB, Kanemura, Shimoda, JHEP 03 (2021) 297

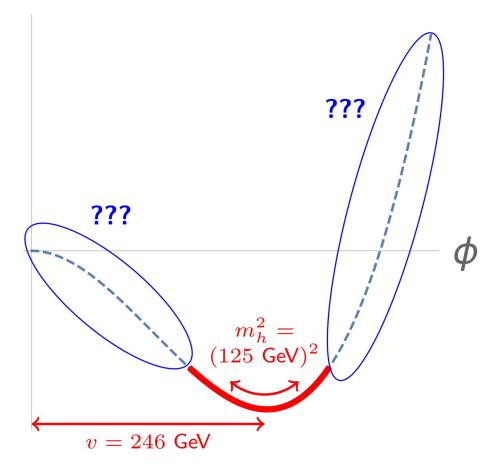
Johannes Braathen

IRN Terascale meeting at LPC-Clermont
Clermont-Ferrand, France | November 22-24, 2021

Why investigate λ_{hhh} ?

Probing the shape of the Higgs potential

- Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know:
 - → the location of the EW minimum:

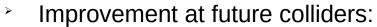

$$v = 246 \text{ GeV}$$

→ the curvature of the potential around the EW minimum:

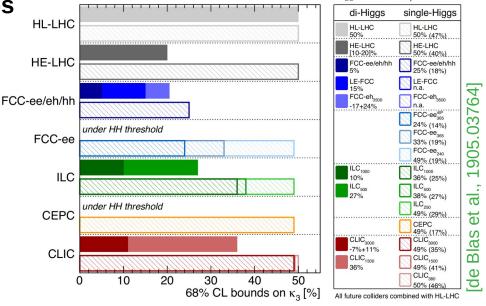
$$m_{h} = 125 \text{ GeV}$$

However we still don't know the **shape** of the potential, away from EW minimum \rightarrow depends on λ_{hhh}

- \rightarrow λ_{hhh} determines the nature of the EWPT!
 - \Rightarrow O(20%) deviation of λ_{hhh} from its SM prediction needed to have a strongly first-order EWPT \rightarrow necessary for EWBG [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]



Distinguish aligned scenarios with or without decoupling


- Aligned scenarios already seem to be favoured → Higgs couplings are SM-like at tree-level
- Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using synergy of HL-LHC and ILC!
 - → Alignment through decoupling? or alignment without decoupling?
- \rightarrow If alignment without decoupling, Higgs couplings like λ_{hhh} can still exhibit large deviations from SM

predictions because of non-decoupling effects from BSM loops

Current best limit (at 95% CL): $-1.0 < \lambda_{hhh} /(\lambda_{hhh})^{SM} < 6.6$ [ATLAS-CONF-2021-052]

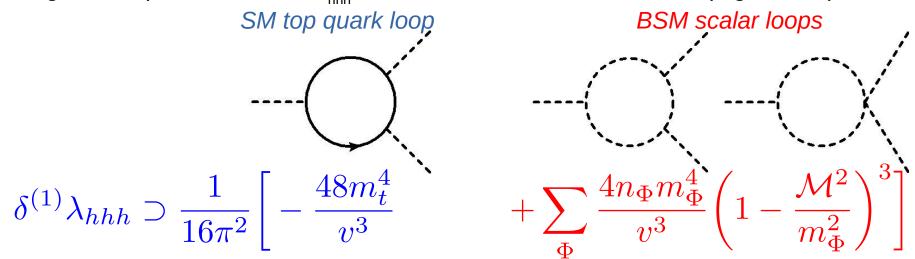
- **HL-LHC**: $\lambda_{hhh} / (\lambda_{hhh})^{SM}$ within $\sim 50-100\%$;
- · At lepton colliders **ILC**, **CLIC** within some tens of %;
- At a **100-TeV hadron collider**, down to 5-7%

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 1804.07130,1908.00753], etc.

Non-decoupling effects at one loop

The Two-Higgs-Doublet Model

- 2 SU(2)_L doublets Φ_{1,2} of hypercharge ½
- > CP-conserving 2HDM, with softly-broken Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ to avoid tree-level FCNCs

