

Journées des Métiers de l'Electronique de l'IN2P3 et de l'IRFU 13/10/2021

Shunt Regulator in TJ180 technology

A. Habib, M. Barbero, P. Barrillon, S. Bhat, T. Kugasathan, P. Pangaud, H. Pernegger, W. Snoeys

habib@cppm.in2p3.fr

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

Motivation for serial powering?

Parallel Powering Scheme

- Relatively high power losses in cables (around 80% losses in the present ATLAS pixel detector ^[1])
- A need for large cables which goes against material budget reduction

Serial Powering Scheme

- Increases power efficiency and reduces material budget
- As CMOS electronics are designed to work under a constant voltage, a shunt regulator is needed.

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

General architecture

- One common shunt regulator takes in the input current I_0 and produces a regulated input voltage V_{in} (2 V)
- \cdot V_{in} is regulated a second round by a voltage LDO regulator
- The regulated output voltages (1.8 V) can be separated in different domains for better noise immunity

Modular structure

- It was decided to design the regulator in a modular structure.
- Each module can handle a fraction of the input current (10 mA in the present design)
 - Better power distribution across a large chip
 - Less power density → Easier cooling
 - Flexible and scalable design

Module architecture

Design was developed with a valuable help from W. Snoeys

Test Chip in TJ180 nm

- Test chip designed to power a chip requiring 1.26 A (Spec estimated for a large monolithic pixel CPPM detector)
- The shunt regulator is composed of 126 modules (each handling 10 mA) grouped into separate domains:
 - Analog (40 modules), Digital (50 modules), LVDS (30 modules), Charge Pump (6 modules)
- Each module is designed to handle an input current of 10mA nominally
- Two separate shunt regulators were added to polarize the Pwel and Psub of the pixel matrix

One module lout = 10 mA

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

Characterization Results

- Regulation <1% with a constant drop-out of 200 mV
- Modules consumption can be adapted to the load

Main Domain Regulator (126 modules)

Without cooling

At 2A of input current, the chip consumes 4W. The chip dimension is 3,97 mm x 1,88 mm

→ Power density = 54 W/cm²

Cooling with Peltier device in a climatic chamber

Serial powering 2 boards in series

* In lab tests were done without cooling, and current was limited to 0.5 A

Transient test

A current step of 100 mA was drawn from the digital regulator for 500 ms using an active load Iin = 400 mA, slew rate (max) = $5 \text{ A/}\mu\text{s}$

Iin = 400 mA, slew rate (max) = 5 A/ μ s Off-chip cap = 10 μ F is used for Vin, Vout and Vref

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

Irradiation Tests

Xray machine at IM2NP

- 20 kV, 20 mA

- Dose rate: 15 krad/min

- Total Dose: 125 Mrad

Chip powered @

- 10 mA (single module)
- 200 mA (Main Domain)

At room temperature

Voltage monitoring

Linear fit:

- Vin_MAIN: 0.7 mV/Mrad
- Vin_PWELL: 0.6 mV/MRad

Bandgap effect

→ The output voltage variation is mainly due to the bandgap reference variation

 $Vout \propto Vref$

→ Intrinsic variation of the regulator output < 1%

By design

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

Tests with Mini-MALTA @ CERN

Tests carried out with the help of F. Piro

Shunt:

VDD_ANA = 1.8V VDD_DIGI = 1.8V Pwell = -2 V Psub = -2

Note:

Pwell and Psub voltages are generated by the same regulator 'Pwell' shifted by -2 V WRT the Main Domain

- Motivation for serial powering
- General architecture and design approach
- Characterization results
- Irradiation results
- Test results with Mini-Malta
- Summary

Summary

- Serial powering increases power efficiency and reduces material budget, an important factor for large detectors such as ATLAS ITK
- A shunt regulator was developed in TJ180 technology, in a modular structure that can be arranged in many separate power domains
- Electrical characterization measurement shows a response similar to that of simulations with a regulation within 1% for the full range of load values.
- The regulator was tested successfully in serial mode.
- The test chip was irradiatied up to 125 Mrad, and the results show a deviation of Vin of about 0.6 mV/Mrad which was found to be mainly due to bandgap variation. The regulator intrinsic variation WRT to radiation is <1%
- The Mini-Malta chip was operated with the shunt regulator, and measurements show no degradation of noise or threshold dispersion, with respect to the default powering settings.

Backup

Modeling and simulation

Transient response to a current pulse of 1 mA

$$\frac{V_{out}}{I_{load}} = -R_0 \frac{\left[1 + \frac{s}{z_1}\right]}{1 + 2\zeta \frac{s}{\omega_0} + \frac{s^2}{\omega_0}}$$

The regulator is designed to be stable for all output capacitance values, but it best operates with an off-chip relatively large capacitor

Serial Powering 4 boards in series: B1, B2, B3, B4

WRT a relative ground

A single module

Main domain

Regulators in parallel

Current distribution is sensitive to setup asymmetries in parallel configuration

Deliberately introducing a mismatch of 100 $\text{m}\Omega$

Iin 100 $m\Omega$ Ω V_1 Io R_{G} **VG_shunt**

Rg is implemented with a thin metal layer 0.5 μm wide; Resistivity = 80 m Ω / \Box Module = 100 μm x 200 μm Rg \approx 10 Ω /module

Iout

Parallel powering

Initial simulations show that a decrease by a factor of 10 of Rg should be sufficient 0.5 µm width → 5 µm width

Sensor Bias

Sensor bias cannot be a contact voltage. It remain constant with respect to the module's relative ground

Shifted Regulators

• Idea: shifting the floating ground of Pwell and Psub regulators with respect to Module regulator

Analytic study to remove Vref contribution

Vin = Vin - x Vay

Bandgap

Bandgap was designed to have a nominal value of 1 V and a few calibration points for voltage adjustments.

Measurements show that

- Nominal voltage= 858 mV
- When all points of calibration shorted → Vout = 953 mV

Calibration points

Iout = $3.6 \mu A$

Rout = 270 $k\Omega$