Asymmetry in flavour changing electromagnetic transitions of vector-like quarks

Shyam Balaji
Le Laboratoire de Physique Théorique et Hautes Énergies sbalaji@lpthe.jussieu.fr

November 23, 2021

Introduction

- Vector-like quarks (VLQs) have been of interest for a plethora of experimentally motivated reasons
- VLQs have come under increased investigation due to appreciably improving global fits to several flavour physics and precision EW measurements.
- They naturally arise near the EW scale in many new physics models: minimal super-symmetric model, Left-Right symmetry models, top colour assisted technicolour and two Higgs doublets with four generations of quarks

Vector-like quarks

- Simplest VLQ: isosinglet with both left- and right-handed components transforming as singlets under $S U(2)_{L}$ with $I_{3}=0$ that can either be up- (t^{\prime}) or down-type (b^{\prime}).

- Indirect signals of VLQs can be considered due to the loop-level contributions of the exotic quarks in SM particle processes.
- Precision flavour measurements place strong limits on the new heavy quarks and set the lowest mass scale and maximum mixing for these states.

Vector-like quark radiative decays

- The addition of VLQ singlets breaks the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and enables tree-level flavour changing neutral (FCN) vertices.
- The resulting radiative flavour changing decays of these particles through the electromagnetic transition dipole moment are a key means study their properties and search for them at the LHC etc.
- Interested in computing the size and the $C P$-violation induced these decays
- Based on Ref. [1].

$C P$-violation in the quark sector

Electromagnetic dipole moments (EDMs) generated at various loop levels.
Circular polarisation of photons potentially provides a crucial way to measure $C P$ violation in the extended quark sector and new physics.

Transition dipole moment

The matrix elements can be written in terms of a generic vertex function $\Gamma_{\text {fi }}^{\mu}$ like

$$
\begin{equation*}
i \mathcal{M}\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}}+\gamma_{ \pm}\right)=\bar{u}\left(p_{\mathrm{f}}\right) \Gamma_{\mathrm{fi}}^{\mu}\left(q^{2}\right) u\left(p_{\mathrm{i}}\right) \varepsilon_{ \pm, \mu}^{*}(q) \tag{1}
\end{equation*}
$$

By requiring $q^{2}=0$ and choosing the Lorenz gauge $q \cdot \varepsilon_{p}=0$, the anapole does not contribute to $\Gamma_{\mathrm{fi}}^{\mu}$ but only $f_{\mathrm{fi}}^{\mathrm{E}}$ and $f_{\mathrm{fi}}^{\mathrm{M}}$ which are the electric and magnetic transition dipole moments of $q_{\mathrm{i}} \rightarrow q_{\mathrm{f}} \gamma$ respectively. We can rewrite the generic vertex function as

$$
\begin{equation*}
\Gamma_{\mathrm{fi}}^{\mu}\left(q^{2}\right)=i \sigma^{\mu \nu} q_{\nu}\left[f_{\mathrm{fi}}^{\mathrm{L}}\left(q^{2}\right) P_{L}+f_{\mathrm{fi}}^{\mathrm{R}}\left(q^{2}\right) P_{R}\right] \tag{2}
\end{equation*}
$$

where $f_{\mathrm{fi}}^{\mathrm{L}}$ and $f_{\mathrm{fi}}^{\mathrm{R}}$ are the left and right chiral form factors.

Feynman diagrams

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

$$
\Delta_{C P,+}=\frac{\Gamma\left(q_{i} \rightarrow q_{f}+\gamma_{+}\right)-\Gamma\left(\bar{q}_{i} \rightarrow \bar{q}_{f}+\gamma_{-}\right)}{\Gamma\left(q_{i} \rightarrow q_{f}+\gamma\right)+\Gamma\left(\bar{q}_{i} \rightarrow \bar{q}_{f}+\gamma\right)}
$$

Vector isosinglet up-type quark

- We now consider implications of a t^{\prime} quark by analysing a global fit that uses complementary flavour physics observables to constrain the quark mixing matrix [5]
- The new physics effects of the t^{\prime} are mainly through charged current interactions which involve quark mixing via V and neutral current and Higgs interactions that mix through the matrix $X^{u}=V V^{\dagger}$.
- The extended CKM matrix V in such a setup comprises four SM and five new physics parameters.

