# Quantum Machine Learning in

**CEPC** 

Yaquan Fang (IHEP)

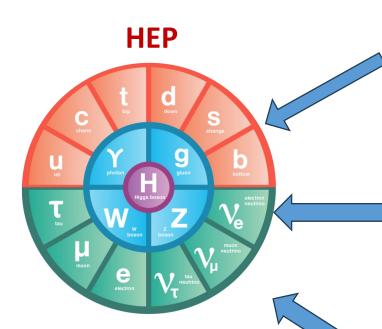
FOLLIETT

101 101 101

TITIE

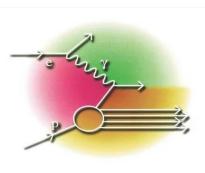
15<sup>th</sup> France China Particle Physics Network/Laboratory Workshop, 2024 Bordeaux, June 10 – 14, 2024

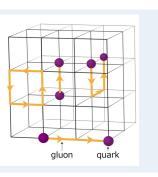
## Quantum Computing in HEP



Particle Collision Calculation e.g. parton shower computation

Quantum Field Theory Lattice QCD

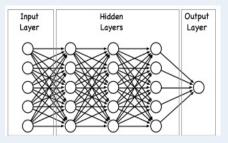


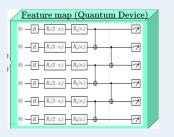


Parton Showe

 $O(\alpha_{1}^{2})$  Leading-Log QCD

