

X-Ray source for irradiation tests @Marseille

J.-L. Autran⁽²⁾, M. Barbero⁽¹⁾, P. Barrillon⁽¹⁾, <u>D. Fougeron⁽¹⁾</u>, E. Joly⁽¹⁾, M. Menouni⁽¹⁾, S. Moindjie⁽²⁾, T. Strebler⁽¹⁾

Outline

- Context
- Irradiation system
 - Calibration
 - Beam profil
- Main results
 - TSMC resistances
 - SLDO
 - ITKPixV1 (RD53B)
- Conclusion

- CPPM has a partnership with IM2NP another laboratory based in Marseille. We share the use of an Xray machine with them.
- Main motivation: assume the specifications of RD53B chip (1 Grad then 500 Mrad @ -15 °C).
- Since 2018 we have started working with this machine.
- Firstly we irradiated, at room temperature, 65 nm transistors chip to check the TID effect and compare with previous results obtained at CERN. This step allowed us to cross-check the calibration of our X-ray tube.
- Irradiation of PCM in TSMC 65nm.
- 2019: characterization of SLDO , irradiation of several RD53A chips at high and low dose rate, still at room temperature.
- In parallel, we were developing a cooling system based on Peltier.
- 2021: ready for our first irradiations at low temperature in collaboration with IJC Lab group.
 - Concern the ITKPixV1 chip

Irradiation system

- X-ray machine (Thermofisher (ex Inel)
 - Generator Model Equinox3000 (400 W limited)

Printed 3D support for X-Ray detector and samples

X-Ray generator

- Crossed movements table (PI Model VT-80).
 - Manual Z movement
 - Accuracy around ± 1mm

<image>

	Target material	Tungsten (peak@10 keV)		3D printed s	
	Dose rate	Up to 1,3Mrad(SIO ₂)/hour max.			50 printed s
	Supply voltage	20 kV max.			
	Tube current Al filter	20 mA max. 120 μm	- 20 mA : HDR * 20 - 2,5 mA: LDR ** ~1	cm cm	
	Temperature	Troom and LowT	- ***		XY crossed mov
		Linear stage			
	Travel range	150 mm max.			
	Velocity	20 mm/s max.			
	Repeatability	± 10 μm			
Main features of our system			 * : HDR=High Dose Rate ** : LDR = Low Dose Rate 		

Example of an irradiation test setup (Transistors test @ Troom)

(Equinox3000)

JME – IN2P3/IRFU 2021

***: LowT = -15°C @Load 0.5W/cm²

X-Ray sensors/calibration

AXIIVHS5 (PIN diode)

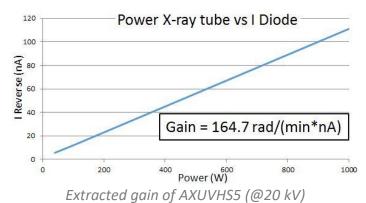
- Beam characteristics can be done with an ionization chamber (Type 23342)
 - Coupled with an « universal » dosemeter (UNIDOS E type 10008)
 - Give a direct reading of the dose rate
 - Afraid to overvalued it...
- Comparison with PIN diode (calibrated @CERN (EP/ESE group))

X-Ray Chamber (Type 23342)