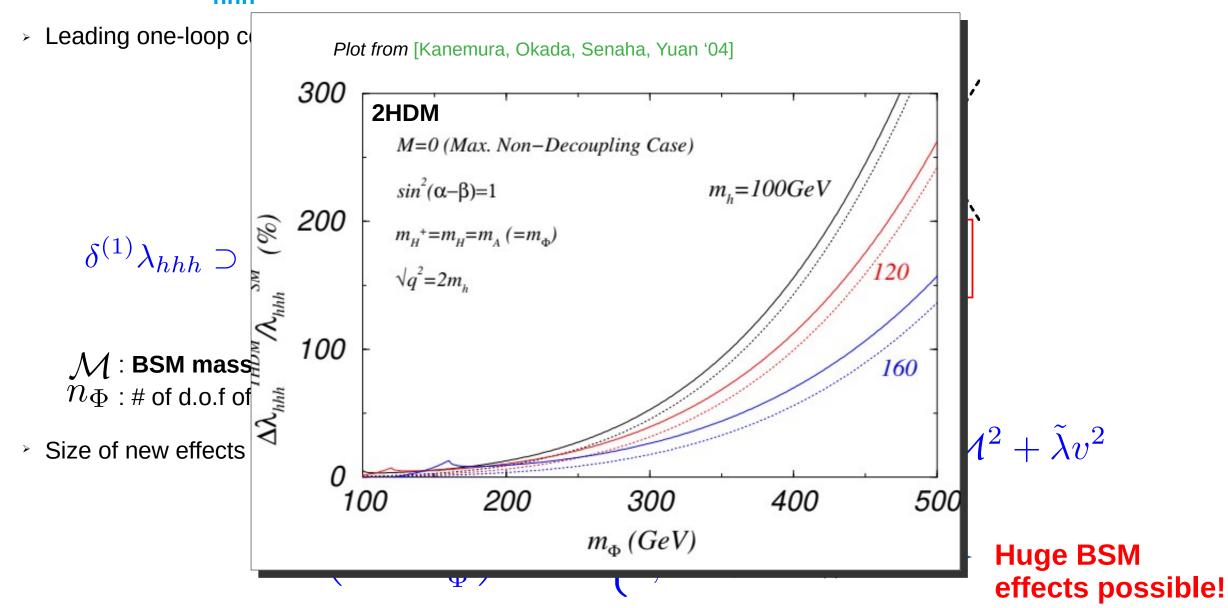

$$V_{2\text{HDM}}^{(0)} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2)$$

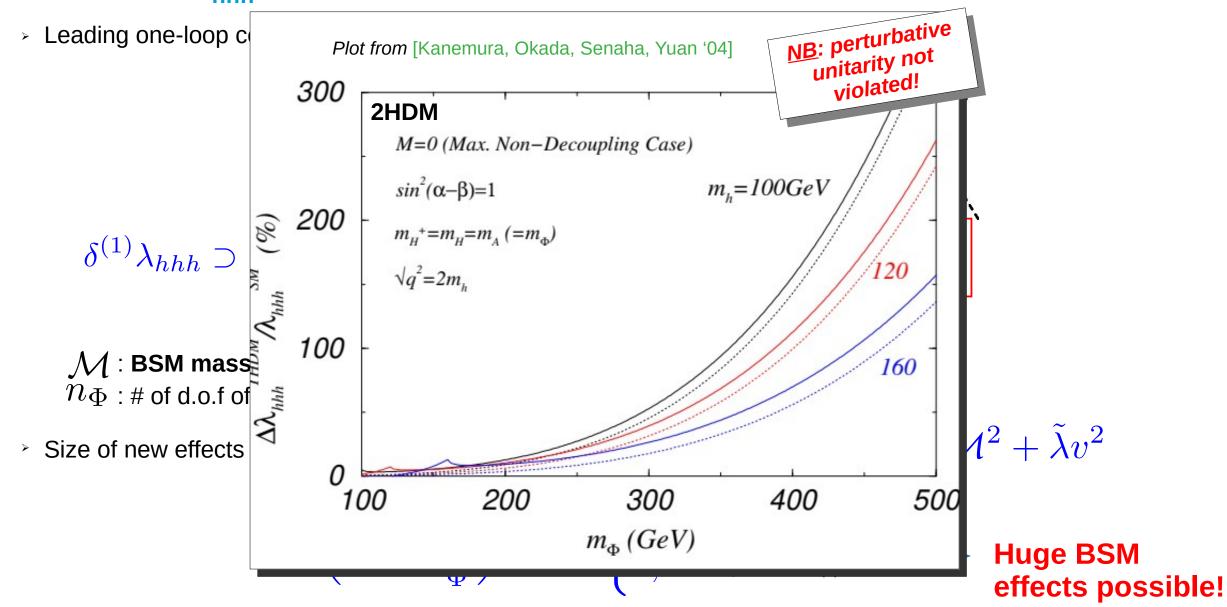
$$+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

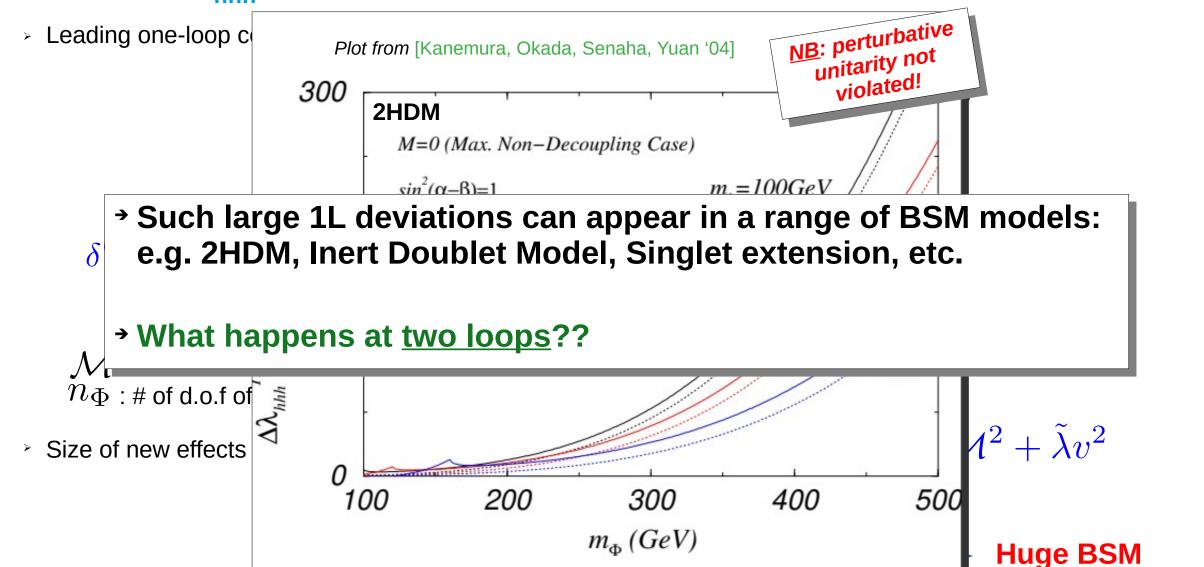
- > 7 free parameters in scalar sector: m_3 , λ_i (i=1,..,5), $\tan\beta \equiv v_2/v_1$
- Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H±: charged Higgs
- λ_i (i=1,..,5) traded for mass eigenvalues m_h , m_H , m_A , $m_{H\pm}$ and CP-even Higgs mixing angle α
- \rightarrow m₃ replaced by a Z₂ soft-breaking mass scale

$$M^2 = \frac{2m_3^2}{s_{2\beta}}$$

 \succ Leading one-loop corrections to λ_{hhh} in models with extended sectors (e.g. 2HDM):



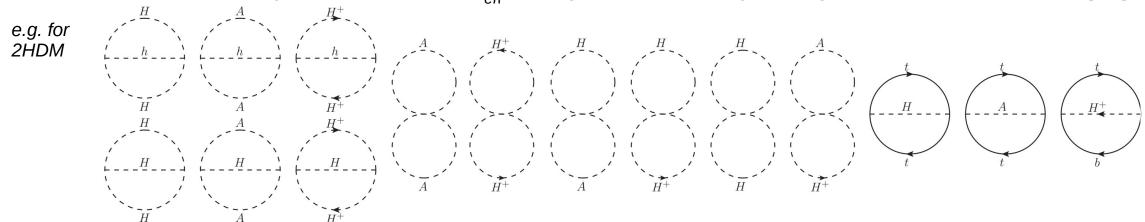

 \mathcal{M} : **BSM mass scale**, e.g. soft breaking scale M of Z_2 symmetry in 2HDM


 n_Φ : # of d.o.f of field Φ

> Size of new effects depends on how the BSM scalars acquire their mass: $m_\Phi^2 \sim \mathcal{M}^2 + \tilde{\lambda} v^2$

$$\left(1 - \frac{\mathcal{M}^2}{m_{\Phi}^2}\right)^3 \longrightarrow \begin{cases} 0, \text{ for } \mathcal{M}^2 \gg \tilde{\lambda} v^2 \\ 1, \text{ for } \mathcal{M}^2 \ll \tilde{\lambda} v^2 \end{cases} \longrightarrow \begin{cases} \text{Huge BSM} \\ \text{effects possible!} \end{cases}$$

effects possible!

