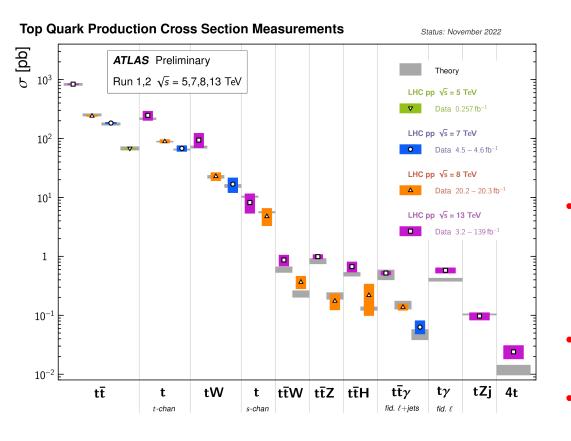
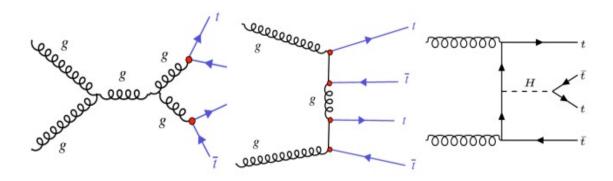


Observation of Four-Top-Quark Production in the Multi-lepton Final State with the ATLAS Experiment

Xiang Chen Shanghai Jiao Tong University IRFU, CEA Saclay

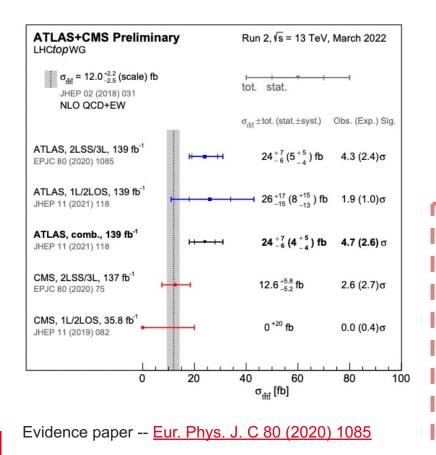
11 June 2024 The 15th FCPPN/L workshop, Bordeaux

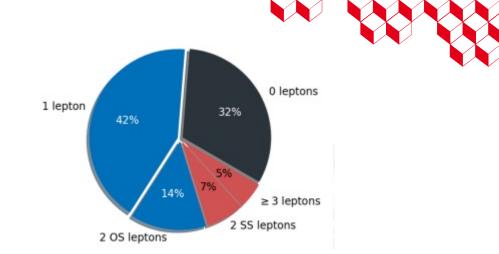



Shanghai Jiao Tong University

Rare Top Quark Production Process

• Precision measurement with a rare top quark production process is a good approach to searching for new physics.





- $t\bar{t}t\bar{t}$ production is a rare top quark process predicted in the SM It is one of the heaviest final states accessible at LHC
 - NLO (QCD+EWK): $\sigma(t\bar{t}t\bar{t}) = 12 \text{ fb } \pm 20\% \text{ [JHEP } 02 \text{ (2018) } 031\text{]}$
 - NLO+NLL: $\sigma(t\bar{t}t\bar{t}) = 13.4$ fb ±11% [arXiv:2212.03259]
- $t\bar{t}t\bar{t}$ cross section is sensitive to anomalous top Yukawa coupling and Higgs CP properties
- Also it is sensitive probe for some new physics models such as EFT, 2HDM model

Four-Top-Quark Production

- $t\bar{t}t\bar{t}$ decays into $W+W-W+W-b\bar{b}b\bar{b}$. Depending on the decay mode of the W bosons, it could lead to the following final states:
 - 2 lepton same-sign / 3 leptons (2LSS / 3L)
 - 1 lepton only / 2 lepton opposite sign (1L / 2LOS)

- ATLAS and CMS made several measurements with four tops, ATLAS found evidence in 2020 using full Run2 dataset with 2LSS/3L analysis and also the combination analysis.
- This analysis is the refinement of the **2LSS/3L** analysis with improved object reconstruction and analysis techniques as well as new BSM interpretations.

Outline:

- 1. Analysis strategy
 - 2. Background modeling
- 3. Signal extraction and results
- 4. BSM Interpretations
- 5. Top reconstruction in 4top

Main updates:

- 1. Improved object definition
- 2. Better background modeling I
- 3. New MVA method

Signal and Backgrounds

- **Multi-lepton channel: the most sensitive** channel with small backgrounds
 - High jet and b-jet multiplicity ٠
 - Small branching ratio (~12%) ٠