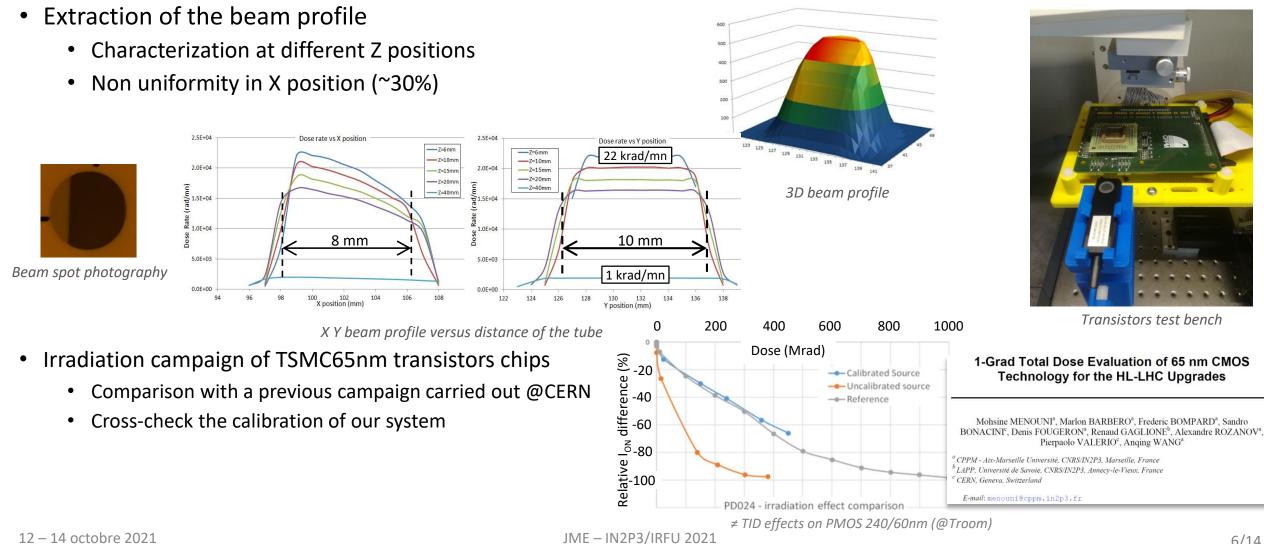
Sensitive volume	0.02 cm ³	Sensitive area	1 mm²		
Detection range	8 - 35 keV	Dark current	2 nA		
Leakage current	±10fA	Reverse Voltage	50 V		
Nominal response	1nC/Gy	Packaging	SMA		
Main features of X-Ray Sensors					

- ARACOR commercial irradiation system
- 3000 W (60 kV 50 mA max.)
- 120 μm Al filter (to keep the deposited dose uniform)

X-Ray Chamber (Model TM23342)

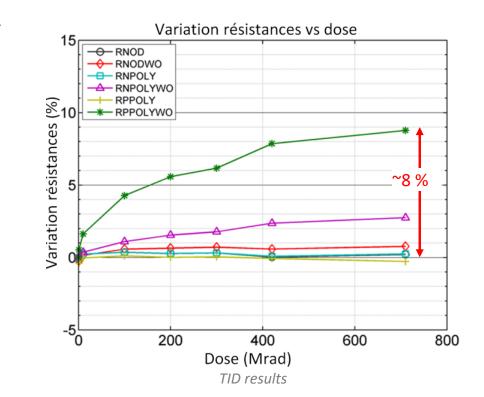

- Pre-calibrated Quantrad sensor
- Extraction of the PIN diode real gain
 - Dose rate conversion

PIN diode (AXUVHS5)



PIN diode on its mechanical support

Beam profile / 1st irradiations



• 6 types of resistors available in TSMC65nm technology have been irradiated (@Troom)

	Name	Material	Well type				
	RNOD	Oxide	Ν				
	RNODWO	Oxide without silicide	Ν				
	RNPOLY	Polysilicon	Ν				
	RNPOLYWO	Polysilicon without silicide	Ν				
	RPPOLY	Polysilicon	Р				
	RPPOLYWO	Polysilicon without silicide	Р				
Dose rate ~1 Mrad/hour ^{Resistors list for TSMC65 technology}							

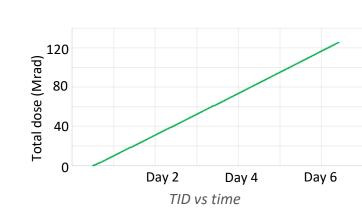
- TID: 700 Mrad
- RPPOLYWO
 - Advantages:
 - High resistivity
 - Low temperature variation
 - Drawback:
 - 8% total variation @700 Mrad
 - 3 % for RNPOLYWO (not recommended)
- Results presented in collaboration to avoid the use of RxPOLYWO resistances in analog designs

 A TowerJazz shunt-LDO (TJ180nm) has been designed @CPPM for depleted CMOS pixel developments