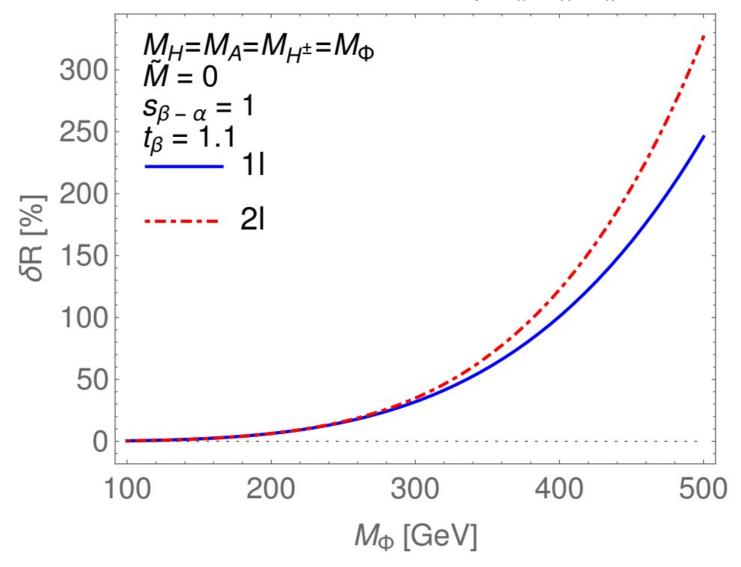

Our calculations

Our setup

- > We want to know **how large** the two-loop corrections to λ_{hhh} can become:
 - Effective Higgs trilinear coupling (i.e. neglect subleading effects from ext. momentum, but corresponds to κ_{λ} , used by experimentalists)

$$\lambda_{hhh} \equiv \left. \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \right|_{\text{min}}$$

 \rightarrow Dominant two-loop corrections to V_{eff} = diagrams involving heavy BSM scalars and top quark

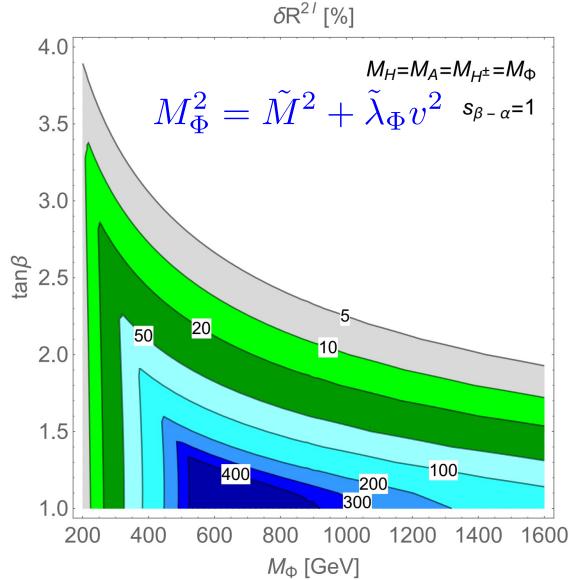

- → Aligned scenarios → no mixing + compatible with experimental results
- → Results expressed in terms of physical (OS) parameters (details in backup)

Numerical results

$$\delta R \equiv \frac{\hat{\lambda}_{hhh}^{\rm BSM} - \hat{\lambda}_{hhh}^{\rm SM}}{\hat{\lambda}_{hhh}^{\rm SM}}$$

BSM deviation of λ_{hhh} in an aligned 2HDM

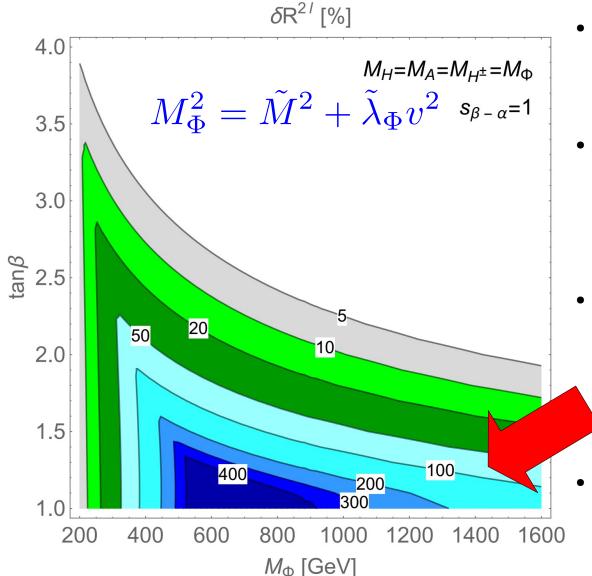
Taking degenerate BSM scalar masses: $M_{\Phi} = M_{H} = M_{A} = M_{H}^{+}$


[JB, Kanemura '19]

• $\tilde{M} = 0 \rightarrow \text{maximal non-decoupling effects}$

• $\delta^{(2)}\lambda_{hhh}$ typically 10-20% of $\delta^{(1)}\lambda_{hhh}$ for most of mass range, at most 30%