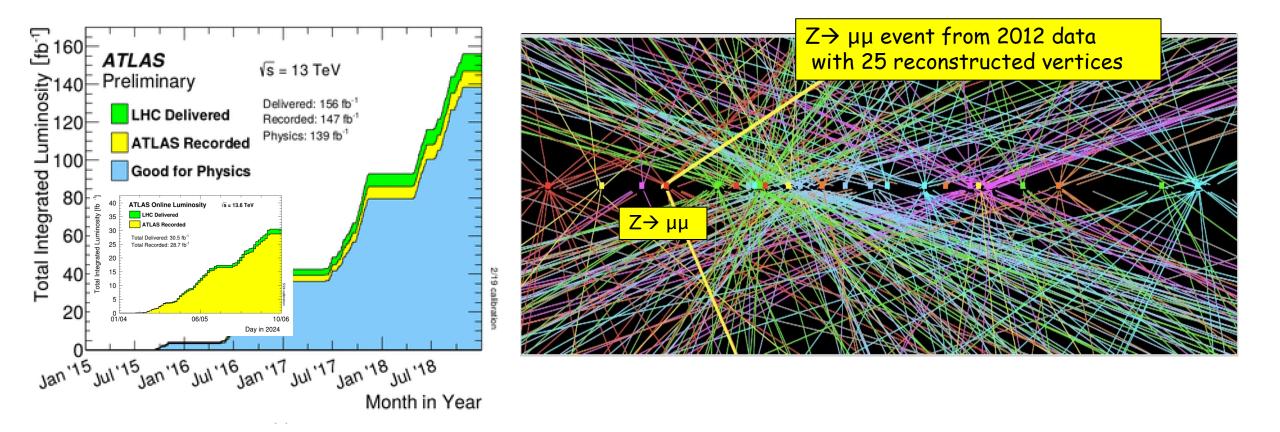
Data Analysis Quantum Machine Learning



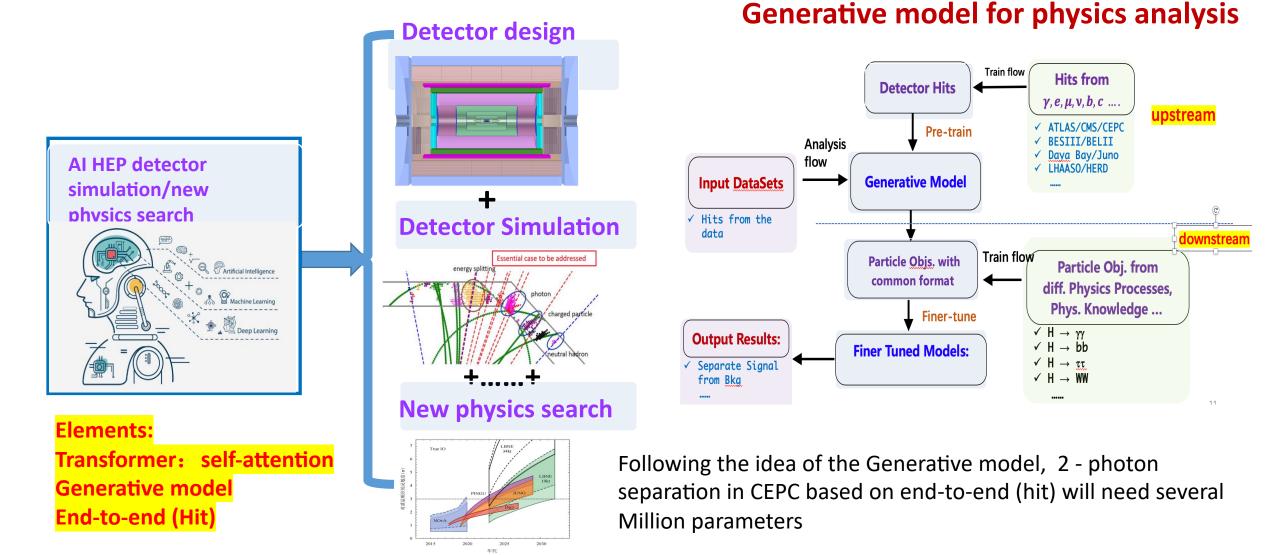


## Big Data in HEP (LHC as an example)

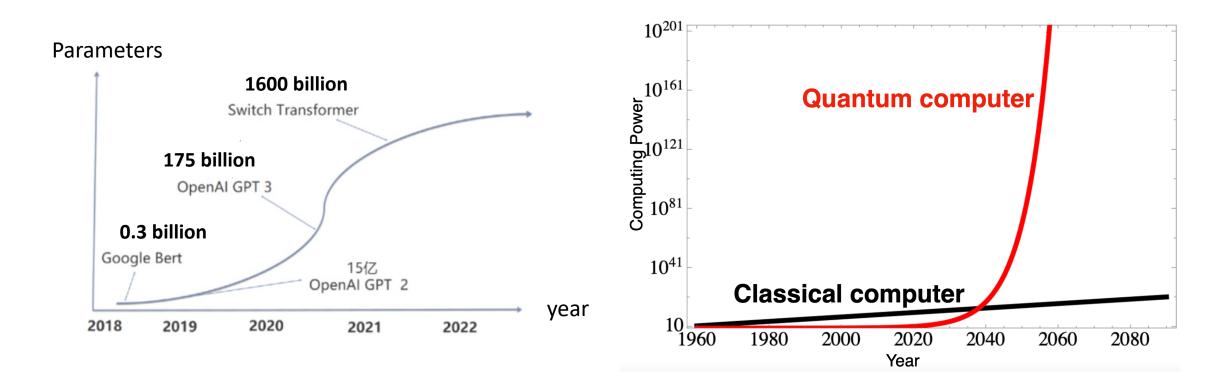
### ATLAS/CMS 200 events/s passing triggers ATLAS/CMS 2PB/year of data Tremendous amount of highly complex data



## Big Data possibly leads to the Large Model



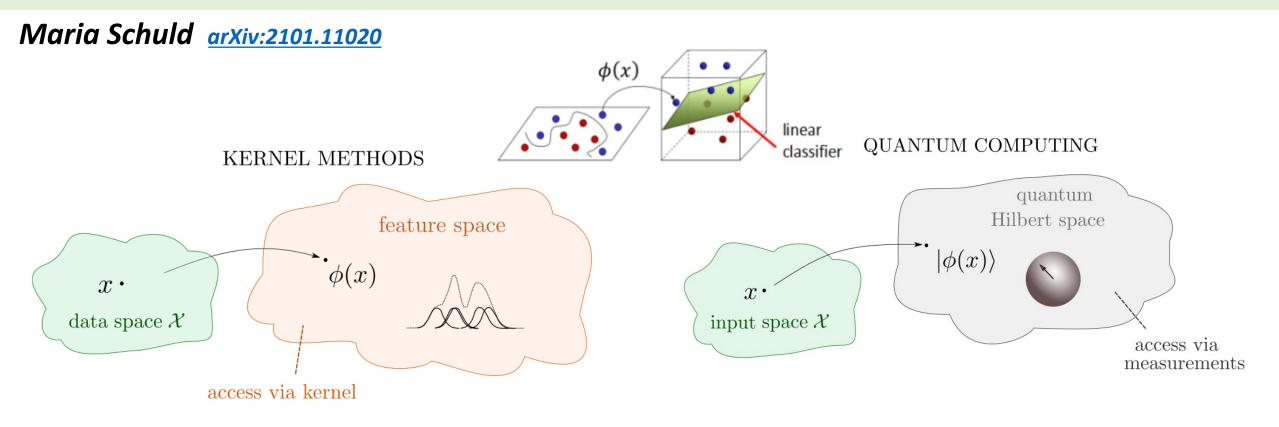
### **Quantum AI: the exponential demand of the computing power**



The increasing computing power from classical computer doesn't match with the exponential demand from the development of AI.