SS $\mu\mu$

- Signal region selection: •
 - \geq 6 jets, \geq 2 b-jets

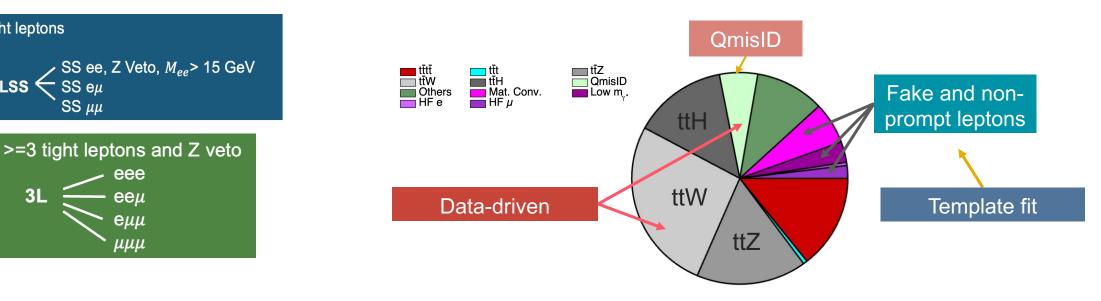
2 tight leptons

2LSS

3L

 $HT = \sum pT(lepton) + \sum pT(jets) \ge 500 \text{ GeV}$ •

eee


eeµ

εμμ

μμμ

Background estimation:

- SM model physics process (~85%): •
 - ttZ + jets, ttH + jets, ttW+jets
- Fake/non-prompt leptons: coming from reconstruction • fakes or charge mis-identified electrons (~15%):
 - Processes with electron charge misidentified
 - Events with non-prompt or fake leptons

Fake/non-prompt and QmisID Backgrounds

Fake/non-prompt backgrounds

- Define regions enriched in the following background processes to estimate normalization factors
 - Heavy flavor electron and heavy flavor muon
 - Material conversions
 - Virtual photon conversion •

Charge misidentification backgrounds

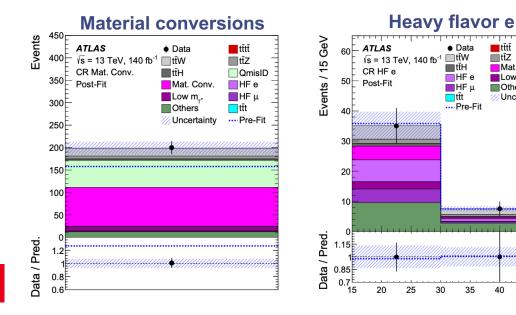
- Applying charge flip rate deriving from Z->ee data as 2D bins of pT and eta in all control regions and the signal region
- The rate is estimated by minimizing the negative log poisson likelihood fit

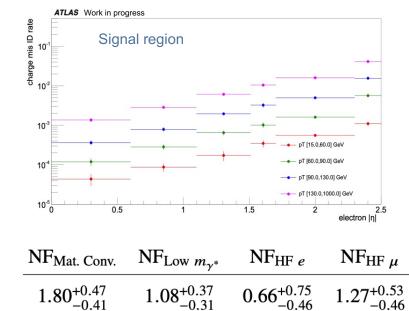
■tīZ

Mat. Conv.

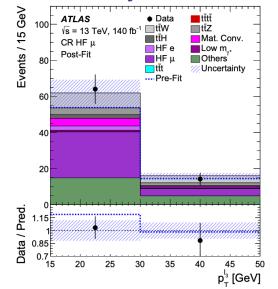
Uncertainty

45

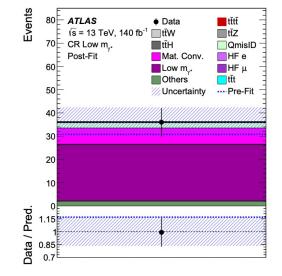

p₋^l₃ [GeV]


50

40

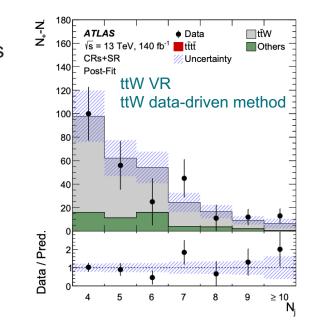

Low m

Others



Heavy flavor mu

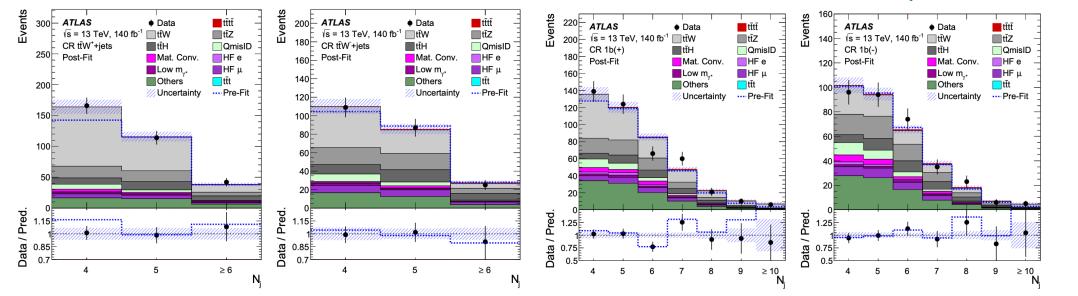
Virtual photon conversion



ttW background: Data-Driven Method

- ttW+jets systematics was one of the leading systematic uncertainties in the previous analysis
- To get rid of it, the data-driven method is applied to derive the free parameters from ttW and 1b control regions with charge split (4 control regions)

$$NF_{t\bar{t}W@nj} = NF_{t\bar{t}W^+@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}] + NF_{t\bar{t}W^-@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}]$$