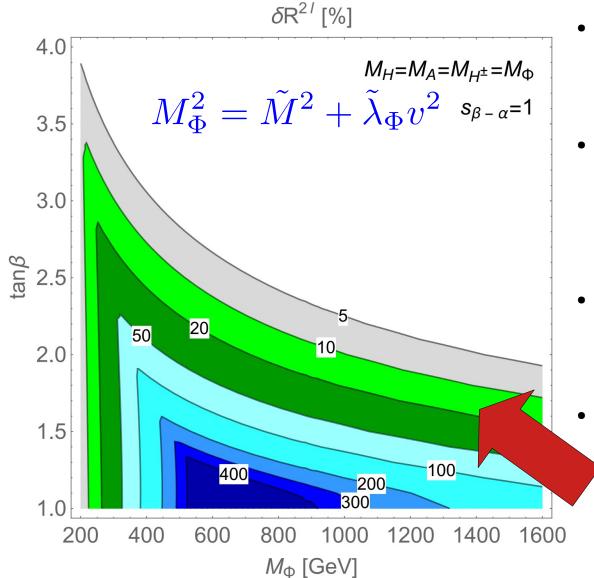
Maximal BSM deviation in an aligned 2HDM scenario


[JB, Kanemura '19]

- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tanβ and M_Φ~600-800 GeV
 → heavy BSM scalars acquiring their mass from Higgs VEV only
 - ► 1 loop: up to ~300% deviation at most
 - 2 loops: additional 100% (for same points)
- For increasing $tan\beta$, unitarity constraints become more stringent \rightarrow smaller δR
- Blue region: probed at **HL-LHC** (50% accuracy on λ_{hhh})
- **Green region:** probed at lepton colliders, e.g. **ILC** (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

Maximal BSM deviation in an aligned 2HDM scenario

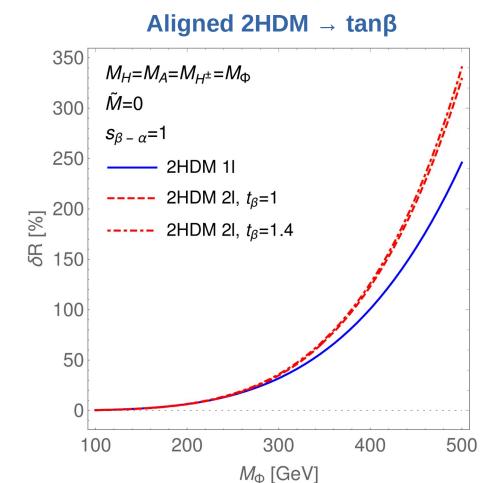
[JB, Kanemura '19]


- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tanβ and M_Φ~600-800 GeV
 → heavy BSM scalars acquiring their mass from Higgs VEV only
 - ► 1 loop: up to ~300% deviation at most
 - 2 loops: additional 100% (for same points)
- For increasing $tan\beta$, unitarity constraints become more stringent \rightarrow smaller δR

Blue region: probed at **HL-LHC** (50% accuracy on λ_{hhh})

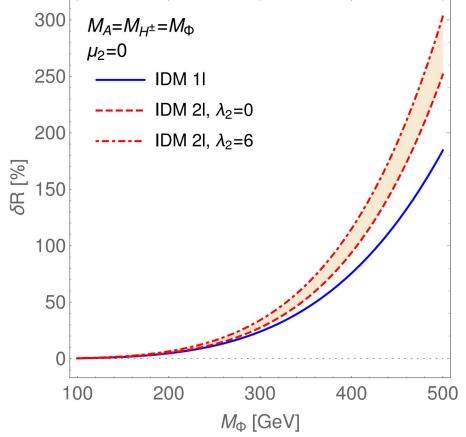
Green region: probed at lepton colliders, e.g. ILC (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

Maximal BSM deviation in an aligned 2HDM scenario


[JB, Kanemura '19]

- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tanβ and M_Φ~600-800 GeV
 → heavy BSM scalars acquiring their mass from Higgs VEV only
 - ► 1 loop: up to ~300% deviation at most
 - 2 loops: additional 100% (for same points)
- For increasing $tan\beta$, unitarity constraints become more stringent \rightarrow smaller δR
 - **Blue region:** probed at **HL-LHC** (50% accuracy on λ_{hhh})
 - **Green region:** probed at lepton colliders, e.g. **ILC** (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

λ_{hhh} at two loops in more models


- Calculations in several other models: IDM, singlet extension of SM
- Each model contains a new parameter appearing from two loops → can large enhancements occur?

tanβ constrained by perturbative unitarity

→ only small effects

 $IDM \rightarrow \lambda_2$ (quartic coupling of inert doublet)

 λ_2 is less contrained \rightarrow **enhancement is possible** (but 2L effects remains <u>well smaller</u> than 1L ones)

Theories with classical scale invariance (CSI)

Classical scale invariance

- · CSI: forbid mass-dimensionful parameters at classical (= tree) level
 - ightarrow tree-level potential: $V^{(0)}=\Lambda_{ijkl}arphi_iarphi_jarphi_karphi_l$
- · However broken **explicitly** at loop level
- · EW symmetry breaking: (c.f. [Coleman, Weinberg '73], [Gildener, Weinberg '76])
 - Must occur along a flat direction of V⁽⁰⁾ (= Higgs/scalon direction)
 - > EW sym. broken à la Coleman-Weinberg along flat direction
 - EW scale generated by dimensional transmutation
- Here: CSI assumed around EW scale, for phenomenology
 - → Higgs (scalon) automatically aligned at tree level → compatible with current exp. results
 - BSM states can't be decoupled (no BSM mass term!)
 - CSI scenarios: alignment with decoupling

One-loop effective potential and λ_{hhh}

- Only source of mass = coupling to Higgs and its VEV: $m_i^2(h) = m_i^2 \times \left(1 + \frac{h}{n}\right)^2$
- Greatly simplifies the one-loop potential along Higgs (scalon) direction:

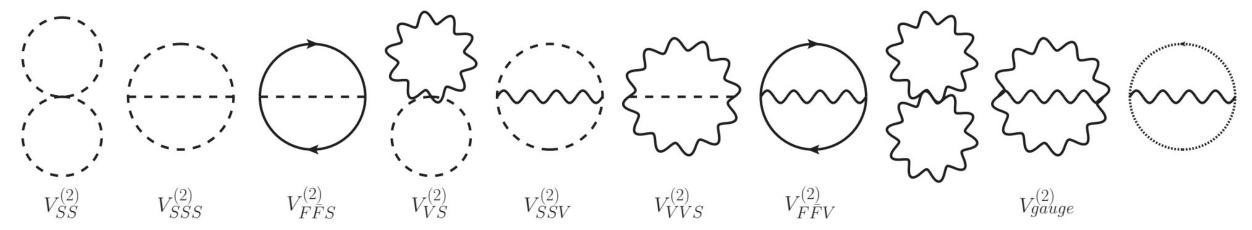
$$V^{(1)} = A(v+h)^4 + B(v+h)^4 \log \frac{(v+h)^2}{Q^2}$$

$$A = \frac{1}{64\pi^2 v^4} \left\{ \text{tr} \left[M_S^4 \left(\log \frac{M_S^2}{v^2} - \frac{3}{2} \right) \right] - 4\text{tr} \left[M_f^4 \left(\log \frac{M_f^2}{v^2} - \frac{3}{2} \right) \right] + 3\text{tr} \left[M_V^4 \left(\log \frac{M_V^2}{v^2} - \frac{5}{6} \right) \right] \right\}$$

$$B = \frac{1}{64\pi^2 v^4} \left(\text{tr} \left[M_S^4 \right] - 4\text{tr} \left[M_f^4 \right] + 3\text{tr} \left[M_V^4 \right] \right)$$

Taking successive derivatives of the potential

with


- 1st derivative = tadpole equation → fix A in terms of v and B
- \succ 2nd derivative = Higgs (effective potential) mass $[M_h^2]_{V_{\rm eff}} \rightarrow {\rm fix\ B\ in\ terms\ of\ v\ and\ M_h}$
- ightharpoonup 3rd derivative = $\lambda_{\rm hhh}$ but V⁽¹⁾ is **entirely determined** by A, B ightharpoonup $\lambda_{hhh} = \frac{5[M_h^2]_{V_{\rm eff}}}{2} = \frac{5}{2} \lambda_{hhh}^{\rm SM,tree}$

$$\lambda_{hhh} = \frac{5[M_h^2]_{V_{\text{eff}}}}{v} = \frac{5}{3}\lambda_{hhh}^{\text{SM,tree}}$$

<u>Universal one-loop result in CSI theories!</u>

Effective potential at two loops

Form of V_{eff} changes at two loops:

New type of contribution:

new log^2 term!

$$V_{\text{eff}} = A(v+h)^4 + B(v+h)^4 \log \frac{(v+h)^2}{Q^2} + C(v+h)^4 \log^2 \frac{(v+h)^2}{Q^2}$$

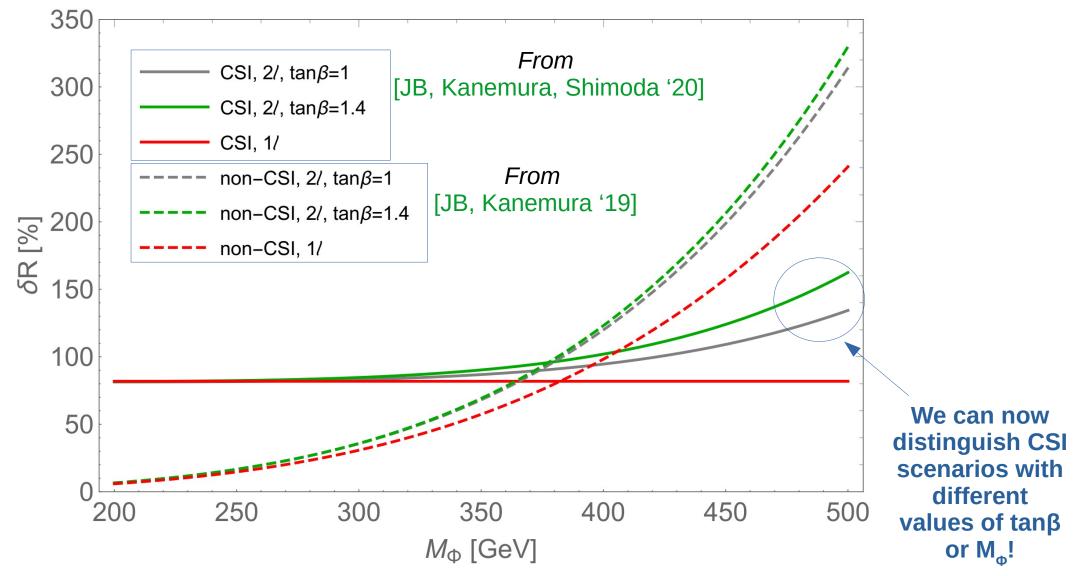
λ_{hhh} at two loops in CSI models

[JB, Kanemura, Shimoda '20]

- Follow same procedure as at one loop:
 - → Eliminate A with tadpole equation, B with Higgs mass
 - → Still, C remains!

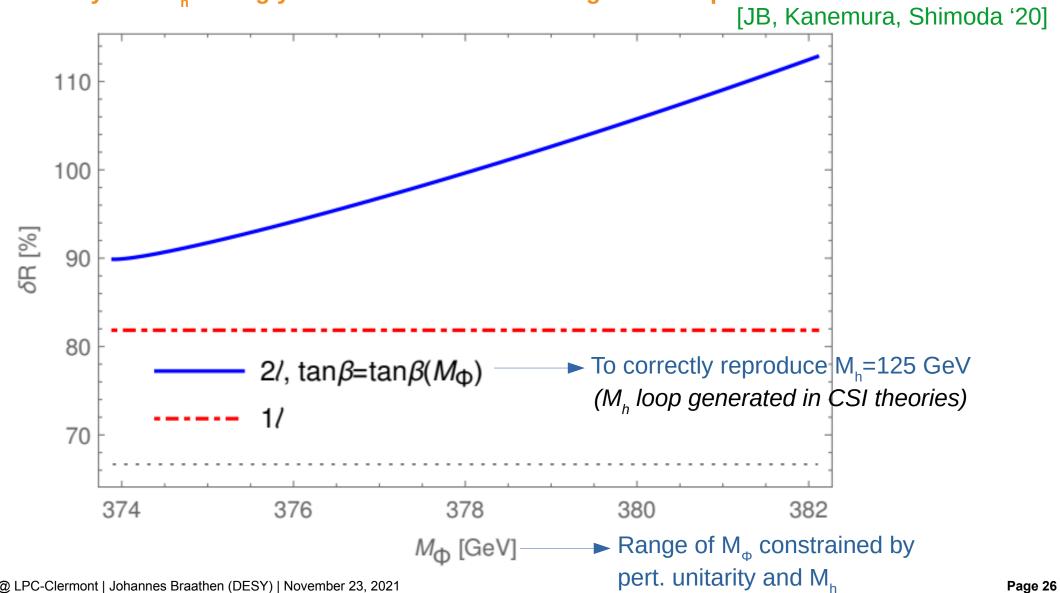
• One finds:
$$\lambda_{hhh}=rac{\partial^3 V_{ ext{eff}}}{\partial h^3}igg|_{ ext{min}}=rac{5[M_h^2]_{V_{ ext{eff}}}}{v}+32Cv$$

- → Deviation in λ_{hhh} depends on log^2 term in V_{eff}
- Universality found at one loop is lost at two loops!

