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Introduction



Searches for DM emission in the Galactic Center
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Predicted Spectra for various Dark Matter Models
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The Characteristic Spectra of Background Sources
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Galactic Center Anomalies



The Galactic Gamma Ray Center Excess
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The spatial morphology of Dark Matter versus Stellar Mass
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Constraints using Galactic Center gamma-ray observations

Abazajian, Horiuchi, Kaplinghat, Keeley, OM,

PRD (2020), arXiv:2003.10416

Summary:

• Accounted for uncertainties in

the astrophysical background

model.

• Considered the uncertainties in

the dark matter profile

parameters.

• Thermal dark matter particles

ruled out for mdm ≤ 400 GeV.
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The 511 keV Line Excess at the Galactic Center

Knodlseder et al., A&A (2005)

• Bulge/Disk flux ratio ∼ 1

[Siegert et al. (2016)]

• Guaranteed contribution from

thermonuclear supernovae

(56Co, 44Ti)

• Sgr A* [Totani 2006], pulsars

[Wang+2006 ], X-ray binaries

[Guessoum+2006], neutron star

mergers [Fuller+2018], or dark

matter [Boehm+(2004)].
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The 511 keV Line Excess at the Galactic Center

IC:=inverse Compton, NB:=Nuclear bulge, BB:=Boxy

bulge, HI:=hydrogen gas, FB:=Fermi bubbles, DM:= dark

matter.

Main Results:

• The spatial morphology of the

511 keV signal is correlated

with stellar mass in the Galactic

bulge.

• Once stellar templates are

included in the model, there is

no longer need for a dark

matter template.
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Dark matter searches with

H.E.S.S. and MAGIC in the

Galactic Center



Imaging Atmospheric Cherenkov Telescopes
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Dark matter search campaigns with H.E.S.S. and MAGIC
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H.E.S.S. Searches for Continuous Dark Matter Emission

Abdallah et al., PRL (2016) [H.E.S.S. Coll.]

Summary:

• Analyzed the inner 300 pc of the

Galactic Center.

• Data collected over a 10 yrs period

(2004-2014).

• Used an Einasto profile

ρE(r) = ρs exp

[
− 2

αs

((
r

rs

)αs

− 1

)]
where αs = 0.17, rs = 20 pc, and

ρ� = 0.3 GeV cm−3.
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H.E.S.S. vs MAGIC (Continuous Emission)

Doro et al., (2021)

Summary:

• Strongest constraints come from

Galactic Center observations.

• All analyses assume a

Navarro-Frenk-White profile.

• Fermi LAT limits dominate for dark

matter masses smaller than ∼ 1 TeV.
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H.E.S.S. searches for gamma-ray lines in the Galactic Center

Abdalla et al., (2018) [H.E.S.S. Coll.]

Summary:

• Model independent limits on a line-like

dark matter signal.

• Data collected over a 10 yrs period.

• Adopted Einasto profile

ρE(r) = ρs exp

[
− 2

αs

((
r

rs

)αs

− 1

)]
where αs = 0.17, rs = 20 pc, and

ρ� = 0.3 GeV cm−3.
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H.E.S.S. Sensitivity to a realistic Wino dark matter signal

Rinchuso et al., PRD (2018)

Summary:

• Considered precision Wino photon

spectrum.

• Used mock H.E.S.S. observations of

the inner 4◦ of the Galactic center.

• Using the full spectral shape of the

Wino leads to an improved sensitivity.
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CTA Sensitivity to WIMP

particles



Galactic Center Observation Strategy for CTA

Cherenkov Telescope Array:

• Beginning of observations in 2025.

• Energy resolution ≈ 10 GeV to 300

TeV.

• Angular resolution 0.2 to 0.02 deg.

• Southern site more sensitive to the

Galactic Center.

CTA observation strategy

• Multiple pointing observations of

the Galactic Center.

• Diffuse observations achievable by

stitching images together.
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CTA Sensitivity to Continuous Dark Matter Emission

Acharyya et al., JCAP (2021) [CTA Coll.]