Quark mixing

Parameter	SM	$m_{t^{\prime}}=800 \mathrm{GeV}$	$m_{t^{\prime}}=1200 \mathrm{GeV}$
λ	0.226 ± 0.001	0.226 ± 0.001	0.226 ± 0.001
A	0.780 ± 0.015	0.770 ± 0.019	0.769 ± 0.019
C	0.39 ± 0.01	0.44 ± 0.02	0.43 ± 0.02
δ_{13}	1.21 ± 0.08	1.13 ± 0.11	1.15 ± 0.09
P	-	0.40 ± 0.26	0.30 ± 0.21
Q	-	0.04 ± 0.06	0.03 ± 0.05
R	-	0.45 ± 0.25	0.36 ± 0.22
δ_{41}	-	0.55 ± 0.45	0.76 ± 0.42
δ_{42}	-	0.52 ± 3.26	0.96 ± 1.21
$\chi^{2} /$ d.o.f.	$71.15 / 60$	$63.35 / 59$	$63.60 / 59$

Table: Best fit parameters for the quark mixing matrix with a vector-like quark isosinglet t^{\prime} included. These are shown for two benchmark quark masses $m_{t^{\prime}}=800 \mathrm{GeV}$ and $m_{t^{\prime}}=1200 \mathrm{GeV}$ outlined in Table 4 of Ref. [5].

Results

Decay channel	$m_{t^{\prime}}=800 \mathrm{GeV}$		
	\mathcal{B}	$\Delta_{C P,+}$	$\Delta_{C P,-}$
$t^{\prime} \rightarrow u \gamma$	$\left(1.2_{-1.1}^{+7.0} \times 10^{-8}\right.$	$\left(-0.6_{-4.0}^{+2.3}\right) \times 10^{-14}$	$\left(-0.5_{-6.0}^{+2.5}\right) \times 10^{-5}$
$t^{\prime} \rightarrow c \gamma$	$\left(1.0_{-1.0}^{+2.4}\right) \times 10^{-8}$	$\left(0.1_{-8.0}^{+3.5}\right) \times 10^{-8}$	$0.02_{-2.63}^{+1.4} \times 10^{-3}$
$t^{\prime} \rightarrow t \gamma$	$\left(3.36_{-0.06}^{+0.03}\right) \times 10^{-6}$	$\left(-0.04_{-1.00}^{+2.09}\right) \times 10^{-6}$	$\left(-0.09_{-1.9}^{+2.9}\right) \times 10^{-6}$
$t^{\prime} \rightarrow u g$	$\left(0.5_{-0.4}^{+2.0}\right) \times 10^{-7}$	$\left(0.7_{-1.3}^{+7.0}\right) \times 10^{-13}$	$\left(1.1_{-1.8}^{+9.0}\right) \times 10^{-4}$
$t^{\prime} \rightarrow c g$	$\left(0.4_{-0.4}^{+2.1}\right) \times 10^{-7}$	$\left(-0.01_{-1}^{+0.2}\right) \times 10^{-6}$	$\left(-0.02_{-1.82}^{+0.40}\right) \times 10^{-2}$
$t^{\prime} \rightarrow t g$	$3.937_{-0.109}^{+0.07} \times 10^{-5}$	$\left(-0.09_{-2.90}^{+4.05}\right) \times 10^{-6}$	$\left(0.11_{-6.00}^{+8.0}\right) \times 10^{-7}$
$t \rightarrow u \gamma$	$\left(0.29_{-0.28}^{+1.1}\right) \times 10^{-11}$	$\left(0.7_{-0.7}^{+4.0}\right) \times 10^{-12}$	$\left(-0.60_{-2.80}^{+0.70}\right) \times 10^{-2}$
$t \rightarrow c \gamma$	$\left(0.7_{-0.7}^{+5.0}\right) \times 10^{-12}$	$\left(-0.04_{-1.1}^{+0.8}\right) \times 10^{-5}$	$0.04_{-0.92}^{+0.90}$
$t \rightarrow u g$	$\left(0.7_{-0.6}^{+2.4}\right) \times 10^{-10}$	$\left(1.4_{-1.5}^{+8.0}\right) \times 10^{-12}$	$-0.012_{-0.070}^{+0.011}$
$t \rightarrow c g$	$\left(0.13_{-0.11}^{+2.00}\right) \times 10^{-10}$	$\left(-0.1_{-0.9}^{+1.3}\right) \times 10^{-5}$	$0.1_{-1.1}^{+0.7}$

