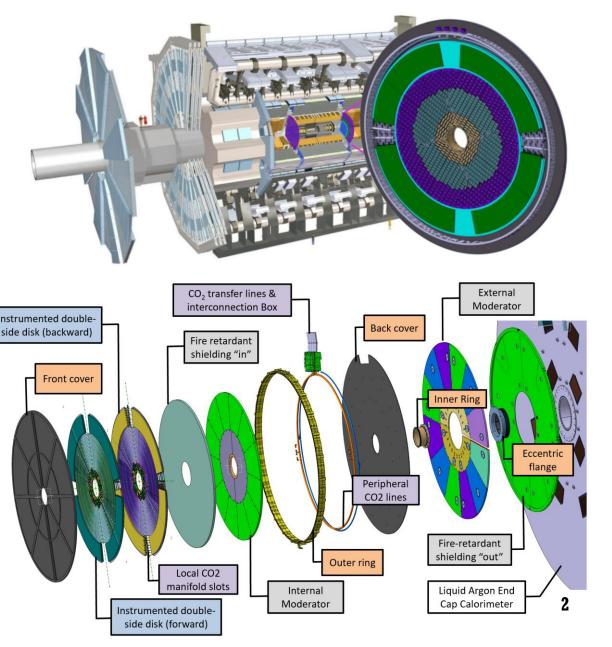
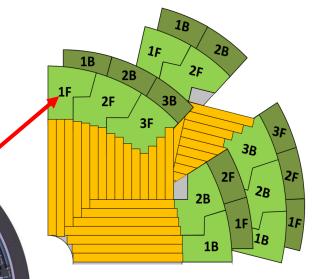


Jie Zhang (IHEP) On behalf of the HGTD project


15th France China Particle Physics Network/Laboratory Workshop June 11, 2024, Bordeaux

INTRODUCTION

- High Granularity Timing Detector (HGTD)
 - Silicon detector with coarse spatial resolution but precise timing
 - ~3.6 million 1.3×1.3 mm² pixels with Low-Gain Avalanche Detector (LGAD) technology
 - 6.1 m² active area
- Pileup rejection
 - Time resolution at the start (end): 30 (50) ps per track / 35 (70) ps per hit
- Luminosity measurement
 - Goal for HL-LHC: 1% luminosity uncertainty
 - Count number of hits at 40 MHz (bunch-by-bunch)
- Detector structure
 - Two end-caps
 - $z \approx \pm 3.5$ m from the nominal interaction point
 - 110 < r < 1000 mm
 - Active detector region: $2.4 < |\eta| < 4.0$
 - Each end-cap
 - Two instrumented disks, rotated by 15°


Global view of the HGTD

INTRODUCTION

- On each disk:
- Four quadrants
- Double-sided layers mounted on a cooling plate
- 3 ring layout for front-end modules

Peripheral Electronics Boards (PEB)

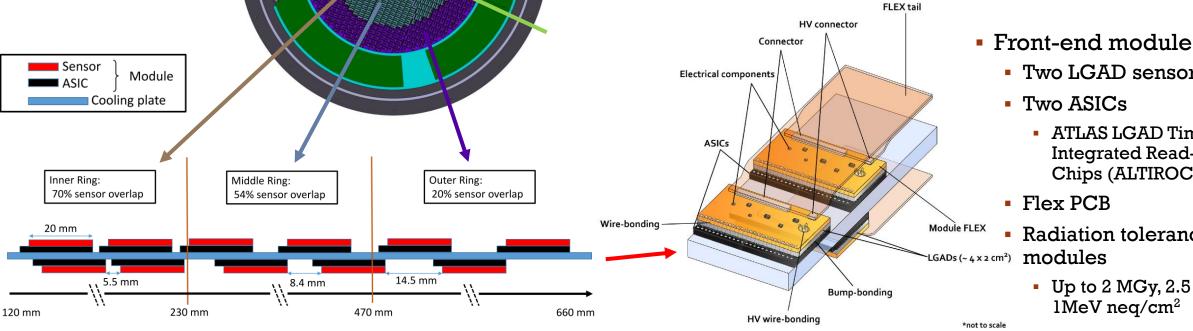
- Six types of PEB
 - Board 1F, 2F, 1B and 2B can be used both on front and back
 - According to the optimization of mirror structure for module layout
 - Each board covers three or more readout rows in order to have a similar number of modules