$t\bar{t}W$ background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^{-}(4jet)}$
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27\substack{+0.25 \\ -0.22}$	$1.11_{-0.28}^{+0.31}$

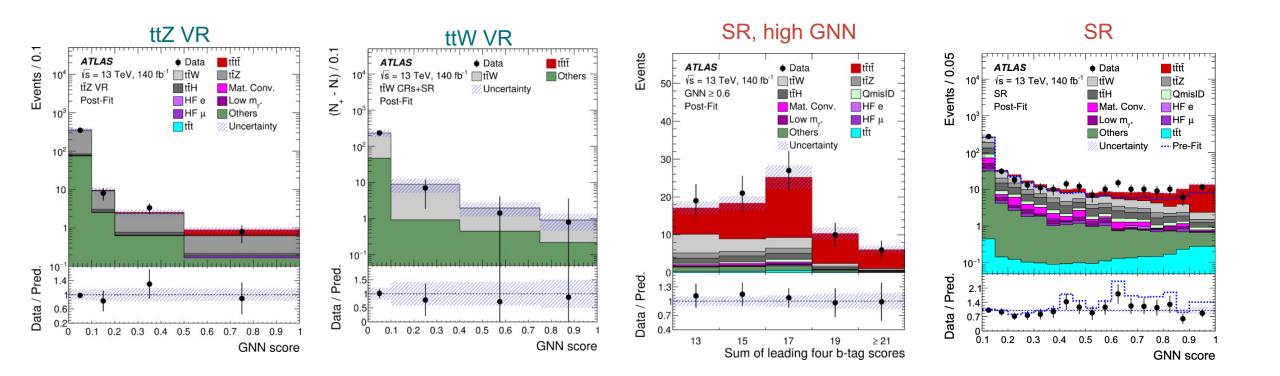
6

ttW control regions: 2L, $N_b \ge 2$, $N_{jet} \ge 4$

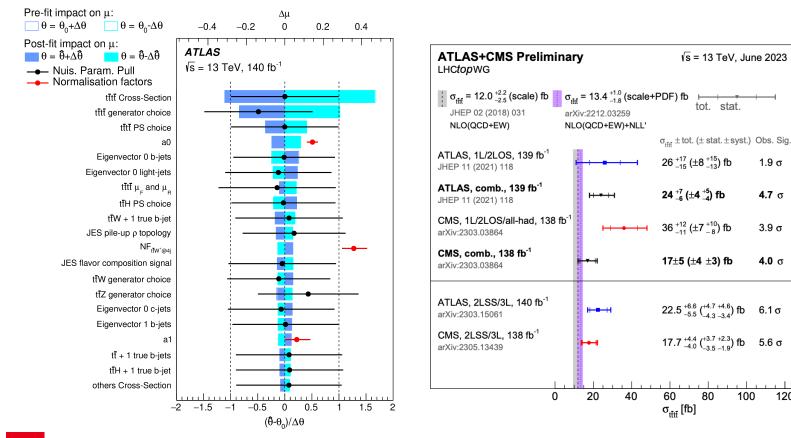
cez

MVA Method: GNN

 In order to improve the signal sensitivity, we tried different MVA methods and Graph Neutral Network (GNN) was the final choice


GNN network structure

- GNN is constructed to combine the information about objects (jets, lepton, MET) in an event into graphs, with node, edge, and global properties.
 - **GNN** inputs Global Features Node Features Edge Features Global Node Edge Edge features: Encoder Encoder Encoder ΔR^2 , $\Delta \eta$, $\Delta \phi$ MET Jets Edge Block Lepton Node Block Node features: Global *p*_T, η, φ, Ε Block Global features: Repeat 4x B-tagging (jets), Charge (lepton) Global Node type Decoder Sigmoid **GNN Score**
- Trained with the un-weighted 4top LO, nominal backgrounds MC, and upweighted ttW sample
- The k-fold method (k=6) is applied for optimization
- AUC is used for estimating the performance: GNN outperforms XGBoost


GNN Fitting Results

- Perform a maximum-likelihood fit to the GNN score distribution in SR and distributions in 8 CRs
- GNN modeling is checked in the 1LOS channel and validation regions
- Good agreement in high GNN regions with data and MC

Four-Top-Quark Cross Section Results

- The observed significance is 6.1 sigma: first observation of fourtop-quark production!
- The largest uncertainties come from 4top modeling and the datadriven ttW parameters

 $\mu = 1.9 \pm 0.4(\text{stat}) \stackrel{+0.7}{_{-0.4}}(\text{syst}) = 1.9 \stackrel{+0.8}{_{-0.5}}$

 $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$ (stat) $^{+4.6}_{-3.4}$ (syst) fb = 22.5 $^{+6.6}_{-5.5}$ fb

Significance	Observation	Evidence paper
Expected (σ)	4.3	2.7
Observed (σ)	6.1	4.3

	_
The improvements (from 4.7 σ to 6.1 σ)	
come from:	

- Updated lepton and jet selections + b-tagging
- Use of the GNN discriminant

tot. stat.