Decay channel	$m_{t^{\prime}}=1200 \mathrm{GeV}$		
	\mathcal{B}	$\Delta_{C P,+}$	$\Delta_{C P,-}$
$t^{\prime} \rightarrow u \gamma$	$\left(0.8_{-0.7}^{+0.6}\right) \times 10^{-8}$	$\left(-0.22_{-1.6}^{+0.27} \times 10^{-14}\right)$	$\left(0.1_{-2.3}^{+2.0}\right) \times 10^{-5}$
$t^{\prime} \rightarrow c \gamma$	$\left(0.6_{-0.5}^{+5.0}\right) \times 10^{-8}$	$\left(0.7_{-5.0}^{+9.0}\right) \times 10^{-9}$	$\left(0.3_{-2.7}^{+3.0}\right) \times 10^{-4}$
$t^{\prime} \rightarrow t \gamma$	$\left(2.71_{-0.06}^{+0.01}\right) \times 10^{-6}$	$\left(-0.8_{-8.0}^{+4.0}\right) \times 10^{-7}$	$\left(-0.2_{-1.4}^{+1.2}\right) \times 10^{-6}$
$t^{\prime} \rightarrow u g$	$\left(0.26_{-0.19}^{+1.7}\right) \times 10^{-7}$	$\left(0.3_{-0.4}^{+2.2}\right) \times 10^{-13}$	$\left(0.5_{-0.7}^{+2.3}\right) \times 10^{-4}$
$t^{\prime} \rightarrow c g$	$\left(0.21_{-0.4}^{+1.1}\right) \times 10^{-7}$	$\left(-0.1_{-1.3}^{+0.8}\right) \times 10^{-7}$	$\left(-0.3_{-2.3}^{+2.4}\right) \times 10^{-3}$
$t^{\prime} \rightarrow t g$	$\left(4.21_{-1.08}^{+0.54}\right) \times 10^{-5}$	$\left(-1.0_{-8.0}^{+7.0}\right) \times 10^{-7}$	$\left(0.2_{-2.3}^{+4.0}\right) \times 10^{-7}$
$t \rightarrow u \gamma$	$\left(1.0_{-1.0}^{+4.0}\right) \times 10^{-12}$	$\left(0.8_{-1.2}^{+2.7}\right) \times 10^{-12}$	$-0.006_{-0.018}^{+0.011}$
$t \rightarrow c \gamma$	$\left(0.22_{-0.22}^{+2.7}\right) \times 10^{-12}$	$\left(-0.2_{-0.7}^{+1.2}\right) \times 10^{-5}$	$0.2_{-1.0}^{+0.6}$
$t \rightarrow u g$	$\left(0.24_{-0.21}^{+1.30}\right) \times 10^{-10}$	$\left(0.15_{-0.34}^{+1.3}\right) \times 10^{-11}$	$-0.014_{-0.11}^{+0.03}$
$t \rightarrow c g$	$\left(0.5_{-0.4}^{+6.0}\right) \times 10^{-11}$	$\left(-0.6_{-0.4}^{+1.8}\right) \times 10^{-5}$	$0.61_{-1.70}^{+0.88}$

Resolving the CKM unitarity problem

- It has been pointed out that hints of deviations from unitarity where $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}<1$ at $1-2 \sigma$ in the first row of the CKM matrix may be explained by the presence of $t^{\prime}[3,4]$.
- The fit from the study considered in this section explored how the stringent experimental constraints arising from $C P$ Violation from meson mixing
- The mixing matrix once again contains angles θ_{12}, θ_{13} and θ_{23} and one $C P$ violating phase δ_{13} along with three new mixing angles θ_{14}, θ_{24} and θ_{34} and two new $C P$ violating phases δ_{14} and δ_{24}.
- Concluded that $m_{t^{\prime}}<7 \mathrm{TeV}$.

