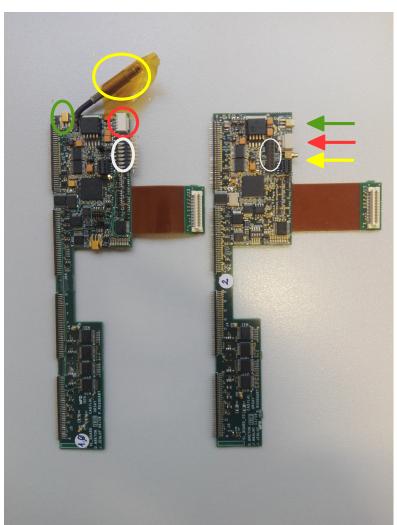


Outline

- Status of the SLBoard v2 and DAQ
- Status of the FEV10/11 integration into the SLBoard system.
- > Wafer gluing and chip encapsulating
- > Status of the FEV13 integration on the new system.
- > Status of the Mechanical structure.
- Status of the cabling + patch panels.
- > Status of the Commissioning procedure.
- Transport

Twiki page (under construction)


Attendance

Discussions

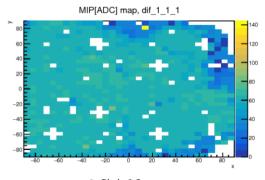
https://twiki.cern.ch/twiki/bin/view/CALICE/SiWDESY202003

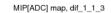
SLBoard v2

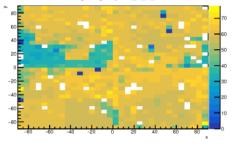
- Non exhaustive list of modifications
 - Useless circuitry has been removed
 - Repositioning of components \rightarrow better access for cable plugging
 - Improved selection of input plugs.
 - Kapton length increased (from 40 to 60 mm)
 - A switch for slot number encoding.
 - DAC for Skiroc ADC calibration. The FPGA produces pulses for autonomous functional calibration of both gain.
 - Flash EPROM for permanent information storage.
- Production status: 4 cabled Slboard + 18 waiting for the debugging results
- > Most new features have been tested (all with satisfactory results)
 - DAC for Skiroc ADC calibration has been satisfactorily tested but it is under optimization.
 - Flash EPROM not yet tested.
 - HV is available on the SL_Board but not yet tested.

DAQ & FirmWare news

- > Post beam test debugging done:
 - i.e. Save histogram files when performing online scurves
- Kapton-Core
 - All 15 slots are operative.
 - Next setp read 15 slabs at the same time.
- > SLBoard FW loading possible through the Kapton.
- > FW/SW adapations for the new SL-Board features are finalized.


) Channels Hit Rate Scan Vs Threshold					- 🗆 🗙
Start: Force Stop:	Min Common Threshold 400 600 200	Max Common Threshold 500600700 400	Nb of steps : $10 \Rightarrow 16$ Number of Cycles/ Step 5	dac /step Save re Perform scan for All Channel	Modula: a 32 T at once
	CORE side Left SLAB 2 @2	ALL ASUs ALL ASIC		Display Co	lor Maps Panel:
72- 65- 60- 50- 45- 144 40- 10 90			Online scurves Old plot (pre-commissioning)		Skiroc 0 Skiroc 1 Skiroc 2 Skiroc 3
3) 25- 15- 10- 5-				• in the sin sin sin sin	Skiroc 4 Skiroc 5 Skiroc 6 Skiroc 7 Skiroc 8 Skiroc 9 Skiroc 10 Skiroc 11 Skiroc 11 Skiroc 13 Skiroc 14
		Threshold			


FEV10/11 Integration into the SL-Board system


- > 9/10 of the 13-22 slabs are at LAL.
- > Kapton connectors have been removed as well as the SMBs for all of them
 - SLAB 14 & 16 have been tested with SLBoard (v1)
 - The rest are being progresively equipped with the female gradcon connectors and being tested.
 - Except the slab 15 (FEV 10)
- > Remark: we found an incompatibility issue between male & female connectors of the Antelec producer.
 - No compatibility issue between Gradcon & Antelec.
 - We found out after several FEV11 were already equipped with Antelecs \rightarrow a couple of days days delay
 - Issue being discussed with Antelec.
- > "New" FEV10 from LPNHE fully equipped with 320 um wafers but never equipped with the SMB
 - to be equipped with SL-Boards?