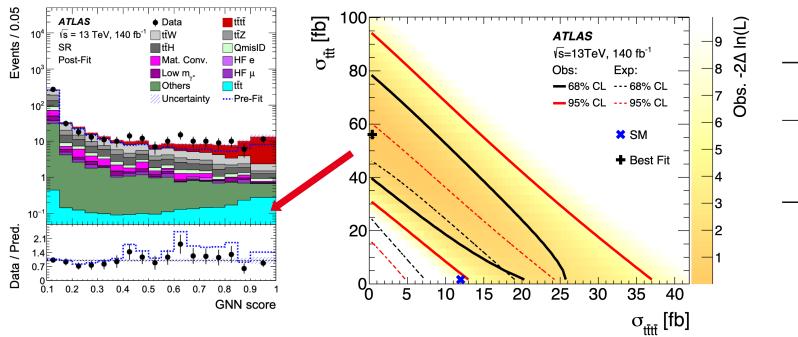
80

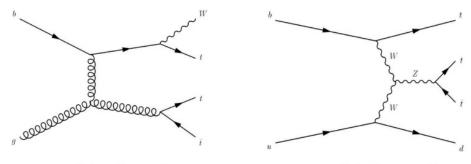
100

120

1.9 σ

4.7 σ


3.9 σ

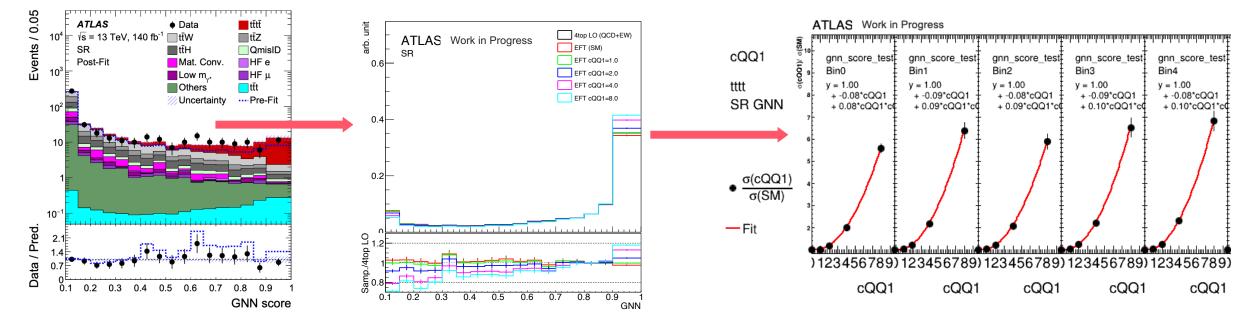

4.0 σ

Better modeling of the ttt and ttW backgrounds

Interpretations - Three Top Cross Section

- SM three top production is even rarer than 4 top and has yet to be discovered.
- The three top final state is very similar to the four top: large contribution in high GNN region
- We also tried to constrain the 3top production
- The correlation between 4top and 3top is very large (-93%) after freefloating both cross sections

 $\sigma(ttt W) \sim 1 fb$


 $\sigma(t\bar{t}t q) \sim 0.6 \text{ fb}$

Limit on 3top production				
Processes	95% CL cross section interval [fb]			
	$\mu_{t\bar{t}t\bar{t}}=1$	$\mu_{t\bar{t}t\bar{t}}=1.9$		
tīt	[4.7, 60]	[0, 41]		
tītW	[3.1, 43]	[0, 30]		
tītq	[0, 144]	[0, 100]		

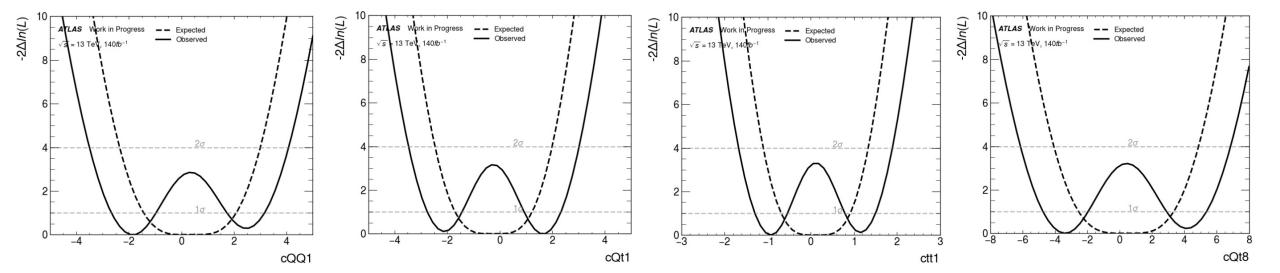
New Physics Interpretations - EFT

EFT parameters:

- Four-top-quark production is sensitive to some heavy flavor fermion operators in EFT framework
- The four heavy flavour fermion operators expecting to affect the amplitude of 4top production are cQQ1, cQt1, ctt1, cQt8
- The function of the cross section enhancement with EFT parameters is fitted in each SR bin. Then it is applied to the reference SM 4top sample as the normalization factor in the profile-likelihood fit

$$\begin{split} O_{tt}^{1} &= (\bar{t}_{R}\gamma^{\mu}t_{R})(t_{R}\gamma_{\mu}\bar{t}_{R})\\ O_{QQ}^{1} &= (\bar{Q}_{L}\gamma^{\mu}Q_{L})(Q_{L}\gamma_{\mu}\bar{Q}_{L})\\ O_{Qt}^{1} &= (\bar{Q}_{L}\gamma^{\mu}Q_{L})(t_{R}\gamma_{\mu}\bar{t}_{R})\\ O_{Qt}^{8} &= (\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L})(t_{R}\gamma_{\mu}T^{A}\bar{t}_{R}). \end{split}$$

 $\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i < i} C_i C_j \sigma_{i,j}^{(2)},$

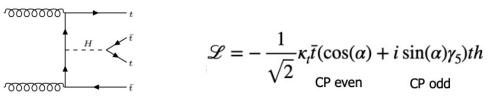

New Physics Interpretations - EFT

EFT Quadratic parameterization:

- Derive bin-by-bin quadratic interpolation in GNN bins and get the 95% CL intervals of the coefficient shown in the likelihood scan
- Assume only one operator contributes to the enhancement of the cross section and others are fixed to zero
- The sensitivity is improved by the GNN discriminant

Limits on EFT operators sensitive to four top production (one operator at a time)

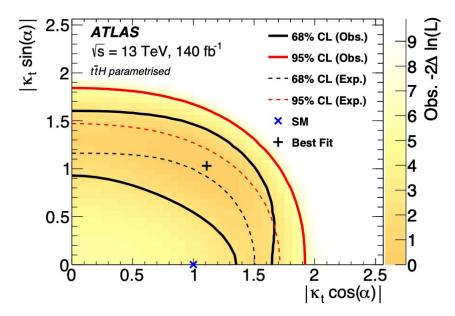
Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
O_{QQ}^1 O_{1}^2	[-2.5, 3.2]	[-4.0, 4.5]
O_{Ot}^{1}	[-2.6, 2.1]	[-3.8, 3.4]
$egin{array}{c} O_{Qt}^- \ O_{tt}^1 \end{array}$	[-1.2, 1.4]	[-1.9, 2.1]
O_{Qt}^8	[-4.3, 5.1]	[-6.9, 7.6]

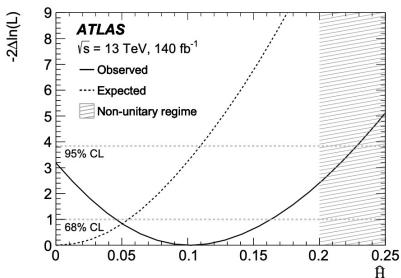


13

New Physics Interpretations

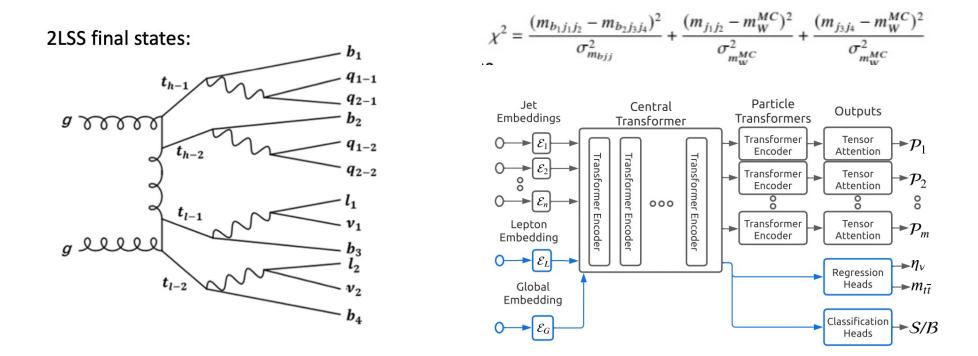
Top Yukawa Coupling


- Four top production is sensitive to measure the top-Higgs Yukawa coupling and its XS can be enhanced by the CP-odd coupling parameters
- CP even: obs (exp) |kt| < 1.9(1.6) (ttH parameterised with kt)
- CP even: obs (exp) |kt| < 2.3(1.9) (ttH free floated)


Higgs oblique paramter

- Four top productions also is sensitive to self-energy correction of the Higgs boson Ĥ that affects off-shell Higgs interaction
- The observed (expected) upper limit on the Ĥ value is 0.23 (0.11) at 95% CL

$$\delta \sigma_{t\bar{t}t\bar{t}} \equiv \frac{\sigma_{\hat{H}}}{\sigma_{\rm SM}} \approx 0.03 (\frac{\hat{H}}{0.04}) + 0.15 (\frac{\hat{H}}{0.04})^2$$



Limit on Higgs oblique parameter Ĥ

Top Reconstruction in the 4top Multi-lepton Channel

- Top quark reconstruction relies on the measurement of final states and jet-parton assignment is important in heavy particle reconstruction.
- Traditionally we use the chi2 method to build each possible permutation of the event to find the best solution
- Top reconstruction would be challenging in the 4top multi-lepton channel with missing momentum and extensive jet permutations.
 - Using SPA-Net based on the transformer network with fast simulation 4top same sign samples