Two ASICs

Flex PCB

Two LGAD sensors

ATLAS LGAD Timing


Radiation tolerance for

1MeV neg/cm²

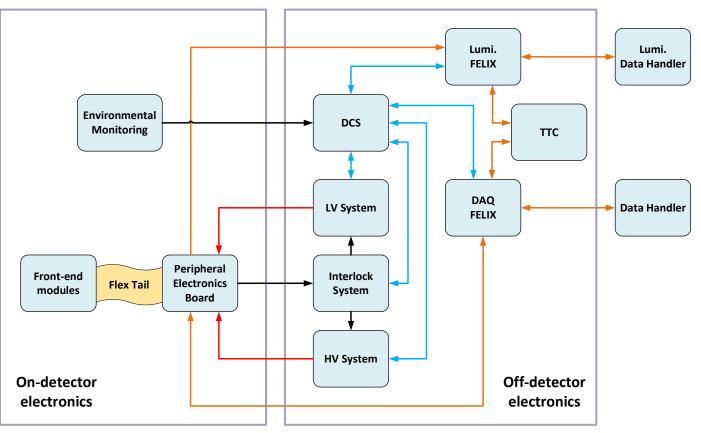
• Up to 2 MGy, 2.5×10^{15}

Integrated Read-Out Chips (ALTIROC)

The front-end modules are connected via flex tails

Overlap between the modules on the front and back of a cooling disk

(2 ASICs + 2 sensors)/module

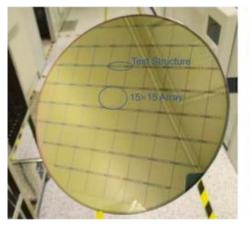


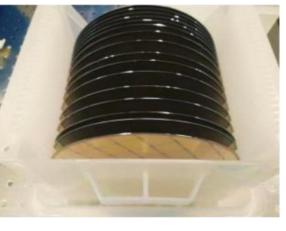
OVERVIEW OF HGTD READOUT ELECTRONICS

- On-detector
 - Front-end modules
 - Flex tail cables
 - Peripheral Electronics Boards (PEB)
- Off-detector
 - Data Acquisition System (DAQ)
 - Luminosity System
 - Timing, Trigger and Control (TTC)
 - Detector Control System (DCS)
 - Low Voltage (LV)/High Voltage (HV) system
 - Interlock system

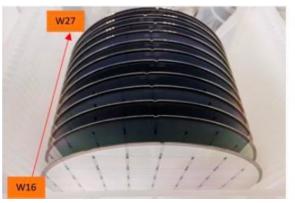
Basic functions of PEB

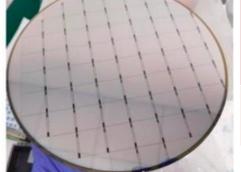
- Control, monitoring & data aggregation and transmission
 - lpGBT, VTRx+, MUX64
- Power-supply distribution: LV & HV
 - bPOL12V, HV filter
- Thermistor connection between the front-end modules and the interlock system