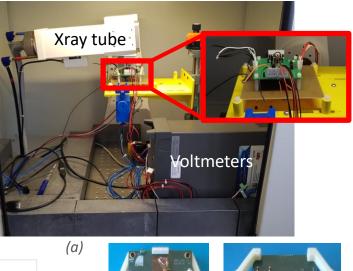
1.95

1.85

Ξ_{1.75}


1.7

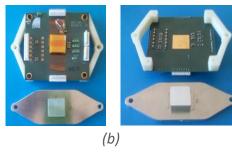
1.65


1.6

1.5

- 1,8 V-2 A max, ~50 W/cm² (chip size: 7 mm²)
- Need dedicated PCB for power dissipation
 - Chip on board on thermal planes
- T_{CHIP} < 70 °C during irradiations
- TID: 125 Mrad
- Dose rate: ~1Mrad/hour
- Analog Voltages monitoring
 - V_{IN}, V_{REF}, V_{OUT}
- Results:
 - V_{OUT} variation: 3 % @ 125 Mrad
 - $\Delta V_{OUT} < 1 \%$ (consider V_{REF} contribution)

Vin & Vout vs Dose - with and without Vref contribution

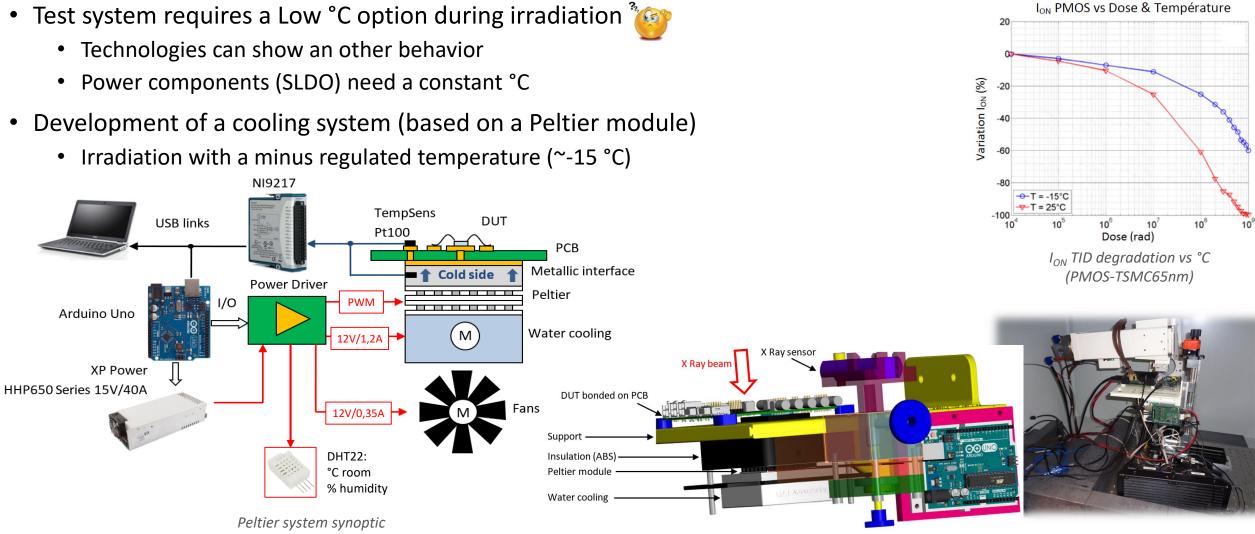


Vref

contribution

removed

140

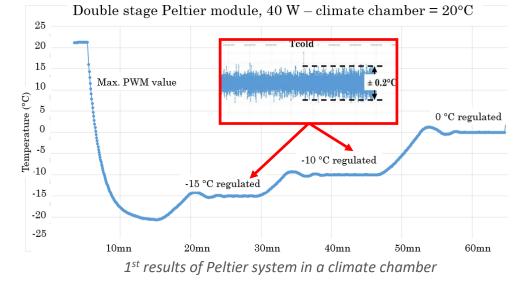

(a): SLDO irradiation test bench (b): dedicated PCB

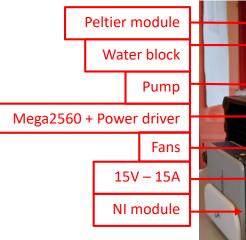
With Vref

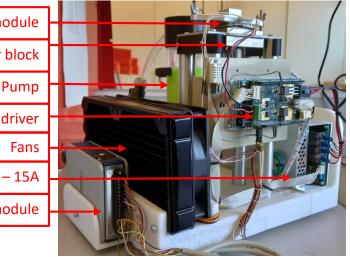
contribution

Low °C option

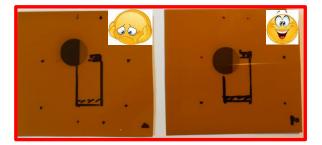
Low °C performances




10/14

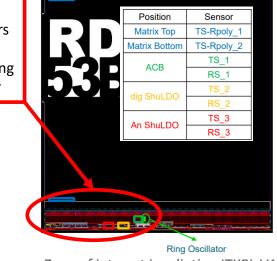

- Cooling system features
 - Double stage Peltier module
 - 15 V / 7 A
 - Qmax = 40 W
 - Water cooling + fans:
 - 12V / 1,5 A 12V / 0,3 A (currents monitoring)
 - Driven by Arduino Mega2560 (for final system)
 - Power driver board
 - Labview Software
