Cosmin, Nelson and others

GRB 170817A

$\mathrm{m}_{\mathrm{ej}}=0.06 \mathrm{M}_{\mathrm{sol}}, \mathrm{Y}_{\mathrm{e}}=0.1, \mathrm{v}_{\mathrm{ej}}=0.15 \mathrm{c}, \mathrm{\kappa}=10 \mathrm{~cm}^{2} / \mathrm{g}$; FRDM, t -dep. effic

AT 2017gfo

Characteristics of GRB 170817A :
\rightarrow delay : 1.7s after GW170817
\rightarrow duration : 64ms
\rightarrow energy : $\approx 200 \mathrm{keV}$

The input:
\rightarrow list of subthreshold (not confirmed) GW candidates
\rightarrow from offline pipelines : PyCBC, GstLAL
\rightarrow order of magnitude : ≈ 1000 triggers for O2

Analysis of Fermi-GBM data:
\rightarrow the targeted-search (arxiv :1806.02378)
\rightarrow it takes as input a GPS time t_{0}
\rightarrow analysis of $\left[t_{0}-30 \mathrm{~s}, t_{0}+30 \mathrm{~s}\right]$ GBM data
\rightarrow it generates GBM triggers
\rightarrow GBM trigger $=\left(t_{\text {GВМ }}\right.$, duration, spectrum, skymap, others)

Offline analysis

Desirable conclusion:
\rightarrow conclude if there is any

- astrophysical association between a GW candidate and a GBM trigger
- for a pair (GW trigger, GBM trigger), we want to evaluate how likely is that :
- the GW trigger is a real astrophysical signal
, the GBM trigger is a real astrophysical signal
- the GW signal and the GBM signal have a common astrophysical origin
(GW trigger, GBM trigger)
$\rightarrow \mathrm{t}_{\mathrm{GW}}$
\rightarrow SNR
\rightarrow skymap $\left(\boldsymbol{\Omega}_{\mathrm{GW}}\right)$
$\rightarrow \mathrm{t}_{\text {GBM }}$
\rightarrow LLR
$\rightarrow \operatorname{skymap}\left(\boldsymbol{\Omega}_{\mathrm{GBM}}\right)$
- solution : define a statistical quantity based on $\mathrm{t}_{\mathrm{GW}}, \mathrm{t}_{\mathrm{GBM}}$, SNR, LLR, $\boldsymbol{\Omega}_{\mathrm{GW}}, \boldsymbol{\Omega}_{\mathrm{GBM}}$

Bayes factor

$$
\Lambda=\frac{P\left(D_{L}, D_{G} \mid H^{C}\right)}{P\left(D_{L}, D_{G} \mid H^{N N} \vee H^{S N} \vee H^{N S} \vee H^{S S}\right)}
$$

- D_{L} : the LIGO data, i.e. t_{tw}, SNR, $\boldsymbol{\Omega}_{\mathrm{Gw}}$
- D_{G} : the GBM data, i.e. t_{GB}, LLR, $\boldsymbol{\Omega}_{\text {GBM }}$
- H^{c} : the hypothesis of two astrophysical signals having the same origin

ح H^{NN} : the hypothesis of two backgrounds / noises

- $\mathrm{H}^{\text {Ns }}$: the hypothesis of a GBM noise and a LIGO astrophysical signal

ح $H^{S N}$: the hypothesis of a GBM astrophysical signal and a LIGO background

- $H^{\text {ss }}$: the hypothesis of two non-related astrophysical signals

$$
\Lambda=\frac{P\left(D_{L}, D_{G} \mid H^{C}\right)}{P\left(D_{L}, D_{G} \mid H^{N N} \vee H^{S N} \vee H^{N S} \vee H^{S S}\right)}
$$

under some assumptions
(arxiv: 1712.05392)

$$
\Lambda=\frac{I_{\Omega} I_{\Delta t}}{1+Q_{L}+Q_{G}+Q_{L} Q_{G}}
$$

New quantities:

- $\mathrm{I}_{\boldsymbol{\Omega}}=\boldsymbol{\Omega}_{\mathrm{GW}} \cap \boldsymbol{\Omega}_{\mathrm{GW}}$, the skymap overlap
- $\mathrm{I}_{\Delta \mathrm{t}}$, the time offset term with $\Delta \mathrm{t}=\left|\mathrm{t}_{\mathrm{Gw}}-\mathrm{t}_{\mathrm{GBM}}\right|$
- $\mathrm{Q}_{\mathrm{L}}=\mathrm{P}\left(\mathrm{SNR} \mid \mathrm{H}^{\mathrm{N}}\right) / \mathrm{P}\left(\mathrm{SNR} \mid \mathrm{H}^{\mathrm{S}}\right)$, the LIGO Bayes factor
- $\mathrm{Q}_{\mathrm{G}}=\mathrm{P}\left(\operatorname{LLR} \mid \mathrm{H}^{\mathrm{N}}\right) / \mathrm{P}\left(\operatorname{LLR} \mid \mathrm{H}^{\mathrm{S}}\right)$, the GBM Bayes factor
- H^{N} : the hypothesis of a noise
- H^{s} : the hypothesis of an astrophysical signal
- let's suppose we have two pairs ($\left\{\mathrm{t}^{1}{ }_{\mathrm{GW}}, \boldsymbol{\Omega}^{1}{ }_{\mathrm{GW}}, \mathrm{SNR}{ }^{1}\right\},\left\{\mathrm{t}^{1}{ }_{\mathrm{GBM}}, \boldsymbol{\Omega}^{1}{ }_{\mathrm{GBM}}, \operatorname{LLR}^{1}\right\}$), and ($\left\{\mathrm{t}^{2}{ }_{\mathrm{GW}}, \boldsymbol{\Omega}^{2}{ }_{\mathrm{GW}}, \mathrm{SNR}^{2}\right\},\left\{\mathrm{t}^{2}{ }_{\text {GBM }}, \boldsymbol{\Omega}^{2}{ }_{\text {GBM }}, \operatorname{LLR}^{2}\right\}$)
- for each pair we calculate the joint statistics, so we have Λ^{1}, Λ^{2}
- let's suppose $\wedge^{1}=12.5$ and $\Lambda^{2}=11.8$
- because $\Lambda^{1}>\Lambda^{2}$, the first pair is more likely to be a true astrophysical association than the second pair
- the fact that $\Lambda^{1}=12.5$ doesn't tell us how much likely the first pair is to be a true astrophysical association
- \wedge is a good quantity to compare pairs
- \wedge is not a meaningful quantity
- we need to create virtual background pairs
- we proceed like in LIGO world

Convert \wedge to FAR

- L_{Gw} the list of O2 PyCBC GW trigger
- $\mathrm{L}_{\text {Gвм }}$ the list of GBM triggers over O2
- we time shift by a sufficient amount of time $\mathrm{L}_{\text {Gw }}$ with respect to $\mathrm{L}_{\text {GBM }}$
- two new list $\mathrm{L}^{\text {new }}{ }_{\text {Gw }}$ and $\mathrm{L}_{\text {Gbm }}$
- we calculate \wedge for the new pairs, which is Λ of backgrounds
- we iterate this process lots of times

- FAR distribution for the O2 follow up of single interferometer GW triggers
- arxiv : 2001.01462
- we can see from the distribution of the FAR that there is no hope to have a pair with a good false alarm rate
- one way to remedy this problem is to look for coincidences between BNS triggers only (not all type of CBC) and sGRB-like GRB signals only (not all GBM signals)
- we look for Fermi-GBM counterparts to offline PyCBC triggers
- statistical framework
- joint statistic, \wedge
- false alarm rate, FAR
- we found no interesting association

