

RD53 chip progress

Pierre Barrillon, Denis Fougeron, Eva Joly, Mohsine Menouni, Thomas Strebler

CPPM - Aix-Marseille Univ, France

Journées des Métiers de l'Electronique de l'IN2P3 et de l'IRFU 12-14 octobre 2021

- RD53 project
- RD53 chip architecture
- RD53B-ATLAS testing
- Radiation hardness
 - -TID testing
 - -SEU strategy and testing
- Summary and Conclusion

RD53 project

- 24 collaborating institutes ~20 designers
- Design and develop pixel chips for ATLAS/CMS phase 2 upgrades
- Extremely challenging requirements for HL-LHC
 - Hit rates: 3 GHz/cm², Small pixels: 50 x 50 μ m²
 - Radiation : 500 Mrad 10¹⁶ neq/cm² over 5 years
- Technology : 65nm CMOS

RD53A Size: 20 x 11.5 mm² submitted in August 2017

RD53B-ATLAS (ITkPix_V1) size: 20 x 21 mm² submitted in March 2020

RD53B-CMS (CROC_V1) size: 21.6 x 18.6 mm² Submitted in May 2021

- RD53A chip
 - Large scale demonstrator
 - Submitted in August 2017
 - Tested in an intense way
- RD53B chip
 - ITkPixV1 (ATLAS chip) submitted March
 2020 and received June 2020
 - High digital current because of an issue in the ToT (Time Over Threshold) latches
 - All the tested functionalities are working as expected
 - The issue was solved by a patch in metal layers : ITkPixV1.1
 - CROC_V1 (CMS chip) received from the foundry the end of August 2021
 - Diced chips will be available soon for testing

RD53B Floorplan

- analog and mixed/signals building block for Calibration, Bias, Monitoring and Clock/Data Recovery (CDR)
- Digital Chip Bottom (DCB):
 - synthesized digital logic
- Pad frame
 - I/O blocks with ESD protections, ShuntLDO for serial powering
 - Readout via serial links (1-4 x1.28Gbit/s) using Aurora64/66 encoding

<u>Pixel array</u>

- 384 x 400 pixels of 50 x 50 μm²
- 153 600 pixels organized in 2400 identical cores

Pixel : 50 µm×50 µm

- 1 core \rightarrow 16 analog islands
- 4 fronts ends per island
- Analog FE are embedded in a flat digital synthesized "sea"
- Time Over Threshold (ToT) digitization
- Shared Pixel Region buffer : Hit storage during Trigger latency

Octobre14, 2021

RD53 chip design and test progress

Octobre14, 2021

RD53 chip design and test progress

Radiation Hardness

RD53 TID test activities

- Extensive radiation campaigns (since 2015) have been carried out to test and qualify :
 - CMOS 65 nm devices, Prototypes of IPs and Front-ends, DRAD test chip to study TID effects on standard cells
- Rules followed in RD53 chip
 - Avoid minimum size digital cells and use large area devices for the analog
 - RD53 chips are designed to meet specifications at 500 Mrad when operating at low temperature (-15 °C)
 - The chip should be maintained powered off during shut down (room temperature)
- RD53 collaboration treats radiation damage as one of the IC design corners
 - 100 Mrad, 200 Mrad and 500 Mrad simulation
 @ -30°C, 0°C, 25°C models were used to simulate the TID effect on analog and digital designs
- Multiple irradiation campaigns for the RD53A/B chip were done at low temperature (-10 to -20 °C)
 - X-ray machine for high and low dose rate irradiation
 - 60 Co for low dose rate irradiation
 - Kr-85 sources for low dose rate irradiation at -15°C (550 Mrad reached in almost 3 years)

- IJCLab-CPPM collaboration for the ITkPixV1 TID testing at low temperature
 - Xray machine
 - High dose rate and low temperature
 - Voltage monitoring variation and effects on the ring oscillators delay

Denis Fougeron presentation in this meeting

TID test results

- The TID tests were conducted in strong collaboration IJCLab/CPPM
 - The temperature is well controlled and stable around -8°C
 - The chip ITkPixV1 in LDO mode
 - VDDD and VDDA generated inside the chip
 - Dose rate of 1.2 Mrad/hour
 - Tested up to 650 Mrad
 - Drift of VDDD/VDDA due to the reference voltages
 VREFA/VFEFD shift
- On chip Ring Oscillators
 - Designed by IJCLab and used intensively for dose monitoring
 - Absolute VDDD correction applied using Freq vs VDDD slopes
 - Increase for strength 0 gates up to 45%
 - Not used in the chip
 - Increase for strength 4 up to 28%
 - The results obtained are compatible with those obtained by other institutes