Summary:

• Considered 525 h observations

of the inner 10◦ × 10◦ region.

• Included systematic

uncertainties in the

astrophysical backgrounds.

• Used an Einasto profile with

αs = 0.17, rs = 20 pc, and

ρs = 0.089 GeV cm−3.
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CTA Sensitivity to Wino Dark Matter
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Computation of the γ-ray spectra and annihilation rate

Wino dark matter:

• Sommerfeld enhancement. [Hisano et al.(2004)]

• Continuum emission of photons from the

decay of final state W and Z bosons.

[Cirelli et al. (2010)]

• Sudakov double logarithms of the form

αW ln2(mDM/mW ) [Hryczuk et al. (2011)].

• Inclusion of endpoint photons, which have

E = zmDM with 1− z � 1. [Baumgart et al.

(2015)].

Used full next-to-leading logarithmic

(NLL) accuracy in the spectrum.
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Computation of the γ-ray spectra and annihilation rate

Wino dark matter:

• Sommerfeld enhancement. [Hisano et al.(2004)]

• Continuum emission of photons from the

decay of final state W and Z bosons.

[Cirelli et al. (2010)]

• Sudakov double logarithms of the form

αW ln2(mDM/mW ) [Hryczuk et al. (2011)].

• Inclusion of endpoint photons, which have

E = zmDM with 1− z � 1. [Baumgart et al.

(2015)].

Used full next-to-leading logarithmic

(NLL) accuracy in the spectrum.

Astrophysical background:

• Model 1: simulated using GALPROP

V56.

• Model 2: extrapolation of Fermi

background model. 17



Expected 95% C.L. upper limits on 〈σv〉line: Wino dark matter

Wino sensitivity:

• CTA will have the best sensitivity to the thermal Wino dark matter.

• Uncertainties in the dark matter profile parameters provide the biggest source of

uncertainties.

[*] Assumed dNγ

dE
= 2δ(E −mDM) +

dNep
γ

dE
+

dNct
γ

dE
, and 〈σv〉line = 〈σv〉γγ+γZ/2 18



CTA Sensitivity to a population

of millisecond pulsars



CTA Sensitivity to the High Energy Tail of the Galactic Center

Excess
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Millisecond pulsar emission at the ∼ GeV–TeV energy scale
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Simulation of the Millisecond Pulsars inverse Compton signal

The injection spectrum of e±:

dNe±

dE
∝ E−Γ exp

(
− E

Ecut

)

Injection luminosity:

The γ-ray efficiency fγ ≡ Lγ,prompt/Ė ' 10%,

with Ė the MSPs spin-down lominosity.

Le± = fe± Ė =
fe±

fγ
Lγ,prompt

' 10fe±Lγ,prompt,

Lbulge
γ,prompt = (2.2 ± 0.4) × 1037 erg s−1 and

LNB
γ,prompt = (3.9 ± 0.5) × 1036 erg s−1. So, we

can finally write:

Le± ' [(2.7± 0.4)× 1038]fe± [erg/s]
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Summary of the Analysis pipeline

Fitting approach:

1. Perfect diffuse emission model: Fit the mock data with the same maps used in

the simulations.

2. Mismodeling of the diffuse emission: Fit the mock data with an independent

map (not used in the simulations). 22



Signal Recovery Tests Results

OM, Leijen, Ando, Song, Horiuchi, Crocker, MNRAS

(2021)

Model Name Γ Ecut

(TeV)

Baseline 2.0 50

Inj1 1.5 50

Inj2 2.5 50

Inj3 2.0 10

Inj4 2.0 100

dN

dEe
∝ E−Γ

e exp(−Ee/Ecut)
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Main Results

Model Name Γ Ecut

(TeV)

Baseline 2.0 50

Inj1 1.5 50

Inj2 2.5 50

Inj3 2.0 10

Inj4 2.0 100

dN

dEe
∝ E−Γ

e exp(−Ee/Ecut)

Minimum fe± for detection [%]

Baseline Inj1 Inj2 Inj3 Inj4

Perfect model for the astrophysical background

10.5% 2.9% 158.4% 24.3% 8.2%

Mismodeling of the astrophysical background

14.5% 3.8% 163.4% 25.3% 10.8%

Minimum electron efficiency for a robust CTA detection

For physically plausible electron injection spectra, the prospects for a

5σ detection of the signal are very encouraging.
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Conclusions

• Galactic Center anomalies are likely explained by processes related to

stars in the Galactic bulge.

