Fermi-GBM follow-up of subthreshold GW triggers Cosmin, Nelson and others # Remind the story GW 170817 GRB 170817A AT 2017gfo ## My point of interest #### Characteristics of GRB 170817A: → delay: 1.7s after GW170817 → duration : 64ms → energy: ≈200 keV ### The input: - → list of subthreshold (not confirmed) GW candidates - → from offline pipelines : **PyCBC**, GstLAL - → order of magnitude : ≈1000 triggers for O2 ## **Analysis of Fermi-GBM data:** - \rightarrow the *targeted-search* (arxiv :1806.02378) - \rightarrow it takes as input a GPS time t_o - \rightarrow analysis of [t_o 30s, t_o + 30s] GBM data - → it generates GBM triggers - → GBM trigger = $(t_{GBM}, duration, spectrum, skymap, others)$ ### **Desirable conclusion:** → conclude if there is any → astrophysical association between a GW candidate and a GBM trigger - for a pair (GW trigger, GBM trigger), we want to evaluate how likely is that : - the GW trigger is a real astrophysical signal - the GBM trigger is a real astrophysical signal - > the GW signal and the GBM signal have a common astrophysical origin · solution: define a statistical quantity based on t_{GW} , t_{GBM} , SNR, LLR, Ω_{GW} , Ω_{GBM} Bayes factor $$\Lambda = \frac{P(D_L, D_G | H^C)}{P(D_I, D_G | H^{NN} \vee H^{SN} \vee H^{NS} \vee H^{SS})}$$ - \rightarrow D_L: the LIGO data, i.e. \mathbf{t}_{gw} , SNR, $\mathbf{\Omega}_{\mathsf{gw}}$ - > D_G : the GBM data, i.e. t_{GBM} , LLR, Ω_{GBM} - > H^c: the hypothesis of two astrophysical signals having the same origin - > H^{NN}: the hypothesis of two backgrounds / noises - > H^{NS}: the hypothesis of a GBM noise and a LIGO astrophysical signal - > H^{SN}: the hypothesis of a GBM astrophysical signal and a LIGO background - > HSS: the hypothesis of two **non-related** astrophysical signals $$\Lambda = \frac{P(D_L, D_G | H^C)}{P(D_L, D_G | H^{NN} \vee H^{SN} \vee H^{NS} \vee H^{SS})}$$ under some assumptions (arxiv: 1712.05392) $$\Lambda = \frac{I_{\Omega} I_{\Delta t}}{1 + \Omega_{S} + \Omega_{S} + \Omega_{S} + \Omega_{S}}$$ #### New quantities: - $I_{\Omega} = \Omega_{GW} \cap \Omega_{GW}$, the skymap overlap - $I_{\Delta t}$, the time offset term with $\Delta t = |t_{GW} t_{GBM}|$ - $Q_L = P(SNR \mid H^N) / P(SNR \mid H^S)$, the LIGO Bayes factor - $Q_G = P(LLR \mid H^N) / P(LLR \mid H^S)$, the GBM Bayes factor - H^N: the hypothesis of a noise - H^s: the hypothesis of an astrophysical signal - let's suppose we have two pairs ($\{t^1_{GW}, \Omega^1_{GW}, SNR^1\}$, $\{t^1_{GBM}, \Omega^1_{GBM}, LLR^1\}$), and ($\{t^2_{GW}, \Omega^2_{GW}, SNR^2\}$, $\{t^2_{GBM}, \Omega^2_{GBM}, LLR^2\}$) - for each pair we calculate the joint statistics, so we have Λ^1 , Λ^2 - let's suppose $\Lambda^1 = 12.5$ and $\Lambda^2 = 11.8$ - because $\Lambda^1 > \Lambda^2$, the first pair is more likely to be a true astrophysical association than the second pair - the fact that Λ^1 = 12.5 doesn't tell us how much likely the first pair is to be a true astrophysical association - A is a good quantity to compare pairs - A is not a meaningful quantity - we need to create virtual background pairs - we proceed like in LIGO world - L_{GW} the list of O2 PyCBC GW trigger - L_{GBM} the list of GBM triggers over O2 - we time shift by a sufficient amount of time L_{GW} with respect to L_{GBM} - two new list L^{new}_{GW} and L_{GBM} - we calculate Λ for the new pairs, which is Λ of backgrounds - we iterate this process lots of times - we get a distribution of ∧ for the backgrounds - so we have a FAR distribution - FAR distribution for the O2 follow up of single interferometer GW triggers - arxiv: 2001.01462 - we can see from the distribution of the FAR that there is no hope to have a pair with a good false alarm rate - one way to remedy this problem is to look for coincidences between BNS triggers only (not all type of CBC) and sGRB-like GRB signals only (not all GBM signals) - we look for Fermi-GBM counterparts to offline PyCBC triggers - statistical framework - joint statistic, Λ - > false alarm rate, FAR - · we found no interesting association