Preliminary Results for Top Reconstruction in 4tops

- The machine learning method can outperform the traditional method in accuracy and speed •
- To evaluate the performance of the reconstruction using the machine method, we try to derive the top • quark mass distribution predicted from the SPA-Net
 - The top quark mass peak would be 'sharper' with the truth level jet due to better resolution •

Event	N _{jets}	Event	SPA-NET	Efficiency	χ^2 Efficiency		<u>k</u>			ing truth jets ing reco jets
Туре	,	Fraction	t _h	tl	t _h Only	0.020			m	_t = 173GeV
All Events	≤8	65.4%	0.135	0.568	0.081		<u>/i</u>			
	=9	18.9%	0.214	0.591	0.139	O.015 O.015				
	≥10	15.7%	0.226	0.593	0.143					
	Inclusive	100%	0.164	0.576	0.101	Arbitary				
Fully	=8	1.16%	0.703	0.819	0.405	Ā	8			
Spatially- matched	=9	1.75%	0.628	0.774	0.378	0.005	l II l			
Events	≥10	2.51%	0.524	0.741	0.313	0.005 -	//	٦ ₄		
	Inclusive	5.42%	0.596	0.768	0.354		- AA	Contraction of the second seco		

100

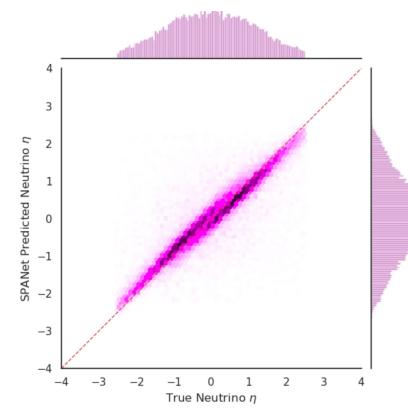
0

200

300

Mass (GeV)

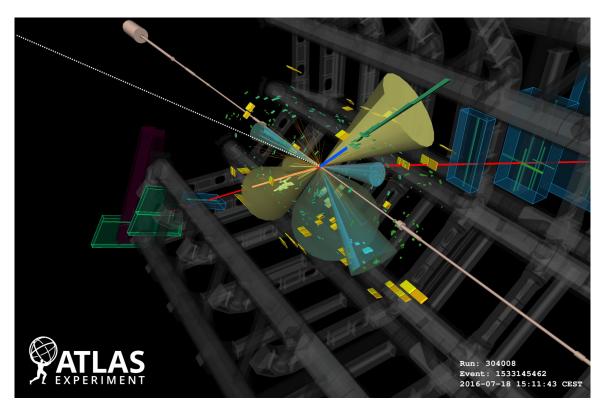
400


600

Future Improvements for Top Reconstruction

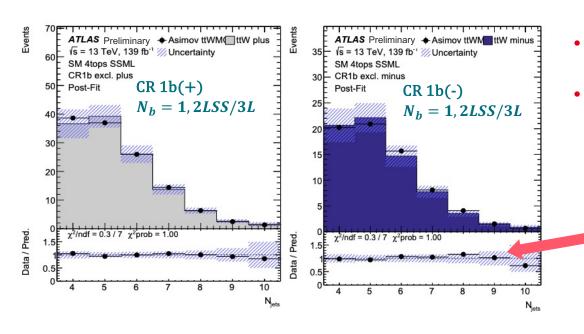
• We try to regress the neutrino four-momentum distribution using SPA-Net in the dilepton channel

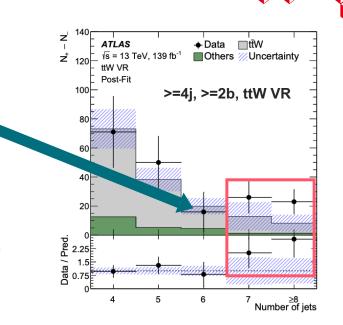
Currently, the top reconstruction with SPA-Net in 4top still needs optimizations


- Model optimization:
 - Model fine-tuning and increasing training statistics for better performance
 - Signal and background separation with the assignment probabilities from SPA-Net
- Further application:
 - Try to test with real data from ATLAS to improve 4top signal efficiency and measurement precision
 - Use SPA-Net to reconstruct other sophisticated final states, such as ttW, ttt, etc.

Summary

- Observation of tttt with full Run2 data in the multilepton channel with the ATLAS experiment
 - The first observation of 4-top: the observed (expected) significance of 4-top reaches 6.1 (4.3) σ
 - Many new physics interpretations also included: top-Higgs Yukawa coupling, EFT, Higgs oblique
 - Paper link: Eur. Phys. J. C 83 (2023) 496
 - 4top Run3 analysis is also on-going
- The machine learning method is also applied for the further top reconstruction in the 4top multi-lepton final state





Backups

ttW background

- In the evidence paper, large uncertainties were assigned to ttW+jets coming from template fit. Based on ttW+/- charge asymmetry, data/MC difference reached 125%(300%) with 7jets (>=8jets)
- The impact of μ_{tttt} from the ttW+jets systematics was 10% (one of the leading systematic uncertainties)
- A data-driven method is developed to get rid of these ad-hoc uncertainties