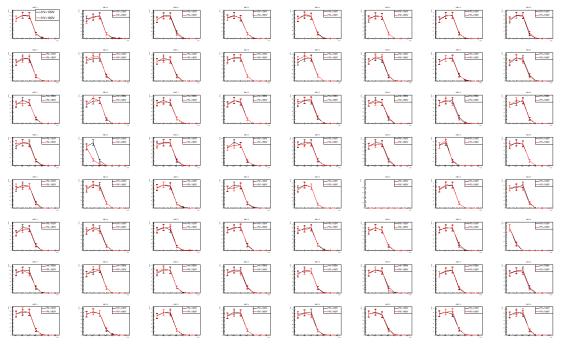
FEV10/11 status

	DESY 2017		CERN 2018		
SLAB	status	calibrated cells	status	calibrated cells	Comments
13		0%		0%	Glue spilled in the SMBv. Recoverable for 2020
14		0%		0%	Error in the SR retour \rightarrow fixed for 2020
15		0%		0%	Stopped working during the 2017 commissioning. Recoverable for 2020 ?
16		92%		?	At CERN : low performance on the corners of the ASU and SMB interface
17		93%		95%	
18		94%		?	At CERN : a pattern of lower MIP values is seen in the center of the ASU
19		93%		93%	
20		94%		96%	
21		54%		0%	Stopped working at DESY 2018
22		84%		87%	



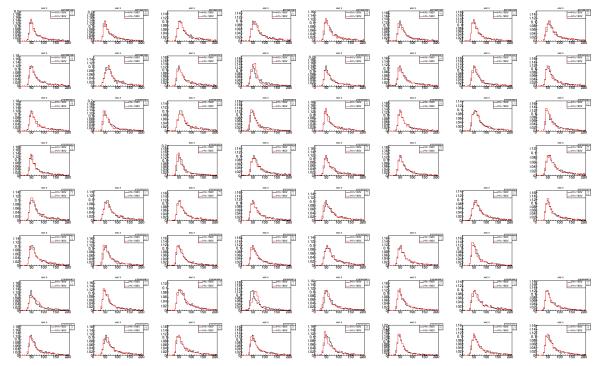
Slab 18

IJC Lab


SLAB 14: recovered for data taking

- Slab not tested at DESY 2017 due to a problem of the Signal/Slow Control Return lines that blocked the readout.
- First slab used to test the "disassembly procedure" (November 2019)
- Satisfactory DAQ tests done by bypassing 4 chips.
- Status: slab fully recovered and commissioned → similar performance than the other FEV11 had during 2017

SLAB 14: HV 100 V vs HV 180 V


- > This board has large leakage currents (since the first time that I have tested in 2017)
 - HV100V \rightarrow ~ 15-18 uA; HV180V \rightarrow ~ 30 uA
 - No differences in performance have been observed (s-curves and cosmic runs)
 - Constant results for several runs over more than 2 weeks.

- s-curves on ASIC 5
 - Red = HV180 V
 - Black = HV100 V

SLAB 14: HV 100 V vs HV 180 V

- > This board has large leakage currents (since the first time that I have tested in 2017)
 - HV100V \rightarrow ~ 15-18 uA; HV180V \rightarrow ~ 30 uA
 - No differences in performance have been observed (s-curves and cosmic runs)
 - Constant results for several runs over more than 2 weeks.