Yahya Khwaira (IJCLab): RD53 test meeting

Denis Fougeron presentation in this meeting

TID test results

Analog FE irradiation

- ITkPixV1 is operational up to 1 Grad even for VDDA=1.0 V
- Number of failed pixels <5% for most parameter settings
- Low Dose Rate effect
 - Impact of low dose rate effects studied for low total doses in X-ray setups
 - Assuming optimistic extrapolation effect

Damage increases for low dose rate by a factor 2-3

- Additional low dose rate effects observed in LDR irradiations using Kr-85 at high total doses Longest running
 - RD53A chip: 3 years!
 - Results of low dose rate irradiation up to
 550 Mrad
 - The extrapolation from high dose rate to low dose is not obvious

Chip SN: 0x0798 RD53A 350 Delay [%] Kr-85, dose rate 25 krad/h 300 CLK 0 Inv 0 NAND 0 NOR 0 250 CLK 4 Inv 4 NAND 4 NOR 4 Vorm Gate 200 150 100 50 0 200 400 600 800 1000 TID [Mrad]

Ring Oscillator	550 Mrad
CLK 4	32%
CLK 0	290 %
INV 4	41%
INV 0	328%
NAND 4	25 %
NAND 0	108%
NOR 4	34%
NOR 0	<mark>86</mark> %

Octobre14, 2021

SEU mitigation in the RD53B chip

- Single Event Effects (SEE) are a major challenge for the RD53B chip design:
 - Should work reliably in an extremely hostile radiation environment
- Triple Modular Redundancy (TMR) associated to the SET mitigation with clock spread is used in the Digital Chip Bottom to reduce the SEU rate in the RD53B
 - Area and power consumption increase
 - Not compatible with the required small pixel size and the power dissipation constraints
- Mitigation of SEU concerns only the critical parts as the configuration memories, state machines, FiFo pointers ...
- Data Paths are not protected
- 50% of the DFFs in the chip bottom are protected
- All the reset signals are synchronous (avoid a global glitch effects caused by SET)
- TMR is implemented during synthesis
 - Simple FF replacement with TMR version
 - TMR flip-flops are constrained to be placed with
 15 μm distance

Cells Spacing in the same TMR latch

Octobre14, 2021

RD53 chip design and test progress

SEU Tests campaigns

- Centre de Ressources du Cyclotron (CRC) Louvain la Neuve
 - Two SEU test beam campaigns: October 8, 2020 and November 17, 2020
 - The chip irradiated in vacuum with several heavy ions flavours (1.3 to 62.5 MeV.cm²/mg)
- TRIUMF facility
 - SEU tests campaign done remotely December 19-20
 2020
 - 480 MeV proton beam
 - The chip tested under a proton flux of 1.5 10⁹ p/cm²/s similar to the hadron flux in the HL-LHC
- GANIL Caen
 - SEU campaign in April 2021 and dedicated for CDR/PLL
 - Test done with only 1 ion : ¹²⁹Xe : LET = 30 MeV.cm²/mg
- KU Leuven-Campus Geel (PULSCAN)
 - Laser SEU testing October 5, 2021
 - 2 photon absorption
 - Backside pulse injection
 - Pulse energy applied: 1 nJ
 - Pulse frequency: 1 KHz

The flux = $1.5 \ 10^9 \ p/cm^2/s$

Configuration memories tests

- Pixel memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - Unprotected latch used for 2 bits
 - TMR without correction used for 6 bits
- Unprotected latch cross section $\sigma = 1.5 \times 10^{-14} \text{ cm}^2$
- Pixel TMR latch cross section increases with the fluence because of errors accumulation
 - The TMR is 100 times tolerant than the unprotected latch for low proton fluence $(^{5} \times 10^{10} \text{ p/cm}^{2})$,
 - TMR is only 10 times tolerant than the unprotected latch for moderate proton fluence (~1.0 × 10¹² p/cm²)
 - TMR without correction is useful when considering a regular external re-configuration
- Global configuration : ~3 Kbit in total where a half is reserved only for tests
 - TMR with correction
 - $\sigma = 3.6 \times 10^{-17} \text{ cm}^2$
 - The tolerance is **improved** by a **factor 400**

- Tests were done with
 - CDR mode : serializer and command clocks are provided by on-chip CDR
 - Bypass mode : both clocks are provided externally
- In PLL mode, synchronization issues with the BDAQ readout system have been identified

HL-LHC SEU rate estimation

Table 1. HL-LHC environment : Atlas pixel detector SEU error rate estimation.