Quark mixing

Their best fit resulted in

$$
\begin{array}{lll}
\theta_{12}=0.2265, & \theta_{13}=0.003818, & \theta_{23}=0.03988, \\
\theta_{14}=0.03951, & \theta_{24}=0.002078, & \theta_{34}=0.01271, \\
\delta_{13}=0.0396 \pi, & \delta_{14}=1.818 \pi, & \delta_{24}=0.728 \pi,
\end{array}
$$

with $m_{t^{\prime}}=1.5 \mathrm{TeV}$

Results

Figure: The left (right) panels are for a final state photon (gluon). The cyan, blue and purple lines correspond to u, c and t final state respectively.

Results continued...

Correlated top quark decays

$$
\begin{array}{ll}
\mathcal{B}(t \rightarrow u \gamma) \simeq 3 \times 10^{-12}, & \mathcal{B}(t \rightarrow c \gamma) \simeq 9 \times 10^{-14}, \\
\left|\Delta_{C P,+}(t \rightarrow u \gamma)\right| \simeq 1.4 \times 10^{-12}, & \left|\Delta_{C P,+}(t \rightarrow c \gamma)\right| \simeq 1.8 \times 10^{-6}, \\
\left|\Delta_{C P,-}(t \rightarrow u \gamma)\right| \simeq 9.3 \times 10^{-3}, & \left|\Delta_{C P,-}(t \rightarrow c \gamma)\right| \simeq 0.14, \\
\mathcal{B}(t \rightarrow u g) \simeq 6.4 \times 10^{-11}, & \mathcal{B}(t \rightarrow c g) \simeq 6.7 \times 10^{-12}, \tag{4}\\
\left|\Delta_{C P,+}(t \rightarrow u g)\right| \simeq 2.4 \times 10^{-12}, & \left|\Delta_{C P,+}(t \rightarrow c g)\right| \simeq 9 \times 10^{-7}, \\
\left|\Delta_{C P,-}(t \rightarrow u g)\right| \simeq 0.024, & \left|\Delta_{C P,-}(t \rightarrow c g)\right| \simeq 0.11,
\end{array}
$$

Vector isosinglet down-type quark

- Here we consider a model and global fit shown in Ref. [2] where the SM is extended by the addition of a VLQ isosinglet down-type quark b^{\prime}.
- The mixing matrix once again contains angles θ_{12}, θ_{13} and θ_{23} and one $C P$ violating phase δ_{13} along with three new mixing angles θ_{14}, θ_{24} and θ_{34} and two new $C P$ violating phases δ_{14} and δ_{24}.
- The authors consider constraints from several flavour observables [2] and compare with measurements and perform a χ^{2} fit
- They redo this process with predictions for a b^{\prime} VLQ and obtain values for the various mixing angles and phases mentioned above

Quark mixing

Parameter	SM	$m_{b^{\prime}}=800 \mathrm{GeV}$	$m_{b^{\prime}}=1200 \mathrm{GeV}$
θ_{12}	0.2273 ± 0.0007	0.2271 ± 0.0008	0.2270 ± 0.0008
θ_{13}	0.0035 ± 0.0001	0.0038 ± 0.0001	0.0038 ± 0.0001
θ_{23}	0.039 ± 0.0007	0.0391 ± 0.0007	0.0391 ± 0.0007
δ_{13}	1.10 ± 0.1	1.04 ± 0.08	1.04 ± 0.08
θ_{14}	-	0.0151 ± 0.0154	0.0147 ± 0.0149
θ_{24}	-	0.0031 ± 0.0039	0.0029 ± 0.0036
θ_{34}	-	0.0133 ± 0.0130	0.0123 ± 0.0122
δ_{14}	-	0.11 ± 0.22	0.11 ± 0.23
δ_{24}	-	3.23 ± 0.24	3.23 ± 0.27
$\chi^{2} /$ d.o.f.	$71.15 / 60$	$70.99 / 63$	$70.96 / 63$