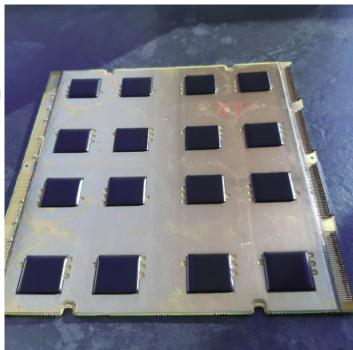
- > MIP distributions on ASIC 5
 - Red = HV180 V
 - Black = HV100 V

SLAB 14: HV 100 V vs HV 180 V

Conclusions:

- > We recovered a "lost" slab
 - Similar attempts ongoing for slab 13 and 21
 - What about 15? It is a FEV10... not a priority.
- > We don't see differences in performance operating the SLAB at 180V or 100V.
 - We foresee to use 2 different HV PS in the beam test
 - But in case that we don't do it, it will not cause major issues.

FEV 12 "threshold issue" isolved

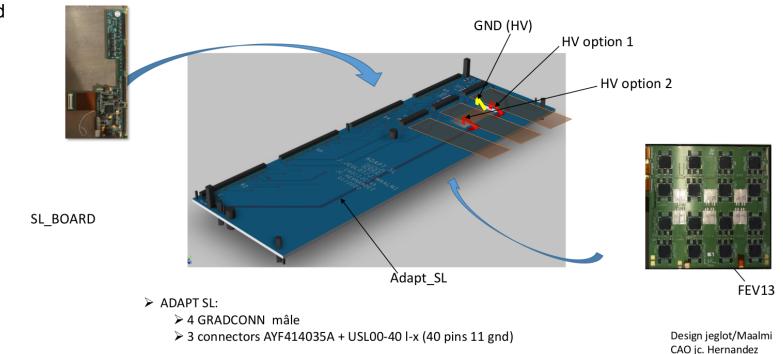

- > We solved the problem with the "thresholds" observed in the Test beam.
- > Test beam diagnosis: threshold value inversion
- Sood diagnosis: baseline reference shift for the DAC due to a wrong cabling of the FEV
 - SK2: an extra resistance in the PCB was needed to fix the development mistake that made the threshold dynamic range to small.
 - Not needed in SK2a.
- > All the resistances have been removed and the FEV12 have been re-tested satisfactorily

Plans for wafer gluing at LPNHE: FEV12

- > 7 more 500 um wafers are available at LPNHE (from LLR)
- > FEV12 -1
 - Is at LPNHE right now being prepared for the gluing of 3 more wafers.
- FEV12-2 is at LAL (for DAQ tests)
 - Will travel to LPNHE by the beginning of February (?) for the gluing of 3 more wafers.
- LAL/LPNHE are working on special mask to facilitate the gluing of the wafers into the FEV12 without removing the connectors.
 - This was already last year done for the COB

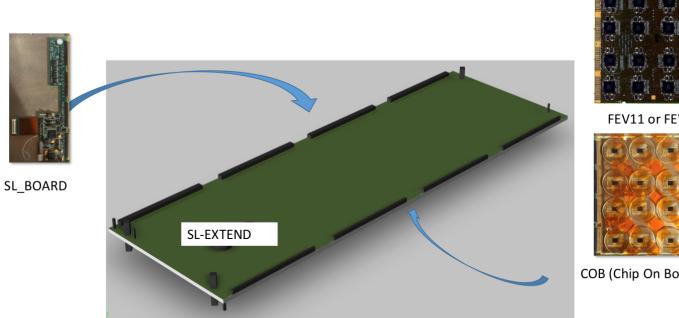
CHIP encapsulation FEV11_COB

- COBs are now at Hybrid (for encapsulation)
 - COB-a (1 real wafer plus a fake wafer) to be used as test for encapsulation
 - COB-c to be fully equipped with 3 more wafers.
 - COB-d to be fully equipped with 4 wafers.
- > To be recovered the 27January.
- > Note: Hybrid will try to recover the ASIC #8 of COB-a which is misworking.
 - By fixing broken wires