					Pixel Conf.	Pixel Conf.	Global Conf.
Layer	Location	${ m R}$ (cm)	Z (cm)	$\begin{array}{c} \text{SEE-Flux} \\ (cm^{-2}.s^{-1}) \end{array}$	Unpr. latch (flip/FE)	TMR latch [*] (flip/FE)	TMR w/corr (flip/FE/hour)
0 2 4	L0 rings L2 rings Outer Endcap	$3.6 \\ 15.6 \\ 274.6$	114 286 286	$\begin{array}{c} 1.0 \times 10^9 \\ 0.82 \times 10^8 \\ 0.35 \times 10^8 \end{array}$	230 19 8	7 0.095 0.022	$\begin{array}{c} 0.2 \\ 1.7 imes 10^{-2} \\ 7.2 imes 10^{-3} \end{array}$

*Based on external re-configuration time interval of 50 seconds

CDR testing at GANIL

- Scope trigger : CDR clock rising edge "moves" from the low level of the ref clock to the high level
- Short event (<14µs) : already
- Long events (>14µs) showing a shift of phase and frequency
 - Not observed when testing the CDR prototype

Octobre14, 2021

RD53 chip design and test progress

Laser SEU testing

- Laser energy: 1 nJ
- Only short events were observed when shooting in the CDR or VCO blocks
- Shooting green bordered area in VCO stages caused just small phase shifts of the serializer clock
- Compatible with the group of short events seen in GANIL

- Laser energy: 1 nJ
- Shooting in core bandgap and monitoring VREF_A
- Shooting some specific transistors showed sensitive behavior
- VREF_A jumps in range of [20 us, 30 us]
 - Explains the long events observed in GANIL

Summary and Conclusion

RD53 Radiation hardness

- TID tests done at low temperature (-20°C) and high dose rate show that the RD53B chip is operating correctly up to 1 Grad
- Tests at **low dose rate** are in progress
- SEU tests were done with high LET ions and 480 MeV proton beam
 - The chip is working correctly without need of resetting or power cycling
 - No issue observed with the state machines and critical paths and No latch-up or chip-stuck observed
 - The global memory based in TMR with correction is quite tolerant to SEU
 - The pixel memory needs to be refreshed at regular intervals
- Future tests
 - Tests in a real working conditions, high trigger rate and high hit rate
 - Test of the communication and the effect of the CDR SEU on the whole chip
- RD53C chip
- **ITkPixV2 chip** will be submitted March 2022 and the tests finalized the end of 2022
- **CROC_V2 chip** will be submitted June 2022 and the tests finalized the end of Q1-2023
- Fixing of known bugs, verifications and simulations are currently in progress

Backup Slides

Fluence of Hadrons > 20 MeV (4000 fb-1)

TID effects on the 65 nm CMOS process

- Irradiation damage depends on several parameters : device geometry, bias, temperature, dose rate ...
- All these parameters must be taken into account in the design to ensure correct operation in the HL-LHC environment.
- Size : Short and Narrow transistors are affected by RISCE and RINCE. Strong degradation of "Digital" devices
- Temperature : Strongly depends on temperature during irradiation and bias conditions of the devices
 Less damage for the NMOS and PMOS device when Irradiation is done at low temperature (-20 °C)
- Bias : More damage for the worst case bias : VGS=VDS=1.2 V (diode connected)
- Leakage current : For this 65nm process, the increase of the leakage current is very limited
 - In general, the enclosed layout is not needed

SEU mitigation in the RD53B chip

Chip Configuration

- Pixel configuration
 - Memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - Unprotected latch (single latch) used for 2 bits
 - TMR latch without error correction implemented for 6 bits
 - The small pixel area does not allow to implement the auto correction
- Global configuration
 - Memory size : 1.6 Kbit
 - Located in the Digital Chip Bottom
 - TMR with clock skew and error correction
- The configuration registers (global and pixel) do not have a reset
 - A re-configuration step is necessary to put them in a right state

TMR with correction

- TMR with clock skew
- **ΔT is set to 200 ps**
- Filter SET glitches shorter than 200 ps
- Implementation Challenges :
 - Triplicated clock skews made by clock tree synthesis
 - Timing closure (hold time)
 - Delay variation with process, power supply, temperature and TID

SET Analysis

- SET test structures implemented in the chip
 - Measurement of pulse width > 70 ps with a resolution of 30 ps
- NOR gate: SET pulse width : **70 ps < PW < 220 ps**
- RD53B chip
 - The structure using temporal mitigation is implemented in RD53B
 - This work helped to set the optimal value for the delay

Pixel Configuration

Bits	Name	Description
[0]	Enable	Include the pixel in the DAQ data path
[1]	Cal Enable	Turn on charge injection (*)
[2]	HitOr Enable	Add the pixel to its wired OR core col. hit line
[3:6]	TDAC value	Value for in-pixel theshold trim DAC
[7]	TDAC sign	Selects differential branch set to TDAC value

