The new readout board for LHCb : PCle400

P. Bibron, CPPM J.-P. Cachemiche, CPPM

Contents

LHCb experiment

Constraints

FPGA overview

Architecture

Foreseen development

Core Power Estimation

LHCb experiment

LHCb goal is to study Matter/Antimatter asymetries

Curent system is based on a Trigger-less architecture

- All data are sent to computer farm
- Real time event builder without pre-filtering
- More accurate algorithms can target the most interesting events

Interface between Front End and servers is key

- Current board PCle40 has 100Gbit/s server interface
- 2030 upgrade is aiming 10 times higher
- o First step is 4 times faster for 2026
 - o 400 Gbits/s link with CPU
 - o Input bandwidth minimum 480 Gbits/s, more if possible

This new board is named PCle400

FPGA Chosen: Intel AgileX I-Series

Notion of Tiles for Transceivers

- Usually, FPGAs have a very high speed links on few links (~ 28, 56, 112 Gbits/s), whereas we need many links at a rather « low » speed (~10 Gbits/s)
- F-Tiles for Front End: 48 NRZ links or (exclusive) 36 PAM4
- R-Tiles for CPU link : PCIe Gen5 x 16

Number of Logic Elements

Hasn't increased as much as in the past
 (2.7MLEs Max Currently)

3x F-tile, 1x R-tile (72 XCVRs)

Architecture:

Same principle as PCle40 PCle board Gen5

- 48 x 10 = 480 Gb/s Can be increased up to 2016 Gbits/s if PAM4 used
- 400 Gb/s connection with CPU by PCIe Gen5 (acquisition + slow control)
- Slow control through PCIe Gen5
- Clock distribution over copper or through optics if needed

Foreseen development

CPPM has started general studies

- Power supplies
 - Core Power estimations
 - Voltage rail sequencing
 - Power delivery network
 - Power integrity simulations
- Accurate time distribution
 - PLL comparisons and choice
- 28/56 Gbits/s transmissions
 - Simulations
 - o Implementation on Intel dev kit

Aim for a prototype in 2023

Compatible with release of I-Series Agilex FPGA in Late 2021

Agilex F-Series Development kit measurements

- Agilex F Series 1.4MLEs (AGFB014) Not exactly our target (I-Series 2.7MLEs)
- Enpirion Core Power supply can go to 100/120A
- External PLLs can vary from 0 to 700MHz
- Monitoring (Current, Voltage & Temp) done externally by Max 10 FPGA
- Intel HMI provided for
 - PLL configuration
 - Voltage/Current/power monitoring
 - Temperature monitoring

How to make the FPGA consume power?

- Depends on Occupancy/Frequency/Toggle rate
- Use of random Pattern generators (50 % Toggle rate) to fill up the FPGA

Agilex F-Series Development kit measurements

Core Current vs frequency and occupancy

ICC compared to Frequency and occupancy

Agilex F-Series Development kit measurements

Extrapolation to target FPGA (from 1.4MLEs to 2.7MLEs)

ICC compared to Frequency and occupancy

 Estimated Power Consumption for target FPGA at 650MHz is ~160A

Occupancy brought to AGBI027

Simulation Method:

- Final firmware not available: use of random Pattern generators to simulate power consumption
- Compilation on Intel Quartus pro using Power Analyzer Tool
- Use of post fit simulation to simulate toggle rate data in QuestaSim
- Export of vcd file to Quartus Power Analyzer
- Estimation of power based on real toggle rate and temperature

Compilation/simulation time compared to occupancy in Random Pattern Generators at 650MHz

October 14th 2021 LHCb - PCie400 Board 10

Simulation Method:

- Incremental scripts, Up to 16 % occupancy at 3 frequencies
- Temperature measured on devkit is an additionnal input to improve power analysis

- Simulation 500MHz
 Regression 500MHz
 Simulation 650MHz
 Regression 650MHz
 Simulation 800MHz
 Regression 800MHz
 - Linear
 - Occupancy can be reduced to get lower simulation time
 - → Regression : for 90 %, Max Current on Vcc ~161A at 650MHz

Simulation vs Measurement extrapolations

- Simulation are not accurate if FPGA junction tempereture isn't an input
- As Power increases temperature increases

Comparison Between VCC Current estimation based on Simulation or Measurement at 650MHz

Agilex Power Tree

Agilex FPGA requires:

- 11 Regulators / 24 rails
- Power On Sequencer (3 groups)
- Low ripple voltage / High accuracy (0,5%)

High Power regulators characteristics:

- Digital Power Management (PMBus, Voltage/ Current/Temperature Telemetry)
- Analog Devices (ex Linear) µmodules chosen
 - Low Surface
 - Easy to simulate & implement
 - Expensive but easy to find

12V DC input

12V DC input

Auxiliary

Conclusion

A lot of uncertainty for component procurement

- Many critical components are already ordered
- Producing prototypes in 2023 will be challenging

Challenges to come

- High component density
- Power Integrity
- Thermal studies
- Signal integrity (56Gbits/s signals)
- Will become a multi laboratory project

Backup

Increasing the individual link speed

Above 25 Gbits/s FPGAs use PAM4 instead of NRZ

Multi-level signaling

- More speed with constant bandwidth
- Data rate commonly found: 28 or 56 Gbits/s

Feasibility of serializer in HEP

- Research papers show that 40 Gbits is theorically possible with 65nM technologies
- Future developments could be in 28 nM

October 14th 2021 LHCb - PCie400 Board 16

Evolution of high speed links at CERN (1/2)

R&D on experimental technologies

WG6 : high speed links
 https://espace.cern.ch/ep-rdet-wg6-links/Shared%20Documents/WP6_Report_v1.03_19102018.pdf

Evolution of high speed links at CERN (2/2)

Data aggregation