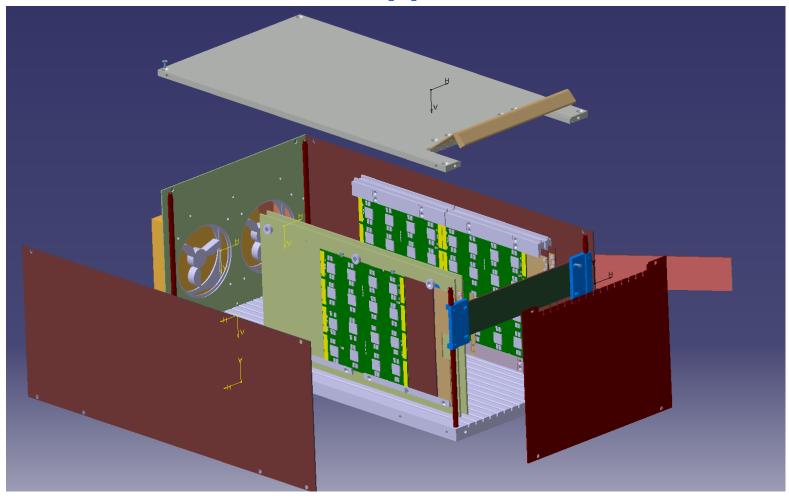
Plans for wafer gluing at LPNHE: FEV11_COB

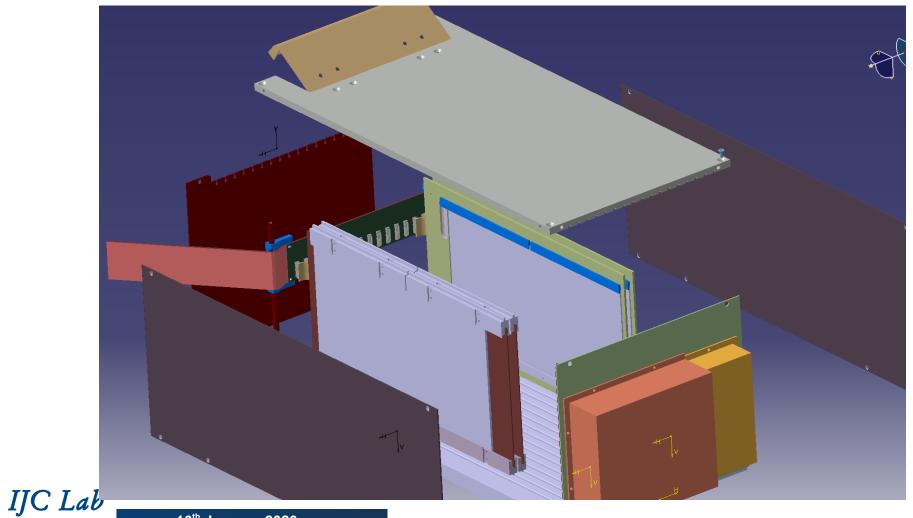
- Plan to fully equip with wafers the COB-c and COB-d
 - Mid february (?)

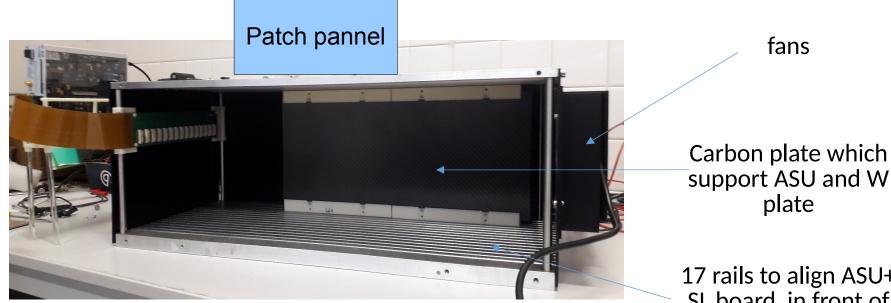

FEV 13 integration with th SLBoard system

- > Design finished.
- > FW modifications done.
- Production to be started soon.
 - XX to be produced
 - XX to be equipped