 - LINX vi
 - Temperature, dew point monitoring
 - Temperature regulation
 - Requirements:
 - a constant Troom, dry air for low T°C
 - Good insulation for irradiated sample
- 2 items have been produced
 - 1 demonstrator (to control samples °C during tests)
 - 1 irradiation support (to irradiate @LowT)

Peltier module (ref.: S2-192-14-20-11-18)

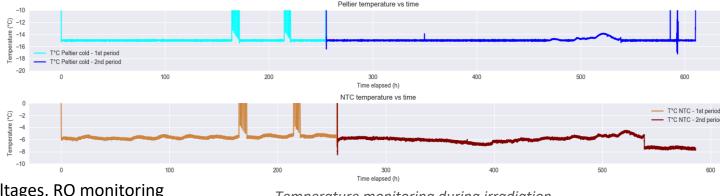


ITKPixV1 plastic insulation

ITKPixV1 irradiation test preparation


- In collaboration with IJCLab (Jimmy Jeglot, Maurice Cohen-Solal, Yahya Khwaira, Abdenour Lounis, Slimani Cherif)
- Requirements from RD53 collaboration
- Calibration (cf.: slide 5)
- Pre-irradiation :
 - LDO mode
 - Check analog scans (Threshold, noise,...)
 - Temp. sensors calibration
 - Ring Oscillators calibration (vs T°C, V_{DDD})
 - °C @ -10°C on NTC
 - Reach ~-6 °C
- During irradiation :
 - RO measurements each 100 krad
 - Temperatures monitoring
 - Sensors measurements (dose, °C)
 - V_{DDD}, V_{DDA}, V_{REF}'s monitoring
- Post-irradiation (annealing) :
 - Turn OFF X-Ray tube, monitoring voltages, RO during 6 hours
 - Check analog scans (Threshold, noise,...)
 - Maintain @-15 °C, keep supplies ON and launch a periodic Voltages, RO monitoring

