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The HGCAL Trigger Primitives Generation (TPG)

 HL-LHC: replacement of the endcap calorimeters of CMS with the HGCAL

○ > 6 million channels providing a 3D view + precise timing measurement

 TPG system: builds 3D Clusters of energies from Trigger Cells (*)

○ Off-detector Two-Stage system composed of FPGAs on ATCA boards (Serenity)

The future HGCAL within CMS HGCAL TPG system architecture

(*) It builds also “Trigger Towers” (not covered here)

See the HGCAL TDR and the L1T Phase 2 TDR for more details

https://cds.cern.ch/record/2293646?ln=en
https://cds.cern.ch/record/2714892
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Overview of the Stage 1 firmware
 Data alignment & pre-processing, time multiplexing

 Output format suitable for Stage 2 algorithms
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Overview of the Stage 1 firmware
 Stage 1 blocks under consideration in this presentation:

○ Transformation, reordering and truncation of input Trigger Cells data
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Firmware blocks considered here

C++ (HLS)VHDL VHDL

See the presentation of T. Romanteau for details on sorting

https://indico.in2p3.fr/event/20437/contributions/99765/


12/10/21 6

Design constraints and choices
 Each FPGA in the Stage 1 sees a different portion of the detector

○ Different numbers of inputs, different routing, different sorting networks

 The mapping of FPGAs to portions of detectors is still being optimized / evolving

 Requires a highly flexible workflow

○ Generic code configured with configuration data (e.g. detector mappings)

 Two levels of abstraction

○ VHDL and C++ as generic as possible (e.g. using VHDL generics/generates, VHDL 2008)

○ Higher-level of abstraction also necessary  → code templates
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Data-driven workflow
 Two types of inputs

○ Configuration data obtained from the CMS detector geometry/simulation and 
algorithms optimizing link connections/mappings

○ Code template files (e.g. VHDL, C++ templates)

 Automated steps based on these inputs

○ Generate source files, test benches, etc. with a Template Engine

○ Build Vivado HLS (C++ synthesis) and Vivado (RTL backend tools) projects 

○ Simulate, synthesize, test the generated designs

– Check resource usage and latency

– Future: comparison of output with software emulator
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Input configuration data

 Raw input configuration data are stored in various files and format

○ Binary (e.g. ROOT) and text (e.g. json) files

 Pre-processing step converts them into nested Python dictionaries and lists

○ Stored in pickle files

Excerpt of pre-processed configuration data
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Input templates

VHDL template excerpt

 Template language: Jinja

○ Python library: https://palletsprojects.com/p/jinja/

 Defines statements and functions based on the pre-processed 
configuration data

 Can define complex functions, e.g. through Python functions 
called within templates

https://palletsprojects.com/p/jinja/
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Git workflow with Gitlab CI/CD
 Automation with Gitlab CI/CD (Continuous Integration / Deployment)

 The main items of this automation are

○ Two Git repositories

– (1) for inputs: configuration data and templates

– (2) for generated sources, test benches, etc.

○ Gitlab CI “Pipeline”: defines the steps of the workflow

– Triggered e.g. by “Merge Requests” in repository (1)

– Produces and commits sources in repository (2)
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Gitlab CI pipelines

 Gilab CI Pipelines triggered here with

○ New Merge Request update  Only → Build and Test

○ Merge Request actually merged  → Build, Test and Push generated sources

Example of pipelines displayed in Gitlab UI

Example of pipeline steps ran one after the other
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Multi-design with multi-branching
 The details of the TPG system architecture are not yet completely frozen

○ Changes in FPGA model, changes in number of links per FPGA, etc.

 Need to handle multiple designs, for multiple “architectures” to be studied

 Will be done with multiple branches in the two Git repositories

○ Same templates but different configuration

○ Branches dedicated to quick tests, with reduced designs (“minidesigns”)

○ Branches dedicated to “production” and large tests, with full designs
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Conclusions

 HGCAL TPG Stage 1 firmware heavily depends on detector geometry 
and module  FPGA connections, which are still evolving→ 

 Requirement of fully generic code, easily configurable

○ VHDL generics/generates, simpler code with 2008-specific syntax

○ High-Level Synthesis from C++

○ Higher-level template language (Jinja) for complex generation rules

 Automatized workflow with Gitlab Continuous Integration

○ Quick generation and testing of reduced designs (“minidesigns”)

○ Generation and testing of full designs when creating new releases

○ Resource usage and latency checks. Comparison with software emulator 
planned in the future.

 Management of multiple designs for different system variations

○ Parallel branching

○ Same code templates – Different configurations
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