Results

Decay channel	$m_{b^{\prime}}=800 \mathrm{GeV}$		
	\mathcal{B}	$\Delta_{C P,+}$	$\Delta_{C P,-}$
$b^{\prime} \rightarrow d \gamma$	$\left(3.5_{-3.5}^{+2.3} \times 10^{-6}\right.$	$\left(-0.15_{-2.60}^{+0.16}\right) \times 10^{-12}$	$\left(-0.33_{-0.6}^{+0.3}\right) \times 10^{-2}$
$b^{\prime} \rightarrow s \gamma$	$\left(0.007_{-0.010}^{+4.0}\right) \times 10^{-6}$	$\left(2.1_{-2.1}^{+8.0}\right) \times 10^{-9}$	$0.12_{-0.18}^{+0.5}$
$b^{\prime} \rightarrow b \gamma$	$\left(1.0_{-1.0}^{+1.3}\right) \times 10^{-5}$	$\left(0.14_{-0.15}^{+5.00}\right) \times 10^{-7}$	$0.12_{-0.13}^{+4.0} \times 10^{-2}$
$b^{\prime} \rightarrow d g$	$\left(1.3_{-1.3}^{+0.9}\right) \times 10^{-5}$	$\left(-0.05_{-1.2}^{+1.8}\right) \times 10^{-11}$	$-0.01_{-0.27}^{+0.4}$
$b^{\prime} \rightarrow s g$	$\left(0.08_{-0.008}^{+1.0}\right) \times 10^{-6}$	$\left(0.3_{-1.7}^{+1.6}\right) \times 10^{-8}$	$0.2_{-1.0}^{+0.8}$
$b^{\prime} \rightarrow b g$	$0.7_{-0.7}^{+1.0} \times 10^{-4}$	$\left(0.2_{-0.4}^{+7.0}\right) \times 10^{-7}$	$\left(0.20_{-0.34}^{+6.00}\right) \times 10^{-2}$

Decay channel	$m_{b^{\prime}}=1200 \mathrm{GeV}$		
	\mathcal{B}	$\Delta_{C P,+}$	$\Delta_{C P,-}$
$b^{\prime} \rightarrow d \gamma$	$\left(2.6_{-2.6}^{+1.7}\right) \times 10^{-6}$	$\left(-0.10_{-1.4}^{+0.10} \times 10^{-12}\right)$	$\left(-0.22_{-2.80}^{+0.21}\right) \times 10^{-2}$
$b^{\prime} \rightarrow s \gamma$	$\left(0.003_{-0.032}^{+4.0}\right) \times 10^{-6}$	$\left(0.25_{-0.25}^{+1.2} \times 10^{-8}\right.$	$0.15_{-0.18}^{+0.7}$
$b^{\prime} \rightarrow b \gamma$	$\left(6.0_{-6.0}^{+9.0}\right) \times 10^{-6}$	$\left(0.10_{-0.11}^{+8.0}\right) \times 10^{-7}$	$\left(0.08_{-0.09}^{+7.0}\right) \times 10^{-2}$
$b^{\prime} \rightarrow d g$	$\left(8.0_{-1.2}^{+0.80}\right) \times 10^{-6}$	$\left(-0.05_{-1.2}^{+0.028}\right) \times 10^{-11}$	$-0.011_{-0.35}^{+0.008}$
$b^{\prime} \rightarrow s g$	$\left(0.05_{-0.05}^{+9.0}\right) \times 10^{-6}$	$\left(0.3_{-1.5}^{+1.1}\right) \times 10^{-8}$	$\left(0.2_{-1.2}^{+0.8}\right)$
$b^{\prime} \rightarrow b g$	$\left(5.0_{-5.0}^{+8.0}\right) \times 10^{-5}$	$\left(0.17_{-0.16}^{+5.0}\right) \times 10^{-7}$	$\left(0.16_{-0.2}^{+6.0}\right) \times 10^{-2}$

Conclusion

- Analytical calculation of the electromagnetic transition dipole moment of a VLQ quark isosinglet
- Studied radiative decays via branching ratios and CP asymmetries
- Several numerical studies for several global fits favouring inclusion of t^{\prime} and b^{\prime} vector isosinglets to the SM.
- For t^{\prime}, we find phenomenological interesting results with branching ratios up to $\simeq 10^{-5}$ and $C P$ asymmetries $\geq 10^{-2}$.
- For b^{\prime}, we find branching ratios $\simeq 10^{-4}$ and $C P$ asymmetries up to order unity.
- Radiative decays of VLQs in such scenarios provide a tantalising probe for new physics and provide clean experimental signatures.
- Results can be applied to a variety of VLQ parameter scans and be easily extended to consider more exotic scenarios such as doublet and triplet VLQs in the future.

