

Fermi-GBM follow-up of subthreshold GW triggers

Cosmin, Nelson and others

Remind the story

GW 170817

GRB 170817A

AT 2017gfo

My point of interest

Characteristics of GRB 170817A:

→ delay: 1.7s after GW170817

→ duration : 64ms

→ energy: ≈200 keV

The input:

- → list of subthreshold (not confirmed) GW candidates
- → from offline pipelines : **PyCBC**, GstLAL
- → order of magnitude : ≈1000 triggers for O2

Analysis of Fermi-GBM data:

- \rightarrow the *targeted-search* (arxiv :1806.02378)
- \rightarrow it takes as input a GPS time t_o
- \rightarrow analysis of [t_o 30s, t_o + 30s] GBM data
- → it generates GBM triggers
- → GBM trigger = $(t_{GBM}, duration, spectrum, skymap, others)$

Desirable conclusion:

→ conclude if there is any
 → astrophysical association
 between a GW candidate and a
 GBM trigger

- for a pair (GW trigger, GBM trigger), we want to evaluate how likely is that :
 - the GW trigger is a real astrophysical signal
 - the GBM trigger is a real astrophysical signal
 - > the GW signal and the GBM signal have a common astrophysical origin

· solution: define a statistical quantity based on t_{GW} , t_{GBM} , SNR, LLR, Ω_{GW} , Ω_{GBM}

Bayes factor

$$\Lambda = \frac{P(D_L, D_G | H^C)}{P(D_I, D_G | H^{NN} \vee H^{SN} \vee H^{NS} \vee H^{SS})}$$

- \rightarrow D_L: the LIGO data, i.e. \mathbf{t}_{gw} , SNR, $\mathbf{\Omega}_{\mathsf{gw}}$
- > D_G : the GBM data, i.e. t_{GBM} , LLR, Ω_{GBM}
- > H^c: the hypothesis of two astrophysical signals having the same origin
- > H^{NN}: the hypothesis of two backgrounds / noises
- > H^{NS}: the hypothesis of a GBM noise and a LIGO astrophysical signal
- > H^{SN}: the hypothesis of a GBM astrophysical signal and a LIGO background
- > HSS: the hypothesis of two **non-related** astrophysical signals

$$\Lambda = \frac{P(D_L, D_G | H^C)}{P(D_L, D_G | H^{NN} \vee H^{SN} \vee H^{NS} \vee H^{SS})}$$
under some assumptions (arxiv: 1712.05392)
$$\Lambda = \frac{I_{\Omega} I_{\Delta t}}{1 + \Omega_{S} + \Omega_{S} + \Omega_{S} + \Omega_{S}}$$

New quantities:

- $I_{\Omega} = \Omega_{GW} \cap \Omega_{GW}$, the skymap overlap
- $I_{\Delta t}$, the time offset term with $\Delta t = |t_{GW} t_{GBM}|$
- $Q_L = P(SNR \mid H^N) / P(SNR \mid H^S)$, the LIGO Bayes factor
- $Q_G = P(LLR \mid H^N) / P(LLR \mid H^S)$, the GBM Bayes factor

- H^N: the hypothesis of a noise
- H^s: the hypothesis of an astrophysical signal

- let's suppose we have two pairs ($\{t^1_{GW}, \Omega^1_{GW}, SNR^1\}$, $\{t^1_{GBM}, \Omega^1_{GBM}, LLR^1\}$), and ($\{t^2_{GW}, \Omega^2_{GW}, SNR^2\}$, $\{t^2_{GBM}, \Omega^2_{GBM}, LLR^2\}$)
- for each pair we calculate the joint statistics, so we have Λ^1 , Λ^2
- let's suppose $\Lambda^1 = 12.5$ and $\Lambda^2 = 11.8$
- because $\Lambda^1 > \Lambda^2$, the first pair is more likely to be a true astrophysical association than the second pair
- the fact that Λ^1 = 12.5 doesn't tell us how much likely the first pair is to be a true astrophysical association

- A is a good quantity to compare pairs
- A is not a meaningful quantity

- we need to create virtual background pairs
- we proceed like in LIGO world

- L_{GW} the list of O2 PyCBC GW trigger
- L_{GBM} the list of GBM triggers over O2
- we time shift by a sufficient amount of time L_{GW} with respect to L_{GBM}
- two new list L^{new}_{GW} and L_{GBM}
- we calculate Λ for the new pairs, which is Λ of backgrounds
- we iterate this process lots of times

- we get a distribution of ∧ for the backgrounds
- so we have a FAR distribution

- FAR distribution for the O2 follow up of single interferometer GW triggers
- arxiv: 2001.01462

- we can see from the distribution of the FAR that there is no hope to have a pair with a good false alarm rate
- one way to remedy this problem is to look for coincidences between BNS triggers only (not all type of CBC) and sGRB-like GRB signals only (not all GBM signals)

- we look for Fermi-GBM counterparts to offline PyCBC triggers
- statistical framework
 - joint statistic, Λ
 - > false alarm rate, FAR
- · we found no interesting association