HGTD electronics architecture


LGAD SENSOR

□ Pre-production


IHEP-IME


8" wafer

USTC-IME

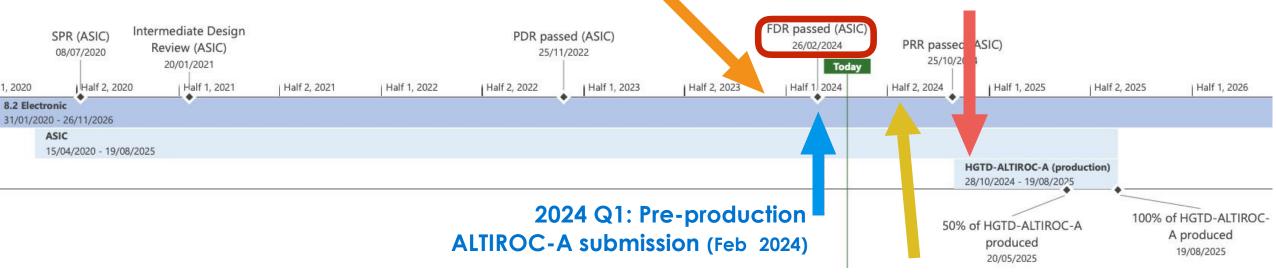
52 sensors per wafer

> HGTD requirements

- 16064 good sensors installed on detector •
- Production: 21700 good sensors (for module production yield of 74%)
- Pre-production: 5% of the total production $\rightarrow \sim 1100$ sensors

117 wafers have been fabricated

	Wat	fers	Sensors			
	IHEP-IME	USTC-IME	IHEP-IME	USTC-IME	Total	
Fabricated	90	27	4680	1404	6084	
Passing pre- production requirements	52	9	1702	205	1907	
Pre-production with UBM, so far	22	5	774	118	892	

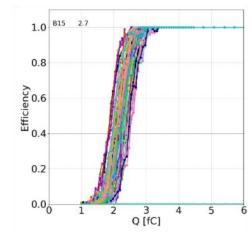

Asked for PRR at the end of June, but the possible ulletdate is in the middle of July.

2023 Q4: Finished ALTIROC3 validation: beam test + irradiation, and designed pre-prod ASIC (HGTD-ALTIROC_A)

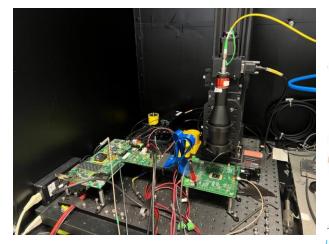
2024 Q4-2025 Q3: HGTD-ALTIROC-A production and QA/QC tests with probe station

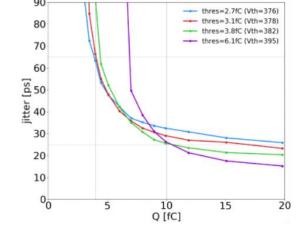
2024 Q3: HGTD-ALTIROC-A validation tests

- ALTIROC3 is the last prototype before pre-production
- ALTIROC-A is now the production chip
 - First wafers released from TSMC, will ship to IMEC between 4th and 5th week of June

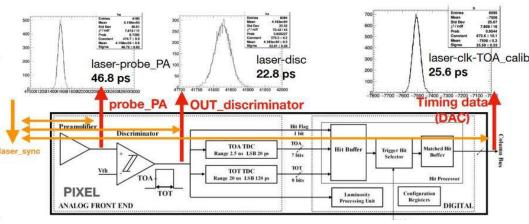

(including assembly and TID irradiation)

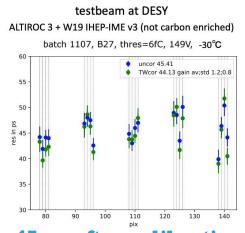
ASIC: ALTIROC




□ ALTIROC3 validation (ASIC + sensor)

Testing from ~April 2023 to February 2024, before FDR decision




Lowest detectable charge~2.7fC

Jitter: 25 ps @ 10 fC, < 65 ps @ 4 fC

~45 ps after calibration and time walk correction

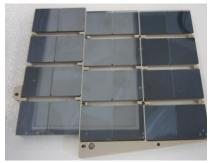
- ALTIROC3 satisfies or is close to satisfy HGTD requirements
 - A few minor digital and analog modifications were included in ALTIROC-A