SL-ADAPT for FEV13

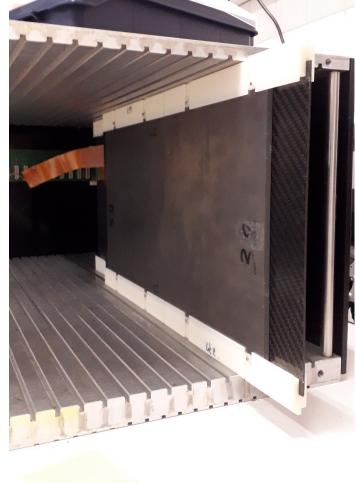

FEV 13 integration with th SLBoard system


FEV11 or FEV12


COB (Chip On Board)FEV

Design jeglot CAO jc. Hernandez

IJC Lab

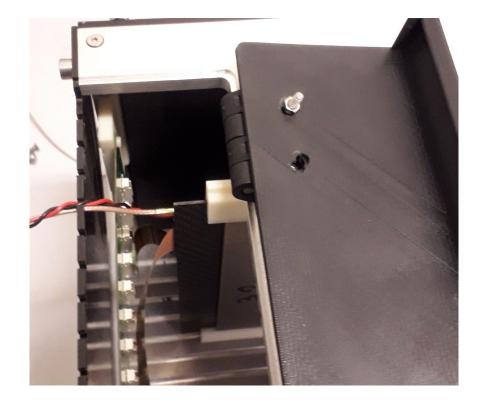




17 rails to align ASU+ SL board in front of the 15 slots of the « core kapton »

Carbon plate: support one side the tungsten plate / the other side the SL board + 1 or 2 ASU

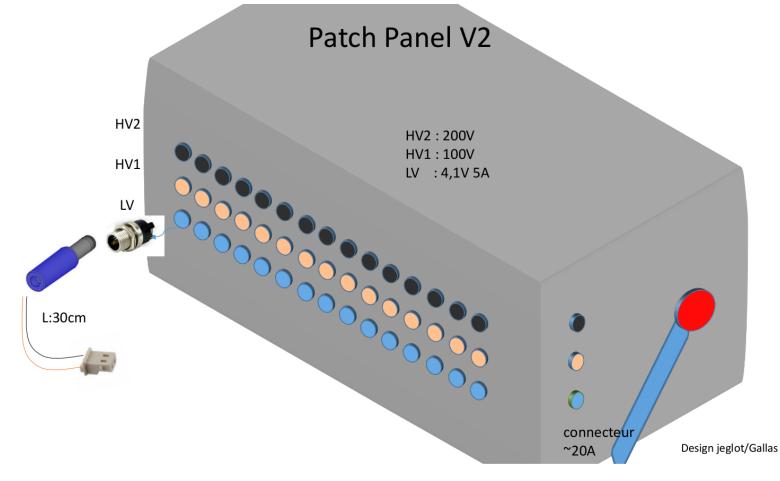
ASU + HV kapton take off the » U carbon shape of the LLR » and fixed on the carbon plate, slide on the rail



View of 4 support plates adapted to the thickness of the COB and FEV electronic card and the different thickness of the W plates.

Right side : old plastic support which can align ASU with other thickness like « Japanese slab: ASU + their carbon protection »

IJC Lab


Connections in/out the box per slab:

- flexible kapton + plug
- -1 LV red/black cable
- - 2 HV cables

IJC Lab

Status of the mechanical support: patch pannel

Commissioning procedure

- Slow warm up of the automatization of the procedure with the new DAQ
- Manually done for SLAB14 and the COBs → very similar results compared with 2017, but less masking of channels if we use SK2a.
 - For a "trained" user, the manual process does not take much more than the automatized one (for one or two slabs)
- > Do we want to use the TDC?
 - What are the physics motivations to use it at DESY?
 - What are the proper settings?
 - Proposal for DESY: use forced High Gain and TDC.
 - All this needs some readaptations of the DAQ software. Not in the top of the list of priorities.

Transportation & Attendance

- LAL van
 - ~20 March (Roman + ?)
- > Attendance
 - Doodle to be created
 - LAL: 3 physicists, 4 engineers, 2 master students
 - LLR: (?)
 - Omega: (?)
 - Kyushu (?)
 - Tokyo U (?)
 - CERN: (?)
 - SKKU: 1 PhD student (or postdoc)
 - CIEMAT: 1 PhD student

IJC Lab