• CTA will have at least one order of magnitude greater sensitivity to

WIMP dark matter particles than previous telescopes.

• CTA will potentially be able to probe the MSPs hypothesis for the

Galactic center excess, for physically plausible fe± values.
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Expected 95% C.L. upper limits on 〈σv〉line: Higgsino DM

Higgsino dark matter:

• Included only leading order (LO)

contributions to the annihilation rate

and photon spectra.

• However, promising prospects for

CTA sensitivity to thermal Higgsinos.

• Uncertainties in the dark matter

profile parameters provide the biggest

source of uncertainties.
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Specifications of the Analysis

Data reduction procudure:

• Size of region of interest: 10◦ × 10◦ around the Galactic Center.

• Mask: Galactic plane |b| ≤ 0.3◦, point sources 3FHL catalog, and

extended TeV sources.

• Instrument Response Function: CTA-Performanceprod

3bv1-South-20deg-average-50h.root3.

• Exposure: 500 hours.

• Energy range: 16 GeV - 158 TeV.

• Spatial bins: 0.5◦ × 0.5◦.

Statistical Analysis:

• Spectrum: Binned maximum-likelihood procedure applied to each

individual energy bin.

• Morphology: Maps divided in Galactocentric rings.
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Astrophysical background: Interstellar gas.
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Astrophysical background: Interstellar gas.

Hydrodynamic gas templates:

Atomic hydrogen, molecular hydrogen and residual dust templates. These are

publicly available on github https://github.com/chrisgordon1/galactic_bulge. 29

https://github.com/chrisgordon1/galactic_bulge


Millisecond Pulsars Vs. dark matter inverse Compton maps
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Astrophysical background: Alternative model.

GALPROP v56 setup:

• 3D spatial models for the interstellar

radiation fields and interstellar gas.

• Diffusive reacceleration with

∆X∆Y∆Z = 0.2× 0.2× 0.1 kpc3

spatial resolution.

This model assumes same power of CR

injection in the arms/disk (50% each). 31



Astrophysical background: simulated γ-ray sky at ≈ 11 TeV

Inverse Compton and gas-correlated maps divided in rings:

[‘ring 0’,‘ring 1’, ‘ring 2’, ‘ring 3’]:=[0− 3.5, 3.5− 8.0, 8.0− 10.0, 10.0− 50.0] kpc.
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Fermi bubbles model at TeV-scale energy

Method:

Follow the same approach as in Rinchuso et al. (2020) [arXiv: 2008.00692]. 33



Mock data generation for the astrophysical background model

Astrophysical background:

• GDE Model I: simulated using GALPROP

V56.

• GDE Model II: extrapolation of

hydrodynamic gas models.

CTA expected rate:

• Dominated by irreducible CR background.

• Assumed 500 h of observations.
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Results: sensitivity to the putative population of GC MSPs
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Results: distinguishing MSPs from DM emission in the GC

Main Result:

CTA is capable of distinguishing whether the inverse Compton signal emanates from

dark matter or MSPs based on the spatial morphology of the radiating source.
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Limits by H.E.S.S. measurements of the Galactic ridge.

Predictions at the Galactic ridge:

• Assume fe± = 10%.

• Assume B = 10;µG at the GC.

• See Song et al. (2019).

Impact of the magnetic field:

• Assume B = 50;µG in the nuclear bulge .

• Contribution of the nuclear bulge

drastically reduced, while not for the boxy

bulge.
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Implications for local CR measurements

Predicted e± fluxes at Earth:

• Even for very high fe± values, the e±

accelerated by Galactic bulge MSPs are

not expected to be observed by local CR

detectors. 38
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