
Automated firmware
generation and continuous
testing for the CMS HGCAL
trigger primitive generator

F. Beaujean
T. Romanteau

J.-B. Sauvan
LLR CNRS / École PolytechniqueJournées des Métiers de l'Electronique

de l'IN2P3 et de l'IRFU – 12/10/21

12/10/21 2

The HGCAL Trigger Primitives Generation (TPG)

 HL-LHC: replacement of the endcap calorimeters of CMS with the HGCAL

○ > 6 million channels providing a 3D view + precise timing measurement

 TPG system: builds 3D Clusters of energies from Trigger Cells (*)

○ Off-detector Two-Stage system composed of FPGAs on ATCA boards (Serenity)

The future HGCAL within CMS HGCAL TPG system architecture

(*) It builds also “Trigger Towers” (not covered here)

See the HGCAL TDR and the L1T Phase 2 TDR for more details

https://cds.cern.ch/record/2293646?ln=en
https://cds.cern.ch/record/2714892

12/10/21 3

Overview of the Stage 1 firmware
 Data alignment & pre-processing, time multiplexing

 Output format suitable for Stage 2 algorithms

Fast control
and clock

Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
ti

pl
ex

 x
18

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er

12/10/21 4

Overview of the Stage 1 firmware
 Stage 1 blocks under consideration in this presentation:

○ Transformation, reordering and truncation of input Trigger Cells data

Fast control
and clock

Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
ti

pl
ex

 x
18

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er
Fast control

and clock
Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
tip

le
x

x1
8

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er

12/10/21 5

Firmware blocks considered here

C++ (HLS)VHDL VHDL

See the presentation of T. Romanteau for details on sorting

https://indico.in2p3.fr/event/20437/contributions/99765/

12/10/21 6

Design constraints and choices
 Each FPGA in the Stage 1 sees a different portion of the detector

○ Different numbers of inputs, different routing, different sorting networks

 The mapping of FPGAs to portions of detectors is still being optimized / evolving

 Requires a highly flexible workflow

○ Generic code configured with configuration data (e.g. detector mappings)

 Two levels of abstraction

○ VHDL and C++ as generic as possible (e.g. using VHDL generics/generates, VHDL 2008)

○ Higher-level of abstraction also necessary → code templates

12/10/21 7

Data-driven workflow
 Two types of inputs

○ Configuration data obtained from the CMS detector geometry/simulation and
algorithms optimizing link connections/mappings

○ Code template files (e.g. VHDL, C++ templates)

 Automated steps based on these inputs

○ Generate source files, test benches, etc. with a Template Engine

○ Build Vivado HLS (C++ synthesis) and Vivado (RTL backend tools) projects

○ Simulate, synthesize, test the generated designs

– Check resource usage and latency

– Future: comparison of output with software emulator

12/10/21 8

Input configuration data

 Raw input configuration data are stored in various files and format

○ Binary (e.g. ROOT) and text (e.g. json) files

 Pre-processing step converts them into nested Python dictionaries and lists

○ Stored in pickle files

Excerpt of pre-processed configuration data

12/10/21 9

Input templates

VHDL template excerpt

 Template language: Jinja

○ Python library: https://palletsprojects.com/p/jinja/

 Defines statements and functions based on the pre-processed
configuration data

 Can define complex functions, e.g. through Python functions
called within templates

https://palletsprojects.com/p/jinja/

12/10/21 10

Git workflow with Gitlab CI/CD
 Automation with Gitlab CI/CD (Continuous Integration / Deployment)

 The main items of this automation are

○ Two Git repositories

– (1) for inputs: configuration data and templates

– (2) for generated sources, test benches, etc.

○ Gitlab CI “Pipeline”: defines the steps of the workflow

– Triggered e.g. by “Merge Requests” in repository (1)

– Produces and commits sources in repository (2)

12/10/21 11

Gitlab CI pipelines

 Gilab CI Pipelines triggered here with

○ New Merge Request update Only → Build and Test

○ Merge Request actually merged → Build, Test and Push generated sources

Example of pipelines displayed in Gitlab UI

Example of pipeline steps ran one after the other

12/10/21 12

Multi-design with multi-branching
 The details of the TPG system architecture are not yet completely frozen

○ Changes in FPGA model, changes in number of links per FPGA, etc.

 Need to handle multiple designs, for multiple “architectures” to be studied

 Will be done with multiple branches in the two Git repositories

○ Same templates but different configuration

○ Branches dedicated to quick tests, with reduced designs (“minidesigns”)

○ Branches dedicated to “production” and large tests, with full designs

12/10/21 13

Conclusions

 HGCAL TPG Stage 1 firmware heavily depends on detector geometry
and module FPGA connections, which are still evolving→

 Requirement of fully generic code, easily configurable

○ VHDL generics/generates, simpler code with 2008-specific syntax

○ High-Level Synthesis from C++

○ Higher-level template language (Jinja) for complex generation rules

 Automatized workflow with Gitlab Continuous Integration

○ Quick generation and testing of reduced designs (“minidesigns”)

○ Generation and testing of full designs when creating new releases

○ Resource usage and latency checks. Comparison with software emulator
planned in the future.

 Management of multiple designs for different system variations

○ Parallel branching

○ Same code templates – Different configurations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