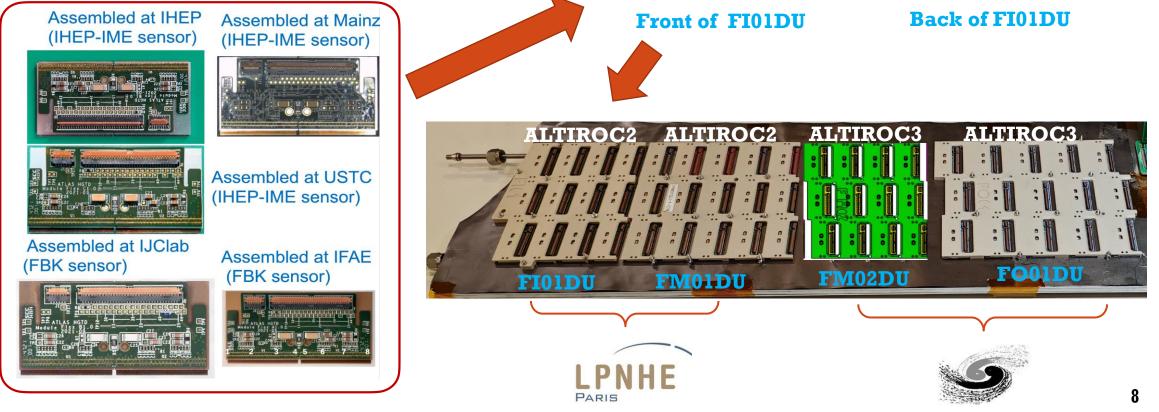
LASER tests

 $\sqrt{(25.62 - 22.82)} = 11.6 \text{ ps}$ (tdc and ck jitter contributions)

MODULE AND DETECTOR UNIT ASSEMBLY

□ 5 sites (out of 6) have assembled modules up to specs

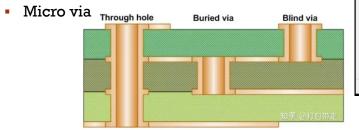

➤ More than 60 modules assembled

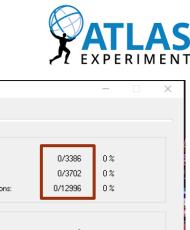

Laboratoire de Physique des 2 Infinis

2 sites (LPHNE, IHEP) has assembled detector units (ready)

Three Detector Units (DU) already in the demonstrator

PEB 1F

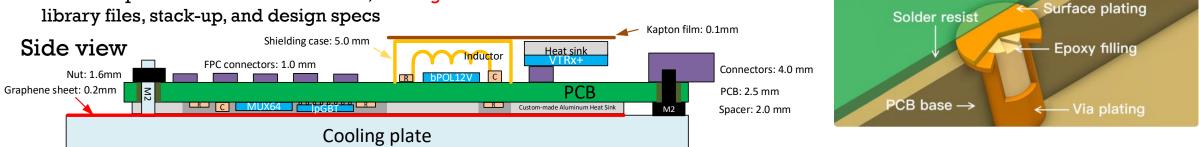

Peripheral board	Modules	lpGBT	bPOL12v	MUX	VTRx+
1F	55	9+3	52	9	9


Key dimensions

- Total thickness: 9.7 mm
 - Shielding case: 5.0 mm
 - PCB: 2.5 mm
 - Spacer: 2.0 mm
 - Others: 0.1~0.2 mm
- 55 FPC connectors
 - Center to center distance: 6.5 mm
- 52 bPOL12v power blocks
 - Size: 24 mm x 14.5 mm
 - Height above PCB: 5 mm
 - Height under PCB: 2 mm
- PEB 1F prototype designed by IHEP, fabricated by Nanjing University
- Other shapes: derived from this board, sharing library files, stack-up, and design specs

Complex PCB

- High speed, low loss multi-layer material
 - Impedance control
- Halogen free
 - EM-890 or IT-170/988 or R-5375(E)
- Symbols and nets
 - 3386 components, 12996 connections
- 22 layers PCB for PEB 1F, includes:
 - 8 layers for signals
 - 2 layer for HV and HV return ground
 - 4 layers for ground
 - 8 layers for power
- HDI (High Density Interconnector)