- Use kinematics from MC but the dependency is corrected to data by a parameterized model based on a staircase and Poisson scaling
- ttW contribution per jet bin parameterized as:

$$NF_{t\bar{t}W@nj} = NF_{t\bar{t}W^+@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}] + NF_{t\bar{t}W^-@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}]$$

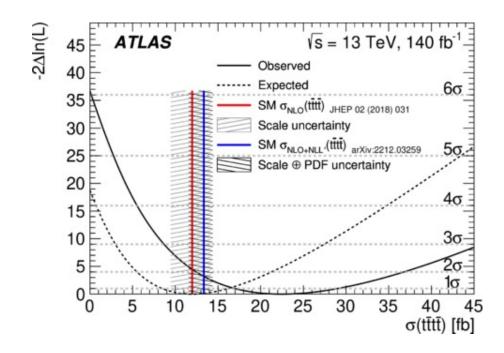
Many checks were done to validate the parameterized function A stat-only fit to *ttW* Asimov MC (with different choice or generators) to test stability: the good agreement between the postfit *ttW* estimation and the Asimov *ttW* MC

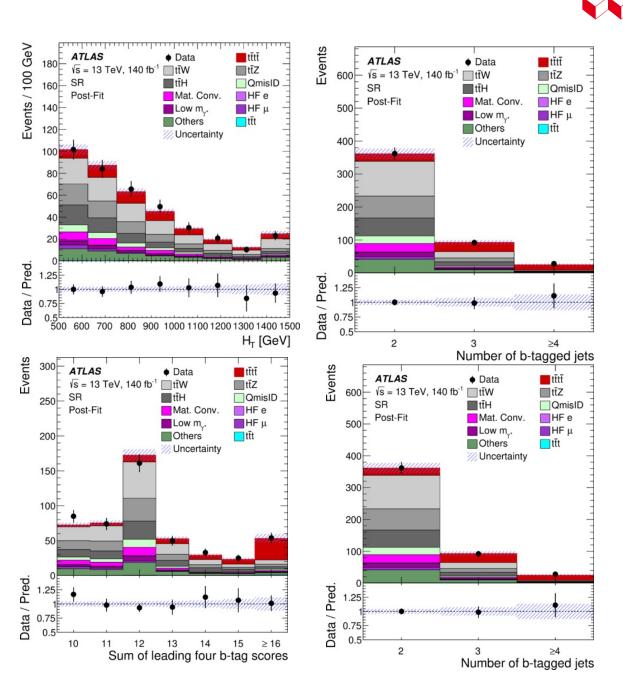
Objection Definition Details

Generally, the objection definitions is similar to the evidence paper

Main changes coming from:

- b-tagging changed from mv2c10 to DL1r
- Loosing the pT selection for lepton (jets) from 28 (25) GeV to 15 (20) GeV
- Lepton isolations changed to PLIV to suppress fake leptons


	Elec	etrons	Muons		Jets	<i>b</i> -jets
	loose	tight	loose	tight		
$p_{\rm T}$ [GeV]	>	15	> 15		> 20	> 20
$ \eta $	< 1.37 or	1.52 - 2.47	< 2.5	5	< 2.5	< 2.5
ID quality	mediumLH ECIDS (<i>ee</i> , <i>eµ</i>)	tightLH ECIDS ($ee, e\mu$)	mediu	m	cleaning + JVT	DL1r 77%
Isolation	Loose_VarRad	PLImprovedTight	PflowLoose_FixedRad	PLImprovedTight		
Track vertex :		- 5	- 2			
$- d_0/\sigma_{d_0} $	< 5		< 3			
$ - z_0\sin\theta $ [mm]	<	0.5	< 0.5)		


Regions Four Top

Region	Channel	N _j N _b Other		Fitted		
		J	selection		variable	
CD L		1 < N < 6	≥ 1	ℓ_1 or ℓ_2 is from virtual photon (γ^*) decay	avant viald	
CR Low m_{γ^*}	SS, ee or $e\mu$	$4 \le N_j < 6$		ℓ_1 and ℓ_2 are not from photon conversion	event yield	
CR Mat. Conv.	SS, ee or $e\mu$	$4 \le N_{\rm j} < 6$	≥ 1	ℓ_1 or ℓ_2 is from photon conversion	event yield	
				$100 < H_{\rm T} < 300 {\rm GeV}$		
	<u></u>	> 1	= 1	$E_{\rm T}^{\rm miss} > 50 { m ~GeV}$	$-\ell_3$	
CR HF μ	$e\mu\mu$ or $\mu\mu\mu$	≥ 1		total charge = ± 1	$p_{\mathrm{T}}^{\ell_3}$	
				$100 < H_{\rm T} < 275 { m GeV}$		
		> 1	1	$E_{\rm T}^{\rm miss}$ > 35 GeV	l3	
CR HF e	eee or $ee\mu$	≥ 1	= 1	total charge = ± 1	$p_{\mathrm{T}}^{\ell_3}$	
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_i < 6$		
CR $t\bar{t}W^+$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	Ni	
0				total charge > 0		
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_i < 6$		
CR $t\bar{t}W^-$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	Ni	
2				total charge < 0	5	
				ℓ_1 and ℓ_2 are not from photon conversion		
CR 1b(+)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	Ni	
				total charge > 0	5	
				ℓ_1 and ℓ_2 are not from photon conversion		
CR 1b(-)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	Ni	
				total charge < 0	5	
SR	2LSS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 { m ~GeV}$	GNN score	

