

Frederic Morel (Presented by Thanh Hung PHAM) on behalf of IPHC-IKF-GSI collaboration

The Compressed Baryonic Matter experiment @ FAIR

- Explore phase diagram at region of highest net-baryon density
- Fix target
- Beam start is schedule for end 2024

April 2021

Micro Vertex Detector

- Aim for high collision rate capability
 - 🄄 100 kHz Au+Au @ 11 AGeV
 - 🄄 10 GHz p+Au @ 30 AGeV
- Aim to contribute to tracking
 - ✤ 4 planar detector stations
- Aim for good sec. vertex resolution
 - ✤ Operate in target vacuum
 - ✤ First station 5 cm from target (in vertexing configuration)
 - \checkmark ~ 5 μ m resolution
 - ✤ Thin stations
 - ~ 0.3 % X₀ (first station)
 - ~ 0.5 % X₀ (other stations)
- Sensor must handle occupancy gradients in space
- Sensor must handle beam fluctuations in time

MIMOSIS Requirements

	Requirement
Spatial resolution	~5 µm
Time resolution Triggerless without dead-time	~5 µs
Sensor thickness	~50 µm
Radiation length	~ 0.3 % X_0 (first station) ~ 0.5 % X_0 (other stations)
Power dissipation	<100 - 200 mW/cm ²
Operation temperature	- 40°C to +30°C
Temperature gradient on sensor	5 K
Radiation* (non-ionizing)	~ 7x10 ¹³ n _{eq} /cm²
Radiation* (ionizing)	~ 5 Mrad
Radiation gradient on chip	100%
Heavy lons-tolerance	10 Hz/mm ²
Rate (average/50 µs peak)	200/800 kHz/mm ²

* No safety factor

10/8/2021

MIMOSIS diagram

- Matrix dimension: 1024 col. X 504 row
- Pixel dimension: 26.88 μm (height) x 30.24 μm (width)
- Integration time: 5 μs
- Tower Semiconductor 180 nm
- 4 sub-arrays for threshold adjustment
- MIMOSIS chip family:

STAGE	PERIOD	SPECIFICATION
MIMOSIS-0	2018	 → Small size prototype, part of MIMOSIS-1 → Testing/optimization of analogue readout chain → No data buffer structure
MIMOSIS-1	2020- 2021	 → 1st full-scale prototype → Fabricated with 9 x CE18 (64x64 pixels) for optimization of in-pixel circuitry → Elastic buffer implemented for high-rate data handling → Removal of double frame counting → SEE hardened by TMR/Hamming design → Tested on beam in June 2021
MIMOSIS-2	2021- 2022	 → Clusterization integrated on chip periphery → Full triplicated clock trees to enhanced the SEE hardness → Design tuned basing on CE18 and MIMOSIS-1 test results
MIMOSIS-3	2023	→ Final sensor

Roma Bugiel@TWEPP 2021

Charge collection

Tower Semiconductor 180 nm

- ✤ 4 process variants and various epi layer thickness
- ✤ Optimize charge collection
 - efficiency after irradiation
- Based on the experience accumulated with ALPIDE and MALTA/MONOPIX

Goals:

- Increase depletion region with a small collection diode
- Avoid charge traps due to low lateral electric field on the edges
- Additional degree of freedom for MIMOSIS:
 - AC coupled pixels to increase collection diode voltage

Study of the depletion depth in a frontside biased CMOS pixel sensors J. Heymes https://doi.org/10.1088/1748-0221/14/01/P01018

Monolithic CMOS sensors with a small collection electrode Seminar by M. Munker at Royal Holloway University of London (2019)

- 2 versions of sensing part evaluated:
 - ✤ DC or AC coupled
 - Polarization of the collecting diode to ~10-20 V in AC
 - Variants are in MIMOSIS0 and MIMOSIS1 prototype
- Amplification:
 - Similar to ALPIDE
 - Non linear and with clipping technique
- In-pixel Memory:
 - Dual ports for triggerless framing (5 μs)
 - One to write the hit (current frame)
 - One to read the hit (previous frame)
 - ✤ Avoid multiple counting
 - For impact which spread over several capture windows
 - High density full custom block
- Amplifier and sensing part tested in MIMOSIS0