Configuration memories tests

- Pixel memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - TMR without error correction implemented for 6 bits
 - Unprotected latch used for 2 bits
- Global memory size : ~3 Kbit in total (209 global registers)
 - TMR with correction
- Unprotected latch :
 - Saturation cross section : $\sigma_{SAT} = 6.0 \times 10^{-8} \text{ cm}^2$
 - Threshold LET LET_{th} < 1 MeV.cm²/mg
- TMR latch (no correction)
 - For a particle fluence of 2.0 × 10⁵ p/cm², the saturation cross section is improved by a factor 10
 - The TMR w/o correction is very efficient for mitigation for low error rate
 - The cross section increases with fluence because of errors accumulation
- Tests were done with:
 - PLL mode : serializer and command clocks are provided by onchip CDR
 - Bypass mode : both clocks are provided externally
- In PLL mode, synchronization issues with the BDAQ readout system have been identified

calculation for 200 MeV proton

based on heavy ion testing

Experimental value

480 MeV proton test

Global configuration results

- Long duration global register run
 - Duration : 10h30 , Total fluency : 7.2 × 10¹³ p/cm²
 - SEU number : 8
- Slow increase of V_{IND} from 1.7 V to 2 V
- The internal V_{DDD} decrease limited to 8% (1.2 V to 1.1V)
- The run Stopped because of a power supply issue
 - Supply was placed inside the beam area
- The TMR with correction show a gain of ~ 400 regarding the unprotected latch
- Global Registers seem to be very tolerant to SEU
- Results are compatible with what expected from heavy ion testing

	Unprotected latch	Global Register
	cross section	cross section
	(cm²)	(cm²)
calculation for 200 MeV proton based on heavy ion testing	8.6×10 ⁻¹⁵	7.9×10 ⁻¹⁷
Experimental value 480 MeV proton test	1.5×10 ⁻¹⁴	3.6 ×10 ⁻¹⁷

Layer	Location	R (cm)	Z(cm)	SEE-Fluence (cm ⁻²) Hadrons> 20 MeV	SEE-Flux (cm ⁻² .s ⁻¹) Hadrons> 20 MeV	Pixel configuration Unprotected latch	Global Configuration Mean time between errors (per FE chip)
0	L0 rings	3.6	114	3.26×10^{16}	$1.0 imes 10^9$	4.6 SEU/sec	5 hours
2	L2 rings	15.6	286	$\textbf{2.66}\times\textbf{10}^{\textbf{15}}$	$0.82 imes 10^8$	0.38 SEU/sec	58 hours
4	Outer Endcap	274.6	286	$1.14 imes10^{15}$	0.35×10^8	0.16 SEU/sec	138 hours

Octobre14, 2021

RD53 chip design and test progress

Digital scan

- Standard procedure of digital scan:
 - 100 digital injections per pixel
- For the digital scan test, Individual pixels can show bigger/lower amount of hits
- This concern clusters of 4 pixels
 - It is due to SEU in the digital part of the pixel
 - This is explained by the digital architecture organized by regions of 4 pixels
 - Fired pixels in the same cluster varies between 1 and 4
 - SET or SEU on the common logic to these 4 pixels results as if 1,2,3 or 4 pixels were touched at the same time

(Injection and readout is always done separately in pixels border with blue and read)

Tests were done with:

1

- PLL mode : serializer and command clocks are provided by on-chip CDR
- Bypass mode : both clocks are provided externally
- In PLL mode, **synchronization issues** with the BDAQ readout system have been identified
 - Map where missing hits are not random
- SEU tests of the CDR/PLL block of the RD53B chip are in progress

Example of phase shift

mp4 video showing an example of a saved SEU Event - Duration = $20 \ \mu s$

Two photon optical absorption

Charge density distribution

- Carriers are highly concentrated in the *high irradiance region* near the focus of the beam
- Carriers can be *injected at any depth* in the semiconductor material
- **backside illumination**

Two photon Silicon excitation

RD53B data flow

- Data flow architecture
 - Hits are stored as Time-over-Threshold, associated to a time stamp
 - 6-bitToT counter, but only 4 bits are stored and read-out
 - Each pixel has 8x4-bit ToT memories
 - Support of 6-to-4 ToT mapping (dual slope)
 - Selectable counting clock: 40 MHz or 80 MHz
 - The time stamp memories shared among 4 pixels of the same 4x1 Pixel Region
 - Token-based readout of hits, organized in Core Columns
- Multiple levels of data processing, event building, buffering and formatting before final readout via serial links
- Command, control and timing are provided by a single 160Mbit/s differential control link, driving up to 15 chips (4 bit addressing)
- CDR/PLL recovers Data and Clock
- Readout via serial links (1-4 x1.28Gbit/s) using Aurora64/66 encoding
- Multi-Chip Data Merging available for low-rate outer pixel layers: one chip of the module can be configured as "primary" to aggregate serial data from one or more other "secondary" chips and merge them with its own output