

Institute of Research into the Fundamental Laws of the Universe

DEDIP

Novel Low-Power Multichannel Timeto-Digital Converter for the CMS High Granularity Calorimeter

Florent BOUYJOU

with material from HGCAL FE electronics working group and IRFU CMS group

13/10/2021

HL-LHC necessitates upgrades to the CMS detector

Experimental challenges

- inst. luminosity
- detector irradiation
- · pile-up interactions

<u>LHC</u>

HL-LHC

2 x 10³⁴ s⁻¹ cm⁻² O(10¹⁴ neq/cm²) up to 7.5 x 10³⁴ s⁻¹ cm⁻² >O(10¹⁵ neq/cm²) 140-200

General mitigation strategy

- · improved trigger & computing
- radiation-tolerant sensors & electronics
- timing and increased granularity

HGCAL: where highly granular calorimetry comes to life at the energy frontier

- Silicon as sensitive material in high radiation region, scintillator+SiPMs elsewhere.
- 3D energy & time measurement of particle showers.

Hexagonal **silicon sensor** based modules in CE-E and high radiation regions of CE-H. **Scintillating tiles** with on-tile SiPM readout in low-radiation regions of the CE-H.

Area: 1000 m², 6 M Channels @ -30 ° C

HGCAL = Imaging calorimeter

HGCROC3 overview

Overall chip divided in two symmetrical parts

- 1 half is made of:
- 39 channels: 18 ch, CM0, Calib, CM1, 18 ch (78 channels in total)
- Bandgap, voltage reference close to the edge
- Bias, ADC reference, Master TDC in the middle
- Main digital block and 3 differential outputs (2x Trigger, 1x Data)

Measurements High dynamic range : 0.2 fC -10 pC (Si) or 300 pC (SiPM)

- Charge
- ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range defined by preamplifier gain
- TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps)
- ADC: 0.2 fC resolution. TOT: 2.5 fC resolution
- Time
- TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps)

Two data flows

- DAQ path
- 512 depth DRAM (CERN), circular buffer
- Store the ADC, TOT and TOA data
- 2 DAQ 1.28 Gbps links
- Trigger path
- Sum of 4 (9) channels, linearization, compression over 7 bits
- 4 Trigger 1.28 Gbps links

Control

- Fast commands
- 320 MHz clock and 320 MHz commands
- A 40 MHz extracted, 5 implemented fast commands
- · I2C protocol for slow control

Ancillary blocks

- · Bandgap (CERN)
- 10-bits DAC for reference setting
- 11-bits Calibration DAC for characterization and calibration
- PLL (IRFU)
- Adjustable phase for mixed domain

CMOS 130 nm 15x6 mm

cea 🔑

Precision time measurement high energy showers for pile-up rejection, primary vertex identification

Up to an average of 200 simultaneous proton collisions → imply that timing measurements with resolutions in the 30 ps range will greatly enhance pileup mitigation.

The front-end ASIC (**HGCROC**) provides **time-of-arrival (ToA)** measurement for individual hits with signals above 12 fC (equivalent to 3-10 MIPs), such that clusters with pT>5GeV should have a timing resolution **better than 30 ps**.

The precision of the overall timing measurement depends on the intrinsic performance of the sensor + preamplifier and discriminator, the characteristics of the TDC used for the ToA measurement, and the clock distribution system.

© Time to Digital Converters and results from a new 5ps TDC prototype ASIC1Graz University of Technology / CERNlukas.perktold@cern.chLukas Perktold

Proposed method for energy and time measurements

High dynamic range: 0.2 fC -10 pC (Si) or 300 pC (SiPM)

CSA linear regime: the signal goes to a 10-bit SAR-ADC

Saturation regime: 12-bit TDC Time-over-Threshold (ToT) with a 50 ps binning up to 200 ns

Fast discriminator associated to a 10-bit TDC provides the ToA with a 25 ps binning in the 25 ns clock preriod

3-steps TDC architecture with Time Amplifier (TA)

3-steps conversion: Introduction to the Pulse-Train Time Amplifier

Concept and design of the TA

TDC architecture

3-steps TDC architecture:

• PLL 160 MHz + gray counter 2 bits, LSB_{gray}: 6.25ns

Coarse TDC: 5 bits, LSB_{CTDC}: 195ps

• Fine TDC: 3 bits, LSB_{FTDC}: 24.4ps

$$LSB_{TDC} = 24.4ps \implies Optimal \sigma_t = 7ps$$

$$D_{out} = D_{counter} \times NA - D_{CTDC} \times A - D_{FTDC}$$

Architectural advantages:

high speed conversion (less than 25 ns)

low power consumption (only when an event occurs)

Channel Delay-Line INL gain correction

Effective number of linear bits:

GL Mismatch simulation min max : -3 LSBs < 0 < 3 LSBs

INL DOWN

TDC Architectural block diagrams

MASTER BLOCK

IRFU CHANNEL PART

PLL:

Low jitter so as not to contribute too much to the noise of the TDC.

MASTER DLL:

For a continuous channels calibration keep channels performance under temperature and process variations
Large time range by adding a counter

ToA

Discriminator

ToT

Discriminator

Start TDC

HGCROC2 Test Setup

Code density test:

Uniformly distributed events across clock cycle (Asynchronous clock domains)

2 external trigger inputs for the 72 channels

Performance evaluated by measuring the Δt between 2 channels:

$$\sigma t = \sigma \Delta t / \sqrt{2}$$

External uncorrelated clock as the TDC input

Channel Delay-Line INL gain correction

Integral-Non-Linearity

Maximum INL is 3.4 LSB

Channel gain fine tunning

Best configuration is the black curve INL is -1.1/1.4 LSB

Differential-Non-Linearity

DNL is -0.7/1 LSB

Integral- Non-Linearity

INL is -1.1/1.4 LSB

To ATDC timing precision

Timing precision looking at Δt between 2 channels with channel 0 as reference Expressed as σ of the distribution obtained with internal INL correction

Exp : Channel 40 → delayed by 1.5 m SMA cable

All channels

Single Shot Resolution

Sigma x 24.4 ps / $\sqrt{2}$ = **16 ps RMS**

Mean Single Shot Resolution

14.26 ps RMS

To ATDC timing precision

Precision and INL through temperature Ambient temperature calibration 25°C and we observe channel temperature variations temperature range of -35 / 65 °C.

Mean precision:

10,1 ps at -35°C

14,1 ps at 25°C

15,8 ps at 65°C

Summary and next steps

Multichannel ToA TDC: 10 bits with 25 ns total range is covered with a 14.26 ps precision at ambient temperature

Power consumption is about 2.2 mW at a 40 MHz measurement rate or 100 μ W if there is no event.

Master DLL and channel Delay-Line INL gain correction:

- ► INL is reproducible and stable with time and temperature
- ► Channel-by-channel fine tuning validates INL < 2 LSB achievable

Some TDC channels have issue for some conversion: we can observe outliers corrected in next version **HGCROC3**.

HGCROC3 received in september 2021 with first encouraging measures

- ► TID and SEU upgrades
- ► Leakage current optimization
- Calibration modes