M. Deveaux NIM A 958 (2020) 162653

Pixel

Matrix readout

- Priority Encoders Functions:
 - ♥ Give the address of the hit pixel with the highest priority
 - ✤ Aim the pixel reset signal to the selected pixel
- 2 levels of priority encoders to read a Region:
 - ✤ Pixel level
 - inside the pixel array to read 2 columns of 504 pixels
 - ✤ Region level
 - at the bottom of the pixel array to read 8 Pixel level Priority encoders
- Characteristics:
 - ✤ Reading is done at 20 MHz (100 pixels/frame/region)
 - ~3 MHz/mm² \rightarrow 1 MHz/mm² (hit multiplicity of 3) > 800 kHz/mm²

Bottom periphery readout

Function:

- ↔ Averaging the data fluctuations over the pixel array (gradient in space)
- ♦ Averaging the data fluctuations in time (beam fluctuations)
- ✤ Works like a funnel for the data
 - 20.48 Gb/s (16 bits x 64 regions @ 20 MHz spread over ~3 cm)
 - 2.56 Gb/s (8 serial links @ 320 Mb/s spread over ~3 mm)
- 3 levels of dual port memories
 - ✤ 64 Regions and 16 Super-Region (for space averaging)
 - Write frame N in parallel @ low speed
 - Read frame N-1 in serial @ high speed
 - No data loss between matrix readout and Super-Region
 - ✤ 1 elastic buffer (for time averaging)
 - Works like a circular buffer
 - Write speed 10.24 Gb/s > Read speed 2.56 Gb/s (for 8 links)
 - Configurable number of serial links (8,4,2 or 1)
 - Can store 3 x nominal beam during 50 μs

Multi-chips synchronization

No trigger available

- Need a mechanism to synchronize several chips for common base time
- All the clocks derive from the 320 MHz clock from the PLL
 - Synchronisation pad (SYNC_IN) acts like a reset for the clock generator

Principle

- Synchronisation signal is latched 2 times
 - With external 40 MHz clock
 - With 320 MHz clock from the PLL
- Timing constraints for the synchronisation signal over several chips is relax to the 40 MHz clock

Power consumption

padring

analogue

- Well below the requirements:
 - ~50 mW/cm² (for whole chip surface) \mathcal{C}
 - To be confirmed by measurement P
- Dominated by:
 - The number of hits for the bottom periphery P
 - The number of outputs in the padring P
- Voltage drop will be mitigate in next submission

Testability and SEE mitigation

Several levels of testability

- ✤ Pixel level
 - Analogue and digital pulsing over the whole matrix
 - Output of the amplifier and comparator of the first row is accessible
- ✤ Region level
 - Generates data over several frames for each region
- Serializer level
 - Serialize a 128 bits words over the 8 serializer

- Single Event Effect mitigation*
 - All FSM are triplicated
 - All configuration registers use a self corrected hamming register
 - ♥ Partial triplication of clock and reset trees
 - Full trees in next submission
 - ♥ Only a CRC check for data corruption
 - ♥ Classic latchup protection

*Y.ZHao PoS(TWEPP2019)131

Preliminary Results DC pixel

- Matrix B (DC pixels 24 regions)
 - Vsub=-1 V P
 - Threshold scan obtain through charge injection P
 - Preliminary conversion factor (mV/e-) P
 - 25 % of precision
 - **Exemplary Results:** P
 - Pixel noise: ~3.4 e- ENC
 - Threshold: ~150 e- ENC
 - FPN: ~10 e- ENC

matrix B - PIXEL THRESHOLD

Preliminary Results AC pixels

- Matrix C (AC pixels 24 regions)
 - ♥ Vsub=-1 V, Diode pol.=10 V
 - Streshold scan obtain through charge injection
 - ✤ Preliminary conversion factor (mV/e-)
 - 25 % of precision
 - Semilary Results:
 - Pixel noise: ~2.8 e- ENC
 - Threshold: ~150 e- ENC
 - FPN: ~10 e- ENC