Thank You!

References

圊 S. Balaji, [arXiv:2110.05473 [hep-ph]].
R A. K. Alok, S. Banerjee, D. Kumar and S. Uma Sankar, Nucl. Phys. B 906 (2016), 321-341 doi:10.1016/j.nuclphysb.2016.03.012 [arXiv:1402.1023 [hep-ph]].
B. Belfatto and Z. Berezhiani, JHEP 10 (2021), 079 doi:10.1007/JHEP10(2021)079 [arXiv:2103.05549 [hep-ph]].
俥
G. C. Branco, J. T. Penedo, P. M. F. Pereira, M. N. Rebelo and J. I. Silva-Marcos, JHEP 07 (2021), 099 doi:10.1007/JHEP07(2021)099 [arXiv:2103.13409 [hep-ph]].
A. K. Alok, S. Banerjee, D. Kumar, S. U. Sankar and D. London, Phys. Rev. D 92 (2015), 013002 doi:10.1103/PhysRevD. 92.013002 [arXiv:1504.00517 [hep-ph]].
(L. Wolfenstein, Phys. Rev. Lett. 51 (1983), 1945 doi:10.1103/PhysRevLett.51.1945

Backup

Since the Lorentz invariant amplitude can be written

$$
\begin{equation*}
i \mathcal{M}\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}}+\gamma\right)=i \bar{u}\left(p_{\beta}\right) \sigma^{\mu \nu}\left(A_{\gamma}+B_{\gamma} \gamma_{5}\right) q_{\nu} u\left(p_{t}\right) \varepsilon_{ \pm, \mu}^{*}(q) \tag{6}
\end{equation*}
$$

we may express the decay width in terms of the vector and axial form factors A and B

$$
\begin{align*}
& \Gamma\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}} \gamma\right)=\frac{1}{\pi}\left(\frac{m_{\mathrm{i}}^{2}-m_{\mathrm{f}}^{2}}{2 m_{\mathrm{i}}}\right)^{3}\left(\left|A_{\gamma}\right|^{2}+\left|B_{\gamma}\right|^{2}\right), \\
& \Gamma\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}} g\right)=\frac{C_{F}}{\pi}\left(\frac{m_{\mathrm{i}}^{2}-m_{\mathrm{f}}^{2}}{2 m_{\mathrm{i}}}\right)^{3}\left(\left|A_{g}\right|^{2}+\left|B_{g}\right|^{2}\right), \tag{7}
\end{align*}
$$

where $C_{F}=4 / 3$ is the standard colour factor. Comparing the vector and axial form factors with their chiral counterparts we get

$$
A=\frac{f_{\mathrm{fi}}^{\mathrm{L}}+f_{\mathrm{fi}}^{\mathrm{R}}}{2}, \quad B=\frac{f_{\mathrm{fi}}^{\mathrm{R}}-f_{\mathrm{fi}}^{\mathrm{L}}}{2}
$$

The branching ratio is $\mathcal{B}\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}} \gamma\right)=\Gamma\left(q_{\mathrm{i}} \rightarrow q_{\mathrm{f}} \gamma\right) / \Gamma_{q_{\mathrm{i}}}$ for the radiative process.

Interactions

We have the following charged and neutral current interactions

$$
\begin{gather*}
\mathcal{L}_{W}=-\frac{g}{\sqrt{2}} \bar{u}_{\alpha} \gamma^{\mu} V_{\alpha \beta} d_{\beta} W_{\mu}^{+}+\text {h.c. } \tag{8}\\
\mathcal{L}_{Z}=-\frac{g}{2 \cos \theta_{w}} \bar{q}_{\alpha} \gamma^{\mu}\left(c_{L}+c_{R}\right) q_{\beta} Z_{\mu}+\text { h.c. } \tag{9}
\end{gather*}
$$

where $c_{L}= \pm X_{\alpha \beta}^{q}-2 Q_{q} \sin ^{2} \theta_{w} \delta_{\alpha \beta}$ and $c_{R}=-2 Q_{q} \sin ^{2} \theta_{w} \delta_{\alpha \beta}$ and $q=$ $u_{i}, d_{i} . Q_{u}=2 / 3$ and $Q_{d}=-1 / 3$.