Potentially Quantum computer can resolve this challenge.

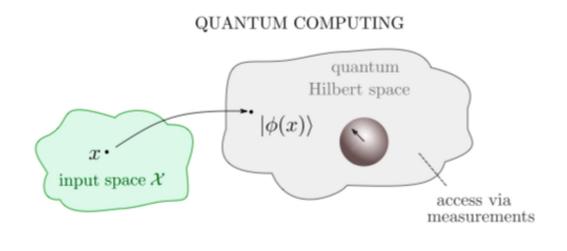
## Machine Learning (ML) & QML

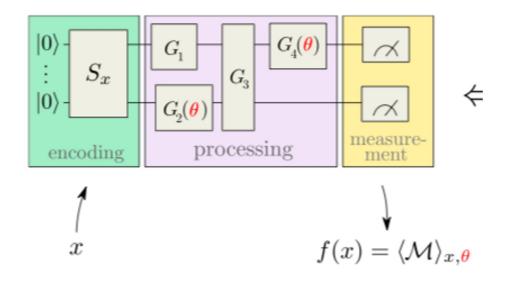


- ✓ Both ML and QML map the information to high-dimensional spaces
- ✓ QML maps to quantum Hilbert space.

## What Quantum Machine Learning does

Maria Schuld arXiv:2101.11020

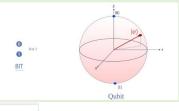


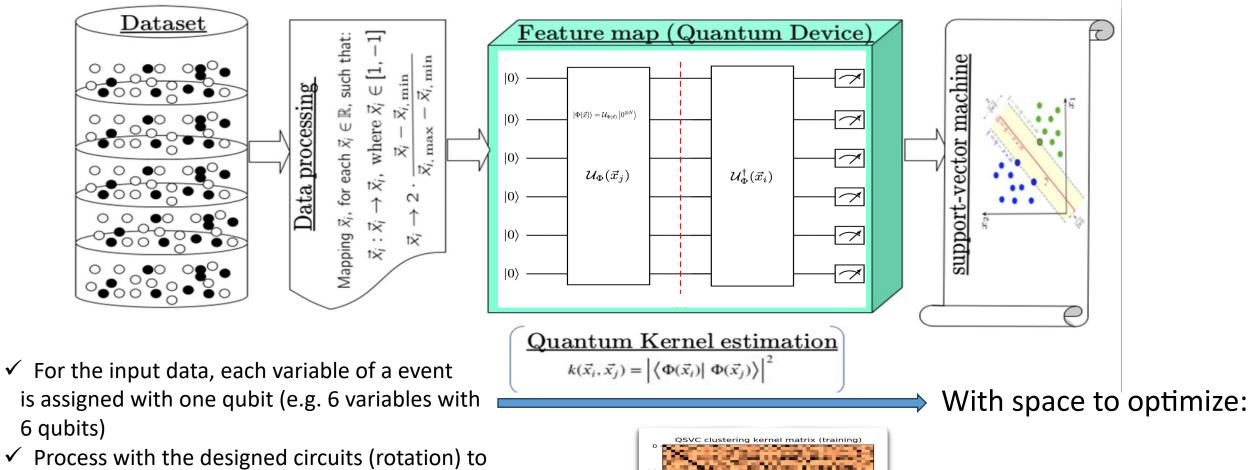


#### Encode input data to a quantum state

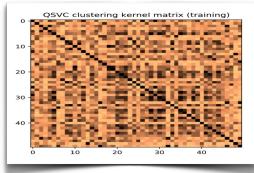
"process" (transform) the quantum state, and access the quantum state via measurements