Checking beam position


3 rad sensors 3 temp sensors

- Ring Osc
- ADC monitoring
- LDO regulator

2 cm

Zone of interest irradiation ITKPixV1

Temperature monitoring during irradiation

ITKPixV1 irradiation test results

invd0 CPPM/I invd0 Oxford

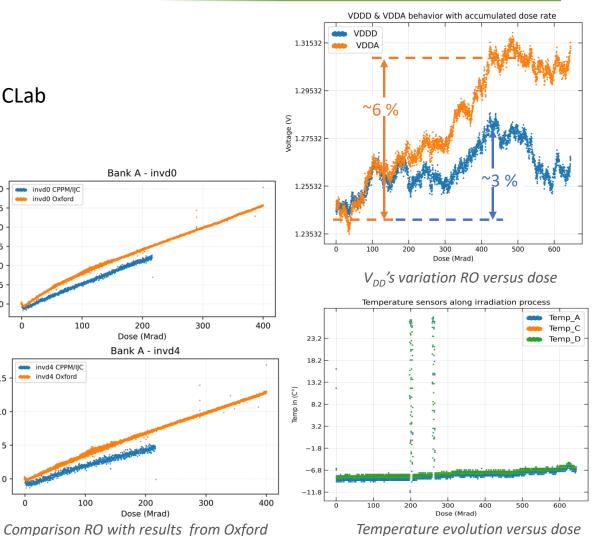
100

100

nvd4 CPPM/II

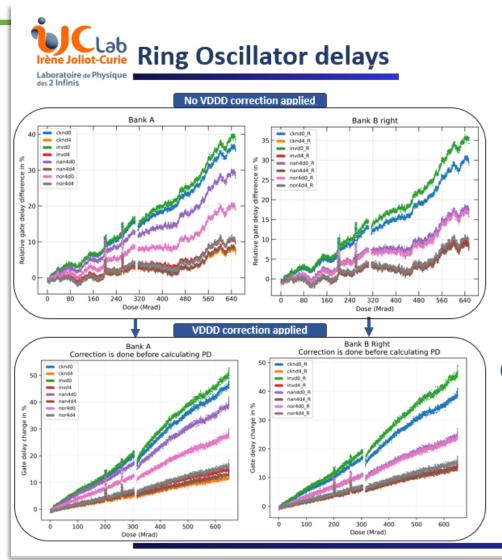
ස් 20

15


ja 10

change 10

sate delay



- 2 ITKPixV1 chips have been irradiated up to 650 Mrad
 - 20% TID correction (corresponds to real TID of 500 Mrad)
 - dose rate ~1,2 Mrad/hour
- Tests were conducted in strong collaboration between CPPM and IJCLab
- The temperature is well controlled and stable around -8 °C
 - Slight variation during irradiation
- The chip is in LDO mode
 - V_{DDD} and V_{DDA} are generated inside the chip by the regulator
- Drift of V_{DDD}/V_{DDA} due to the reference voltages V_{REFA}/V_{REFD} shift
 - Up to 6 % for V_{DDD}
- On chip Ring Oscillators
 - Designed by IJCLab and used intensively for dose monitoring
 - V_{RFF} dependence for Ring Oscillators
 - results need to be normalized with other parameters:
 - VDDD, T °C
 - Increase for strength 0 gates up to 45%
 - Not used in the chip
 - Increase for strength 4 up to 28%
- The results we obtained are compatible with those obtained by other institutes (CERN, Oxford, Bonn, Berkeley)

JME - IN2P3/IRFU 2021

Ring Oscillators results

 Propagation delay is calculated using the following equation:

$$t_{pd}=rac{1}{2N_gf}$$
 (1)

- In which (Ng) is the number of gates for each ring oscillator and (f) is the extracted frequency.
- Moreover, digital voltage correction will be applied on the raw frequency data to eliminate the VDDD oscillations. Using the equation:

 $(Freq)_{after Vddd cor} = Freq_{before Vdd cor (1)} + (slope_{Freq/VDDD})(1.24 - VDDD)$

 Then, relative gate delay change in <u>%</u> is calculated with equation 1. With respect to a reference value at 0 rad, using the following equation:

Gate delay change in % (GDC) =
$$\frac{(Pd - Pd ref)}{Pd ref} \times 100$$

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

Conclusion

- Successful mutualization with IM2NP to have performed an irradiation system using a calibrated X-ray source
- Associated instrumentation offers an accurate system and a possibility to irradiate @Low Temperature
 - Dependent of environment
 - Ideal for prototypes
 - Limited with a big chip (0,5W/cm² 4 cm² is critical)
- Still few modifications for an ultimate version
- 2 ITKPixV1 irradiation campaigns show some interesting results
 - Conform and comparable with other institutes
 - Data's from ring oscillators, sensors, V/Imux, etc have to be confirmed
 - Extraction of annealing data's are in progress
- Plan to irradiate ITKPixV1 @ Low Dose Rate (~60 krad/hour)