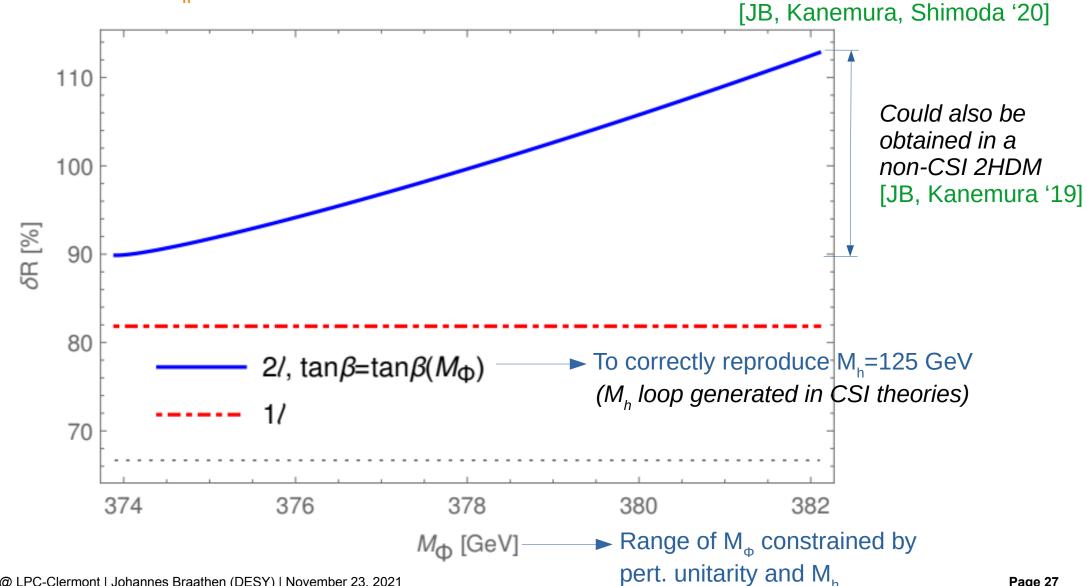

Numerical results

$$\delta R \equiv \frac{\hat{\lambda}_{hhh}^{\text{CSI-2HDM}} - \hat{\lambda}_{hhh}^{\text{SM}}}{\hat{\lambda}_{hhh}^{\text{SM}}}$$

Comparing λ_{hhh} in 2HDM scenarios with or without CSI

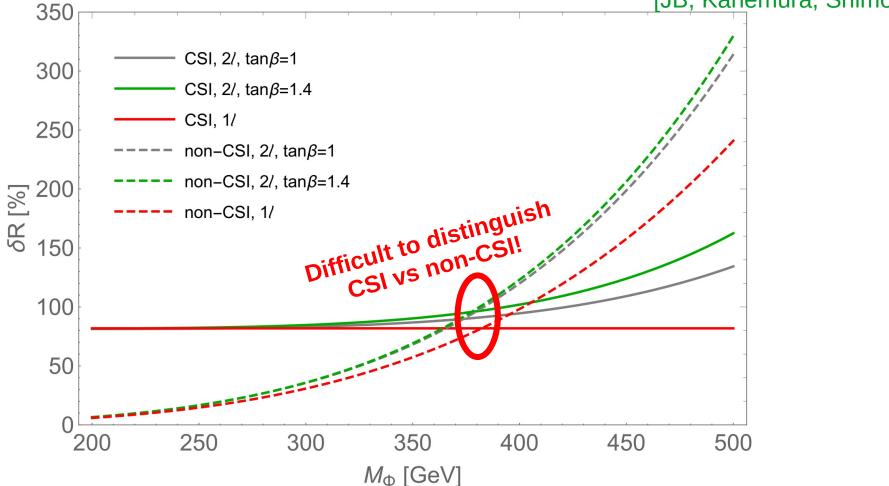

Taking degenerate BSM masses: $M_{\phi} = M_{H} = M_{A} = M_{H}^{+}$

[JB, Kanemura, Shimoda '20]


Allowed range of BSM deviations in a CSI-2HDM

Perturbative unitarity and M_h strongly constrain the allowed range of BSM parameters!

Allowed range of BSM deviations in a CSI-2HDM


Perturbative unitarity and M_k strongly constrain the allowed range of BSM parameters!

Comparing λ_{hhh} in 2HDM scenarios with or without CSI

Taking once again degenerate BSM masses: $M_{\phi} = M_{H} = M_{A} = M_{H}^{+}$

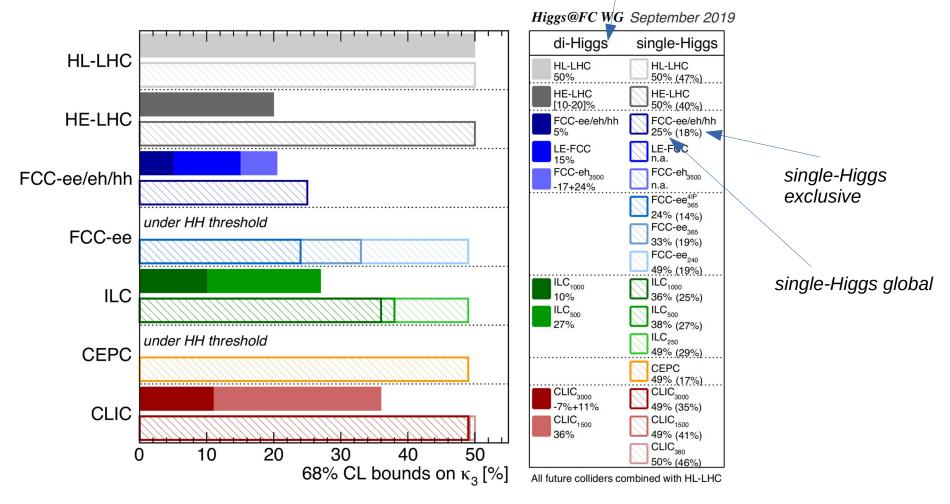
[JB, Kanemura, Shimoda '20]