## QSVM





- obtain " $|\phi(\vec{x_j})\rangle = U_{\phi(\vec{x_j})}|0^{\otimes N}\rangle$ " and " $\langle \phi(\vec{x_i})|$ "
- ✓ The similarity of event i and j can be obtained by  $k(\vec{x_i}, \vec{x_j})$ 
  - 50 events  $\rightarrow$  50 X 50 matrix elements



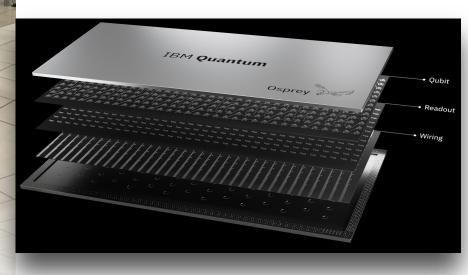
## IBM quantum computer

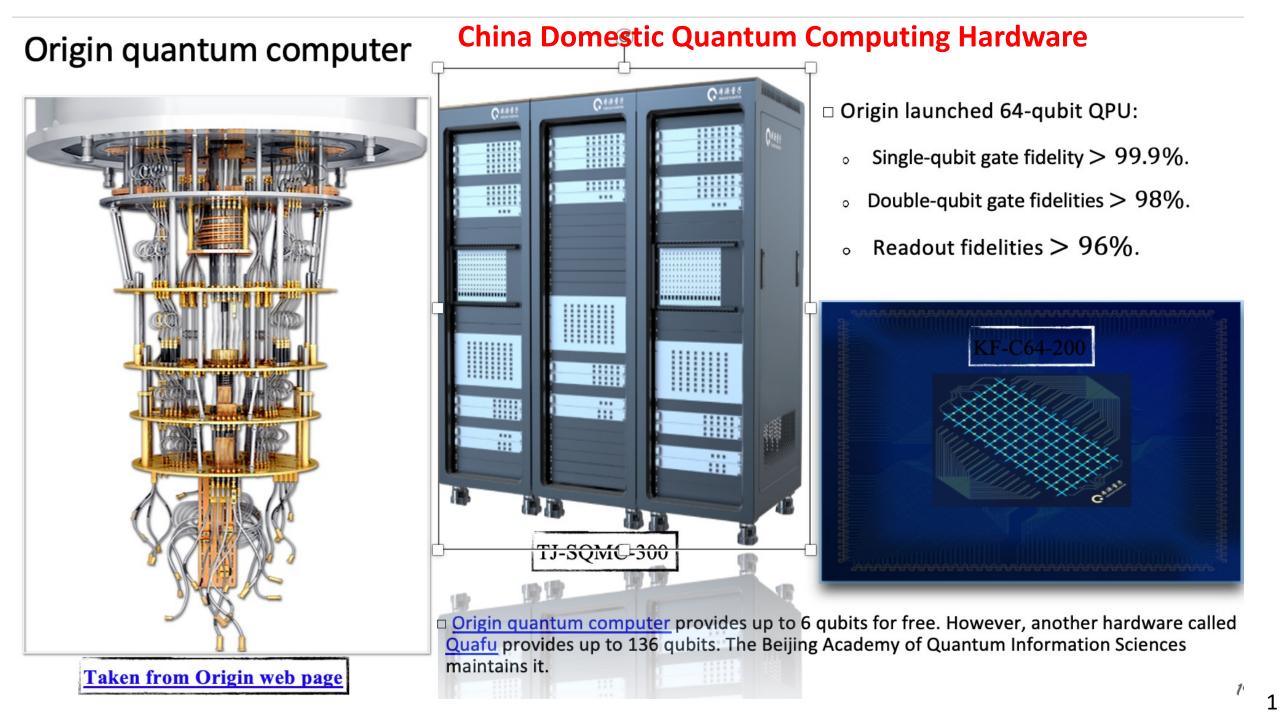




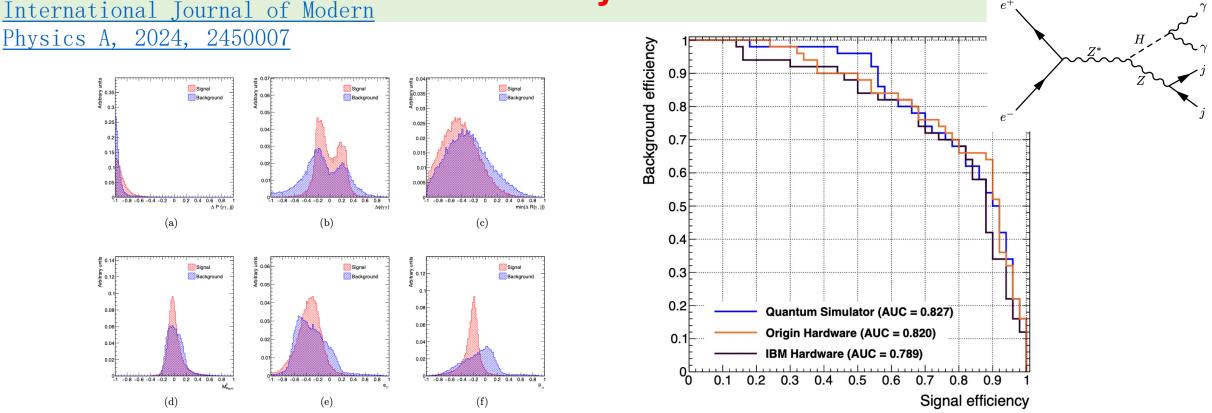
Taking quantum computing out of the lab:

- NY Computing Data Centre.
- It provides over 20 computers.
- Scales the processor's availability.
- It provides over 20 comput





# **QSVM Kernel with IBM and OriginQ hardware for CEPC ZH** $(H \rightarrow \gamma \gamma)$ analysis

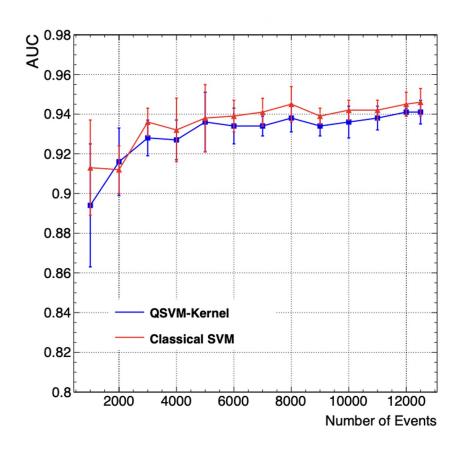


Using ZH analysis dataset (100 events, 6 variables), the QSVM Kernel results on the Quantum Hardware (6 qubits) are promising

It is the first attempt using Chinese domestic quantum hardware resource to implement QML