$$
\begin{equation*}
X_{\alpha \beta}^{u}=\left(V V^{\dagger}\right)_{\alpha \beta}, \quad X_{\alpha \beta}^{d}=\left(V^{\dagger} V\right)_{\alpha \beta} \tag{10}
\end{equation*}
$$

And with the charged Goldstone mode

$$
\begin{equation*}
\mathcal{L}_{\phi}=-\frac{g}{\sqrt{2} m_{W}} \bar{u}_{\alpha} V_{\alpha \beta}\left(m_{\alpha}-m_{\beta}\right) d_{\beta} \phi^{+}+\text {h.c. } \tag{11}
\end{equation*}
$$

Interactions continued...

The neutral Goldstone mode

$$
\begin{equation*}
\mathcal{L}_{\chi}=\frac{i g}{2 m_{W}}\left[\bar{u}_{\alpha} X_{\alpha \beta}^{u}\left(m_{\alpha}-m_{\beta}\right) u_{\beta}-\bar{d}_{\alpha} X_{\alpha \beta}^{d}\left(m_{\alpha}-m_{\beta}\right) d_{\beta}\right] \chi+\text { h.c. } \tag{12}
\end{equation*}
$$

and finally the Higgs

$$
\begin{equation*}
\mathcal{L}_{h}=\frac{g}{2 m_{W}}\left[\bar{u}_{\alpha} X_{\alpha \beta}^{u}\left(m_{\alpha}+m_{\beta}\right) u_{\beta}+\bar{d}_{\alpha} X_{\alpha \beta}^{d}\left(m_{\alpha}+m_{\beta}\right) d_{\beta}\right]+\text { h.c. } \tag{13}
\end{equation*}
$$

From here, we may derive the Feynman rules and calculate amplitudes for the decay processes of interest.

Wolfenstein parametrisation

If we consider a t^{\prime} VLQ only, V is the left-hand 4×3 submatrix of the 4×4 unitary $\mathcal{V}_{L}^{\dagger}$. Here it is best to choose a parametrisation of $\mathcal{V}_{L}^{\dagger}$ such that the new matrix elements V_{41}, V_{42} and V_{43} take simple forms. Using the Hou-Soni-Steger parametrisation we have the elements of V given by

$$
\begin{array}{lll}
V_{12}=\lambda, & V_{23}=A \lambda^{2}, & V_{13}=A \lambda^{3} C e^{i \delta_{13}} \\
V_{41}=-P \lambda^{3} e^{i \delta_{41}}, & V_{42}=-Q \lambda^{2} e^{i \delta_{42}}, & V_{43}=-r \lambda . \tag{14}
\end{array}
$$

There are four SM parameters $\lambda, A, C, \delta_{13}$ and five new physics parameters $P, Q, r, \delta_{41}, \delta_{42}$. Of the remaining six CKM matrix elements, V_{11}, V_{21} and V_{22} retain their SM parametrisations

$$
\begin{equation*}
V_{11}=1-\frac{\lambda^{2}}{2}, \quad V_{21}=-\lambda, \quad V_{22}=1-\frac{\lambda^{2}}{2} \tag{15}
\end{equation*}
$$

and the third row is given by

$$
\begin{aligned}
& V_{31}=A \lambda^{3}\left(1-C e^{i \delta_{13}}\right)-\operatorname{Pr} \lambda^{4} e^{i \delta_{41}}+\frac{1}{2} A C \lambda^{5} e^{i \delta_{13}}, \\
& V_{32}=-A \lambda^{2}-Q r \lambda^{3} e^{i \delta_{42}}+A \lambda^{4}\left(\frac{1}{\text { IRN Terascale }}-C e^{i \delta_{13}}\right), \\
& V_{3 \text { November 23, }}=1-\frac{1}{2021} r^{2} \lambda^{2} . \frown a c
\end{aligned}
$$