> Separating models with or without CSI difficult with only λ_{hhh} , but possible with **synergy** of λ_{hhh} and either collider or GW signals (see e.g. [Hashino, Kakizaki, Kanemura, Matsui '16])

Summary

Explicit two-loop calculation of λ_{hhh} in theories with extended scalar sectors

- ⇒ Size of the two-loop corrections remain **well below** that of the one-loop corrections typically to 10-20% of one-loop contributions (max. ~ 30%)
- ⇒ Non-decoupling effects found at one loop are not drastically changed
- \Rightarrow Computations beyond one loop will be **necessary** given the expected accuracy of the measurement of λ_{hhh} at future colliders
- \Rightarrow Precise calculation of Higgs couplings (λ_{hhh} , etc.) can allow distinguishing aligned scenarios with or without decoupling, by accessing non-decoupling effects!
- ⇒ Matching level of accuracy now achieved for results in CSI theories → two-loop corrections allow distinguishing different scenarios with CSI

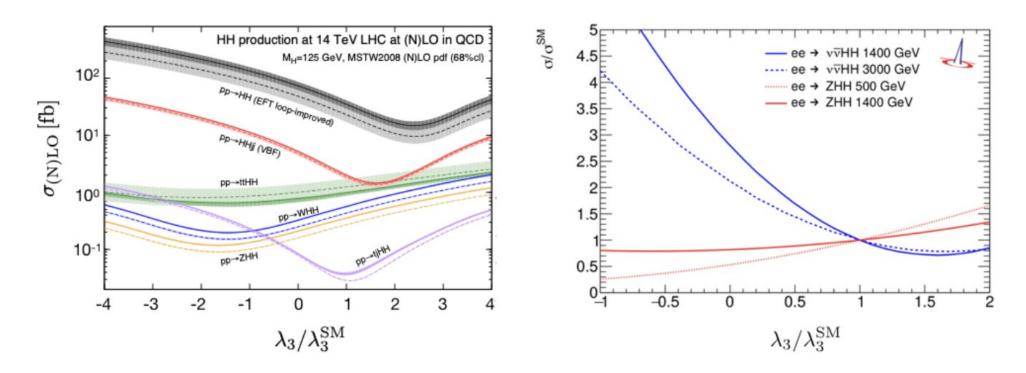

Thank you for your attention!

Backup slides

Future determination of λ_{hhh}

Expected sensitivities in literature, assuming $\lambda_{hhh} = (\lambda_{hhh})^{SM}$

Plot taken from [de Blas et al., 1905.03764]



di-Higgs exclusive result

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 1804.07130,1908.00753], etc.

Future determination of λ_{hhh}

Higgs production cross-sections (here double Higgs production) depend on λ_{hhh}

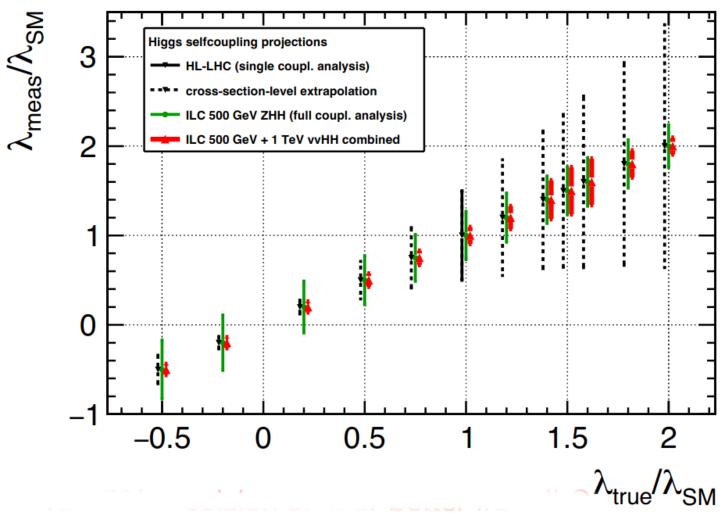


Figure 10. Double Higgs production at hadron (left) [65] and lepton (right) [66] colliders as a function of the modified Higgs cubic self-coupling. See Table 18 for the SM rates. At lepton colliders, the production cross sections do depend on the polarisation but this dependence drops out in the ratios to the SM rates (beam spectrum and QED ISR effects have been included).

Plots taken from [de Blas et al., 1905.03764]

Future determination of λ_{hhh}

Achieved accuracy actually depends on the value of λ_{hhh}

[J. List et al. '21], see also talk by G. Weiglein on Tuesday

See also [Dürig, DESY-THESIS-2016-027]

The Two-Higgs-Doublet Model

- 2 SU(2)_L doublets Φ_{1,2} of hypercharge ½
- > CP-conserving 2HDM, with softly-broken Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ to avoid tree-level FCNCs

$$V_{\text{2HDM}}^{(0)} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2)$$

$$+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

- $\mathbf{m_1,m_2}$ eliminated with tadpole equations, and $v_1^2+v_2^2=v^2=(246~\mathrm{GeV})^2$
- > 7 free parameters in scalar sector: m_3 , λ_i (i=1,..,5), $\tan\beta \equiv v_2/v_1$
- Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H±: charged Higgs, α: CP-even Higgs mixing angle
- λ_i (i=1,..,5) traded for mass eigenvalues m_h , m_H , m_A , $m_{H\pm}$ and angle α
- > m₃ replaced by a Z₂ soft-breaking mass scale

$$M^2 = \frac{2m_3^2}{s_{2\beta}}$$

MS to OS scheme conversion

• V_{eff} : we use expressions in MS scheme hence results for λ_{hhh} also in MS scheme

 We include finite counterterms to express the Higgs trilinear coupling in terms of physical quantities

$$\underbrace{m_X^2}_{\overline{\rm MS}} = \underbrace{M_X^2}_{\rm pole} - \Re \left[\Pi_{XX}^{\rm fin.}(p^2 = M_X^2)\right], \qquad v^2 = \underbrace{(\sqrt{2}G_F)^{-1}}_{\equiv v_{\rm OS}^2} + \frac{3M_t^2}{16\pi^2} \left(2\log\frac{M_t^2}{Q^2} - 1\right) + \cdots$$

Also we include finite WFR effects → OS scheme

$$\hat{\underline{\lambda}}_{hhh} = \left(\frac{Z_h^{\text{OS}}}{Z_h^{\overline{\text{MS}}}}\right)^{3/2} \underline{\lambda}_{hhh} = -\underline{\Gamma}_{hhh}(0,0,0)$$
3-pt. func.