# Employing Quantum SVM Kernel method with quantum simulators for ZH $(H \rightarrow \gamma \gamma)$ analysis

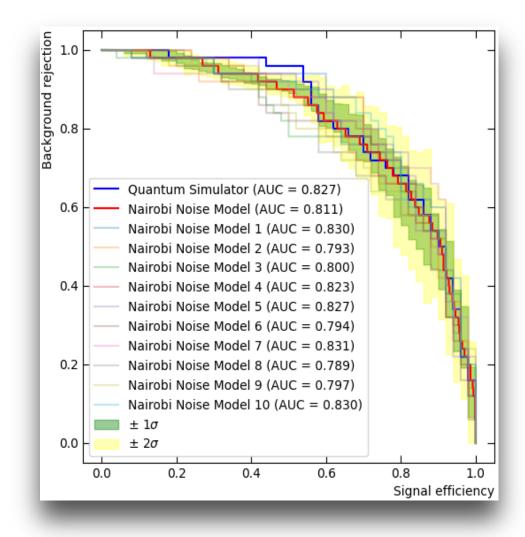
#### **AUC vs number of events**



 QSVM Kernel method and noiseless simulators enable us to work with a larger number of events.

# Noise modelling in the IBM Nairobi

- <u>Noise in quantum computers:</u> Quantum computers are susceptible to noise.
  - ✓ An electromagnetic signal coming from a WiFi
  - ✓ A disturbance in the Earth's magnetic field
- ✓ The model used automatically generates a simplified noise model for a real device.
- $\checkmark$  It takes into account the following:
  - ✓ The gate error probability of each basis gate
  - ✓ The gate length of each basis gate
  - $\checkmark$   $T_1 and T_2$  relaxation time constant
  - ✓ The readout error probability
- The estimated noise in the IBM Nairobi computer is 0.017.



