
Automated firmware
generation and continuous
testing for the CMS HGCAL
trigger primitive generator

F. Beaujean
T. Romanteau

J.-B. Sauvan
LLR CNRS / École PolytechniqueJournées des Métiers de l'Electronique

de l'IN2P3 et de l'IRFU – 12/10/21

12/10/21 2

The HGCAL Trigger Primitives Generation (TPG)

 HL-LHC: replacement of the endcap calorimeters of CMS with the HGCAL

○ > 6 million channels providing a 3D view + precise timing measurement

 TPG system: builds 3D Clusters of energies from Trigger Cells (*)

○ Off-detector Two-Stage system composed of FPGAs on ATCA boards (Serenity)

The future HGCAL within CMS HGCAL TPG system architecture

(*) It builds also “Trigger Towers” (not covered here)

See the HGCAL TDR and the L1T Phase 2 TDR for more details

https://cds.cern.ch/record/2293646?ln=en
https://cds.cern.ch/record/2714892

12/10/21 3

Overview of the Stage 1 firmware
 Data alignment & pre-processing, time multiplexing

 Output format suitable for Stage 2 algorithms

Fast control
and clock

Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
ti

pl
ex

 x
18

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er

12/10/21 4

Overview of the Stage 1 firmware
 Stage 1 blocks under consideration in this presentation:

○ Transformation, reordering and truncation of input Trigger Cells data

Fast control
and clock

Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
ti

pl
ex

 x
18

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er
Fast control

and clock
Slow control
and config

LAN
TCDS2

Trigger cellsFE
72 links @ 10 Gbit/s

Stage 1

lp
G

B
T

 d
ec

od
er

DTH
1 link @ 16 Gbit/s

SlinkRocket DAQ buffer
encoder

Stage 2

64
b6

6b
 e

nc
od

er

T
im

e
m

ul
tip

le
x

x1
8

D
at

a
fo

rm
at

te
r

Trigger cells

Sum tower energies

S
or

t f
or

 h
is

to
m

ax
 b

in
ni

ng

Truncated trigger cells

energies
Tower

R
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

T
X

 c
ap

tu
re

, p
la

yb
ac

k,
 la

te
nc

y

3x18 links @ 16 Gbit/s

R
el

ab
el

, r
ec

al
ib

ra
te

T
ru

nc
at

e
ea

ch
 h

is
t b

in

(s
el

ec
te

d
by

 E
 ?

)
T

Module sums

D
at

a
al

ig
ne

r
an

d
un

pa
ck

er

12/10/21 5

Firmware blocks considered here

C++ (HLS)VHDL VHDL

See the presentation of T. Romanteau for details on sorting

https://indico.in2p3.fr/event/20437/contributions/99765/

12/10/21 6

Design constraints and choices
 Each FPGA in the Stage 1 sees a different portion of the detector

○ Different numbers of inputs, different routing, different sorting networks

 The mapping of FPGAs to portions of detectors is still being optimized / evolving

 Requires a highly flexible workflow

○ Generic code configured with configuration data (e.g. detector mappings)

 Two levels of abstraction

○ VHDL and C++ as generic as possible (e.g. using VHDL generics/generates, VHDL 2008)

○ Higher-level of abstraction also necessary → code templates

12/10/21 7

Data-driven workflow
 Two types of inputs

○ Configuration data obtained from the CMS detector geometry/simulation and
algorithms optimizing link connections/mappings

○ Code template files (e.g. VHDL, C++ templates)

 Automated steps based on these inputs

○ Generate source files, test benches, etc. with a Template Engine

○ Build Vivado HLS (C++ synthesis) and Vivado (RTL backend tools) projects

○ Simulate, synthesize, test the generated designs

– Check resource usage and latency

– Future: comparison of output with software emulator

12/10/21 8

Input configuration data

 Raw input configuration data are stored in various files and format

○ Binary (e.g. ROOT) and text (e.g. json) files

 Pre-processing step converts them into nested Python dictionaries and lists

○ Stored in pickle files

Excerpt of pre-processed configuration data

12/10/21 9

Input templates

VHDL template excerpt

 Template language: Jinja

○ Python library: https://palletsprojects.com/p/jinja/

 Defines statements and functions based on the pre-processed
configuration data

 Can define complex functions, e.g. through Python functions
called within templates

https://palletsprojects.com/p/jinja/

12/10/21 10

Git workflow with Gitlab CI/CD
 Automation with Gitlab CI/CD (Continuous Integration / Deployment)

 The main items of this automation are

○ Two Git repositories

– (1) for inputs: configuration data and templates

– (2) for generated sources, test benches, etc.

○ Gitlab CI “Pipeline”: defines the steps of the workflow

– Triggered e.g. by “Merge Requests” in repository (1)

– Produces and commits sources in repository (2)

12/10/21 11

Gitlab CI pipelines

 Gilab CI Pipelines triggered here with

○ New Merge Request update Only → Build and Test

○ Merge Request actually merged → Build, Test and Push generated sources

Example of pipelines displayed in Gitlab UI

Example of pipeline steps ran one after the other

12/10/21 12

Multi-design with multi-branching
 The details of the TPG system architecture are not yet completely frozen

○ Changes in FPGA model, changes in number of links per FPGA, etc.

 Need to handle multiple designs, for multiple “architectures” to be studied

 Will be done with multiple branches in the two Git repositories

○ Same templates but different configuration

○ Branches dedicated to quick tests, with reduced designs (“minidesigns”)

○ Branches dedicated to “production” and large tests, with full designs

12/10/21 13

Conclusions

 HGCAL TPG Stage 1 firmware heavily depends on detector geometry
and module FPGA connections, which are still evolving→

 Requirement of fully generic code, easily configurable

○ VHDL generics/generates, simpler code with 2008-specific syntax

○ High-Level Synthesis from C++

○ Higher-level template language (Jinja) for complex generation rules

 Automatized workflow with Gitlab Continuous Integration

○ Quick generation and testing of reduced designs (“minidesigns”)

○ Generation and testing of full designs when creating new releases

○ Resource usage and latency checks. Comparison with software emulator
planned in the future.

 Management of multiple designs for different system variations

○ Parallel branching

○ Same code templates – Different configurations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