matrix C - PIXEL THRESHOLD

matrix C - PIXEL THRESHOLD

Beam Test results

TEST BEAM – JUNE 2021

- First MIMOSIS1 test beam in June 2021
 - at DESY
 - ~30 M tracks collected (1.2 M analysed)
 - 182 beam runs + 82 noise runs
 - 4.7 TB of data
- 6 detector planes in stack
 - 15 mm distance between planes
 - 2 DUTs in the middle
- 3 different epi layers tested \rightarrow standard, n-gap, p-implant
- Various settings:
 - All submatrices (DC and AC pixels)
 - Operating threshold range: 100-200 e
 - Back bias: -1 V, -2 V, -3 V
 - HV for AC pixels: 3 V, 7 V, 10 V
 - Beam energy: 3 GeV, 5 GeV

Beam Test results

DETECTION EFFICIENCY

- Excellent efficiency: for most measurements > 99.9% observed In wide threshold range (tested up to ~500e
- Homogeneous efficiency over whole matrix

CLUSTER SIZE STUDIES

- · Mean cluster size for DC pixels on modified epi (p-implant): 1.6 @ 120e Slightly smaller for AC pixels (1.4 @ 120e)
- · Mean cluster size drops with increasing threshold as anticipated
- · Dominant fraction of 1-pixel clusters: • 1-pixel → > 55 % • 2-pixel → < 40 %
 - >= 3-pixel → < 10 %

in-pixel hit

distribution shown

→ 4 pixels on plot

marked symbolically

· center of electrodes

for < 150 e threshold

37508 Entries

0.7915

All a loss in a second second

20000

CLUSTER SIZE

Mean Std Dev Underflow 1.569

Overflow

CLUSTER SIZE - % in data sample

1-pixel

2-pixel

3-pixel

4-pixel

 $V_{SUB} = -3V$

p-implant, 60um

mat B, DC pixe

SPATIAL RESOLUTION (AVERAGED OVER CLUSTER SIZE)

- Hit position \rightarrow COG
- Pixel dimensions in U (~26.9 μm) and in V (~30.2 μm)
- Binary resolution: ~ 7.8 (U) / 8.3 (V) μm
- Mean cluster size > 1 → better resolution performance than binary assumption
- Overall satisfying as for preliminary results for spatial ~resolution (as expected from ALPIDE)
 - p-implant epi results shown \rightarrow n-gap very similar performance \rightarrow in range of 5-7.5 µm depending on DC/AC pixel type
 - Standard epi ~ 1 μ m better spatial resolution \rightarrow larger cluster size observed

CLUSTER SIZE vs THRESHOLD

• Mean cluster size for n-stop and p-implant epi:

- $1.8 2.6 \rightarrow DC$
- Standard epi \rightarrow significantly larger cluster size \rightarrow better resolution expected

 $1.5 - 2.1 \rightarrow AC$

• AC pixels \rightarrow smaller cluster size \rightarrow larger depletion (HV = 10 V)

Roma Bugiel@TWEPP 2021

mat C. AC pixels

V_{SUB} = -3V (solid)

V_{SUB} = -1V (dash)

HV = 10V

standard epi

n-gap

p-implant

threshold [e]

- MIMOSIS1 is the first full scale prototype for the MVD
 - ♥ High peak rate to handle occupancy gradients and beam fluctuations
 - ✤ Triggerless without dead time
 - ✤ Ultra low power MAPS
 - Single Event Effect hardened for Heavy Ions (fix target)
 - ✤ Early results seem promising
 - Sucessfully tested on beam in June 2021 with promising results concerning efficientcy, resolution.
- Next steps:
 - Pursue beam tests
 - Study impact on X-rays & neutron irradiation
 - Submission of MIMOSIS2 this winter 2021
 - Add more features (on-chip clusterization, clock triplication), fix few bugs
 - Focus on promising pixels and processes