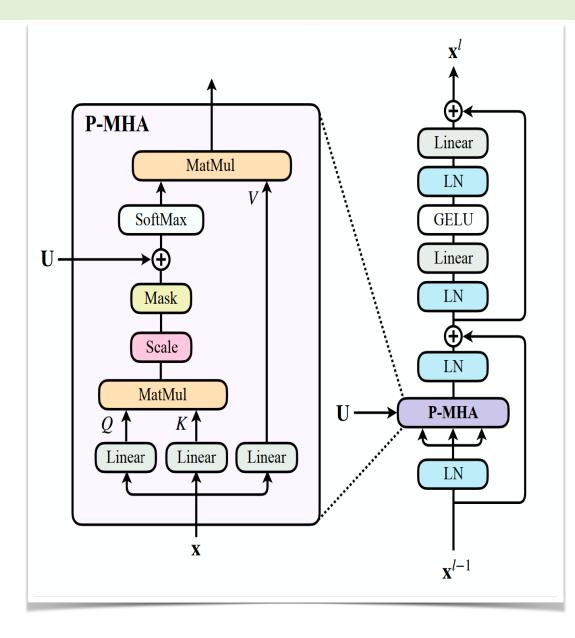
## The Quantum Transformer

### ➤Simplified version of the transformer

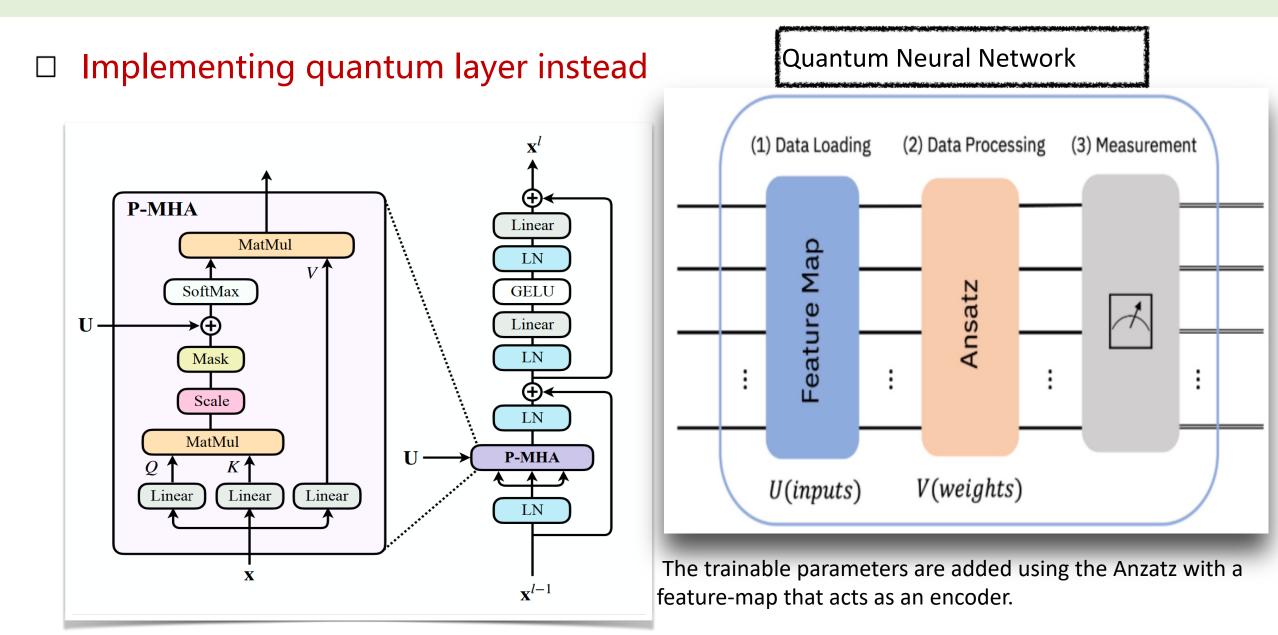
- ✓ Multi-head Attention based on PyTorch
- ✓ Three different linear transformations:
- $W_Q$ ,  $W_K$ , and,  $W_V$

 $P-MHA(Q, K, V) = SoftMax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right) \cdot V$ 

Where Q, K, and V are linear projections of the input.
Going to the quantum version, one could replace the linear transformation with a quantum one.