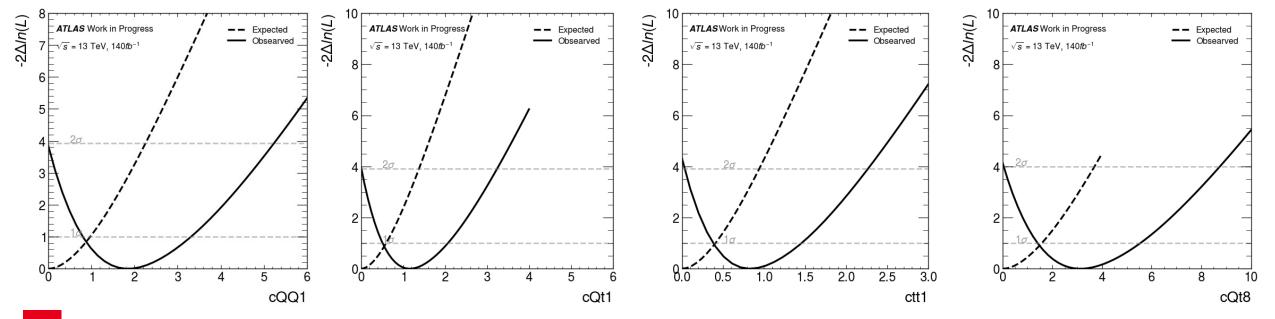
Fitting Results

- The fitting result of the signal region
- The negative log-likelihood values as a function of the tttt signal cross section. The continuous line represents the observed likelihood while the dashed line corresponds to the expected one.

Detailed Uncertainties - tttt

Uncertainty source	$\Delta \sigma$	[fb]	$\Delta \sigma / \sigma$	σ [%]
Signal modelling				
$t\bar{t}t\bar{t}$ generator choice	+3.7	-2.7	+17	-12
$t\bar{t}t\bar{t}$ parton shower model	+1.6	-1.0	+7	-4
Other $t\bar{t}t\bar{t}$ modelling	+0.8	-0.5	+4	-2
Background modelling				
$t\bar{t}H$ +jets modelling	+0.9	-0.7	+4	-3
$t\bar{t}W$ +jets modelling	+0.8	-0.8	+4	-3
$t\bar{t}Z$ +jets modelling	+0.5	-0.4	+2	-2
Other background modelling	+0.5	-0.4	+2	-2
Non-prompt leptons modelling	+0.4	-0.3	+2	-2
$t\bar{t}t$ modelling	+0.3	-0.2	+1	-1
Charge misassignment	+0.1	-0.1	+0	-0
Instrumental				
Jet flavour tagging (<i>b</i> -jets)	+1.1	-0.8	+5	-4
Jet uncertainties	+1.1	-0.7	+5	-3
Jet flavour tagging (light-flavour jets)	+0.9	-0.6	+4	-3
Jet flavour tagging (c-jets)	+0.5	-0.4	+2	-2
Simulation sample size	+0.4	-0.3	+2	-1
Other experimental uncertainties	+0.4	-0.3	+2	-1
Luminosity	+0.2	-0.2	+1	-1
Total systematic uncertainty	+4.6	-3.4	+20	-16
Statistical				
Intrinsic statistical uncertainty	+4.2	-3.9	+19	-17
$t\bar{t}W$ +jets normalisation and scaling factors	+1.2	-1.1	+6	-5
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.4	-0.3	+2	-1
Total statistical uncertainty	+4.7	-4.3	+21	-19
Total uncertainty	+6.6	-5.5	+29	-25

New Physics Interpretations - EFT


EFT Linear parameterzation:

- Get the upper limit of the EFT coefficient at 95% CL, assuming linear term only
- The wider limit compared to the quadratic interpolation shows the importance of the quadratic terms

 $\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i \le j} C_i C_j \sigma_{i,j}^{(2)}$

Limits on EFT operators sensitive to four top production (linear interpolation)

Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
\mathcal{O}^{1}_{OO}	2.3	5.3
\mathcal{O}_{Ot}^{I}	1.4	3.4
\mathcal{O}_{tt}^1	1.0	2.4
\mathcal{O}_{Qt}^8	3.6	8.8

HT Fitting Results

HT fit in this analysis also get the significance over 5 sigma

Significance	GNN	HT
Expected (σ)	4.3	2.7
Observed (σ)	6.1	5.0

Channel	Selection criteria
Common	$N_j \ge 6, N_b \ge 2$ and $H_T > 500$ GeV
SR2b2l	SS events with $N_b = 2$
SR2b31	multilepton events with $N_b = 2$
SR3b2l	SS events with $N_b = 3$
SR3b31	multilepton events with $N_b = 3$
SR4b	events with $N_b \ge 4$