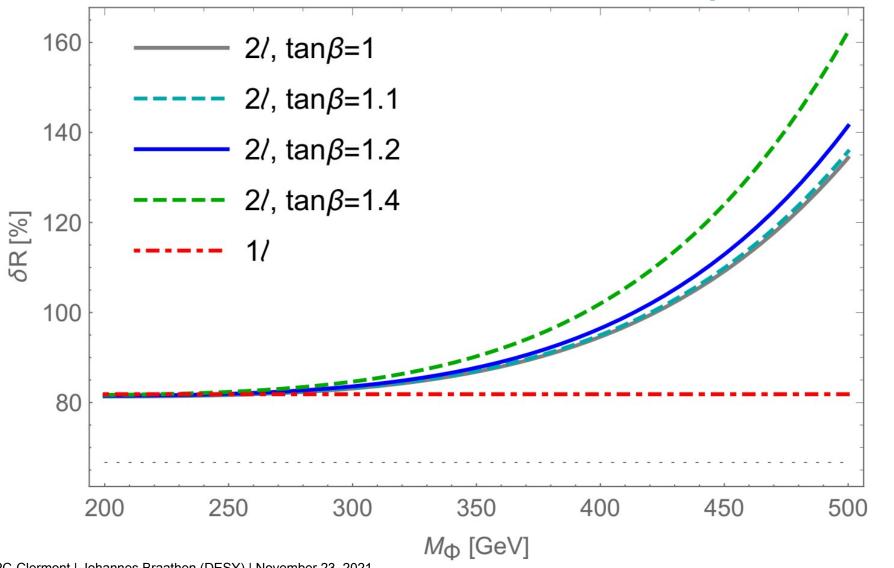
DESY. | IRN Terascale @ LPC-Clermont | Johannes Braathen (DESY) | November 23, 2021 RV

Theoretical and experimental constraints in [JB, Kanemura, Shimoda '20]

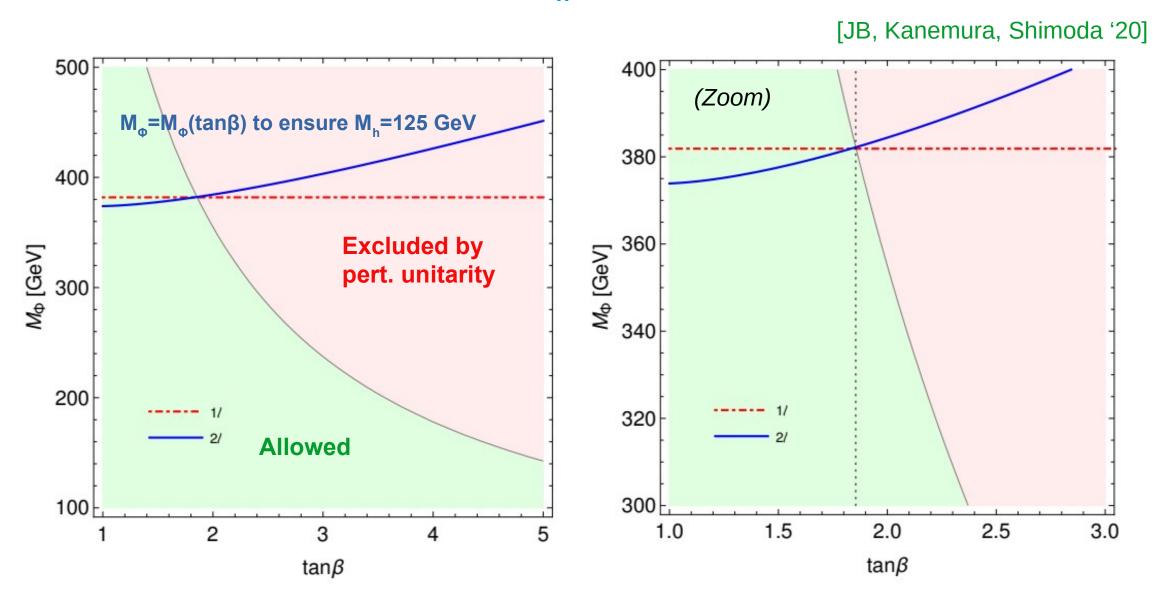
- Perturbative unitarity: we constrain parameters entering only at two loops
 - → tree-level perturbative unitarity suffices [Kanemura, Kubota, Takasugi '93]
- EW vacuum must be **true minimum of V**_{eff}, i.e. check that

$$\underbrace{V_{\text{eff}}(v+h=0)}_{=0} - V_{\text{eff}}(h=0) > 0 \quad \Rightarrow \quad V_{\text{eff}}(h=0) < 0$$

- M_h, generated at loop level, must be **125 GeV**
 - \rightarrow imposes a relation between SM parameters, M_H , M_A , M_H , tan β , e.g. we can extract:


$$[M_h^2]_{V_{\text{eff}}} = \frac{\partial^2 V_{\text{eff}}}{\partial h^2} \bigg|_{\text{min}} \quad \Rightarrow \quad \tan \beta = \tan \beta (\underbrace{M_h, M_t, \cdots}_{\text{measured SM values}}, \underbrace{M_H, M_A, M_{H^{\pm}}}_{\text{BSM inputs}})$$

Limits from collider searches with HiggsBounds and HiggsSignals


No constraints

Taking degenerate BSM masses: M_o=M_H=M_A=M_H⁺

[JB, Kanemura, Shimoda '20]

Unitarity and constraint from M_h in the CSI-2HDM