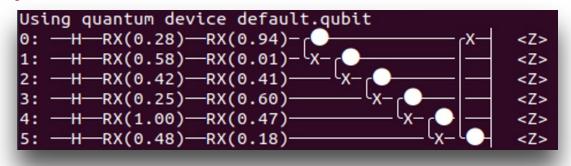


## The Quantum Transformer

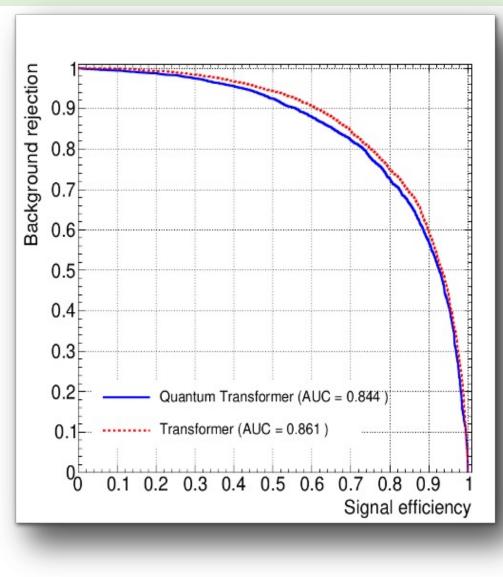


## The Quantum Transformer

#### We are using PennyLane, which was developed by Xanadu.



- Running on CPUs: about 76% accuracy on validation dataset both in Quantum transformer and classical transformer in 20k dataset (10k train, 10k val).
- □ Time-consuming: about 80 mins for a 10k dataset with one epoch and one block(Quantum layer).

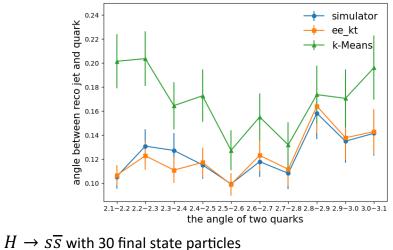


#### Application of Quantum Approximate Optimization Algorithm (QAOA) on Jet Clustering in CEPC

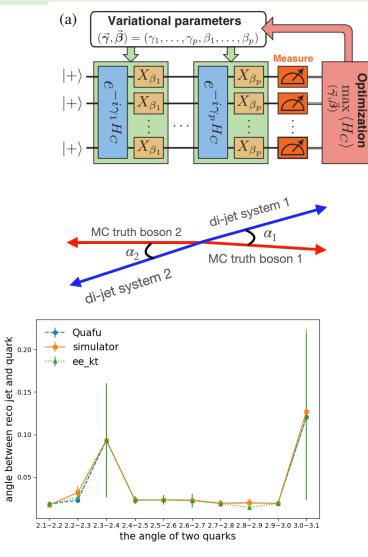
QAOA: a hybrid quantum-classical algorithm 1, cost Hamiltonian:  $H_C = -\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (I - Z_i Z_j)$ , mixer Hamiltonian:  $H_M = \sum_{j \in V} X_j$ , initial the quantum circuit in the state:  $|s\rangle = |+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x \in (0,1)^n} |x\rangle$ , *I*: identity operator,  $Z_i(X_j)$ : Pauli-Z(-X) operator acting on the i(j)-th qubit, n: the number of qubits

- 2, output state by the circuit:  $|\psi_P(\gamma, \beta)\rangle = e^{-i\beta_P H_M} e^{-i\gamma_P H_C} \dots e^{-i\beta_1 H_M} e^{-i\gamma_1 H_C} |s\rangle$ and calculate  $F_P(\gamma, \beta) = \langle \psi_P(\gamma, \beta) | H_C | \psi_P(\gamma, \beta) \rangle$ .
- 3, A classical optimization algorithm is employed to  $(\gamma^*, \beta^*) = argmax_{\gamma,\beta}F_P(\gamma, \beta)$ . 4, The state  $|\psi_P(\gamma^*, \beta^*)\rangle$  encodes the solution to the optimization problem.





compare quantum simulator, ee kt, and k-Means algorithms.



 $H \rightarrow s\overline{s}$  with 6 final state particles compare quantum hardware, simulator, and ee\_kt

## Conclusion

- The rapid developments of the large model in AI industry demand the corresponding increase of the computing powers.
- Quantum computer implemented on QAI could provide the potential matching the need:
  - ✓ Superposition could help
- We did the study of the implementing QSVM in CEPC physics analysis with domestic quantum computer resources.

#### ✓ Comparable performances as SVM have been seen

- The QTransformer has been developed and implemented in physics analysis in CEPC as well.
  - ✓ Will try the generative model with QTransformer in CEPC physics analysis.
- >Look forward to having some collaborations with colleagues in France.