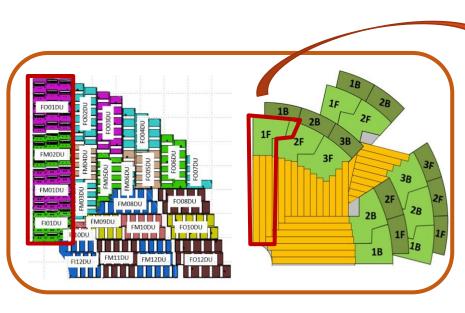

9

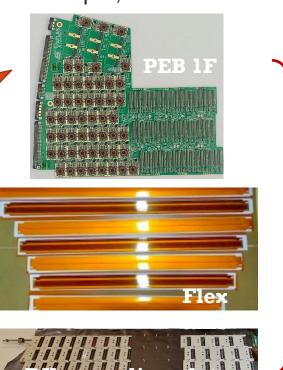
Symbols and nets		
Unplaced symbols:	0/3386	0%
Unrouted nets:	0/3702	0%
Unrouted connections:	0/12996	0%
Shapes		
Isolated shapes:	0	
Unassigned shapes:	0	
Out of date shapes:	0/397	Update to Smooth
Dynamic fill:	Smooth OR	ough 🔿 Disabled
DRCs		
DRC errors: Up To Date	. 0	Update DRC
Shorting errors:	0	🗹 On-line DRC
Waived DRC errors:	0	
📕 Waived shorting erro	rs: O	
Statistics		
Last saved by:	palzh	
Editing time: 9	347 hours 3 minutes	Reset
ОК	Refresh	Help

🛃 Status

Status

VIPPO / POFV: Via-in-Pad Plated Over PCB

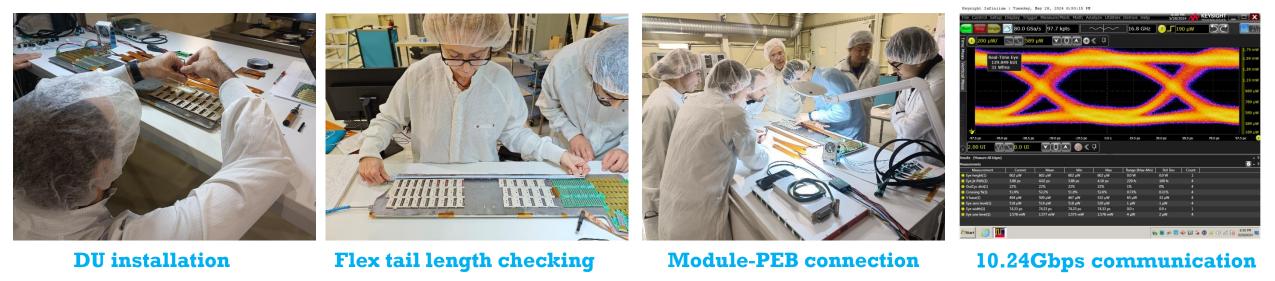

Top view with


shielding cages

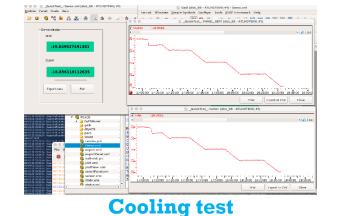
DEMONSTRATOR

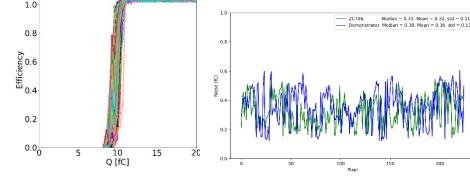
Demonstrator at CERN

- With full chain from module to DAQ server
- PEB 1F + 42 modules in 3 columns + Flex tails + HV + cooling
 - PEB 1F: move forward to FDR
 - Flex tails: full set of flex tails fabricated
 - HV: FDR passed with recommendations in April, under bidding by IHEP


Demonstrator at CERN (Building 180)
Cooling and vessel designed by IJCLab-Orsay

DEMONSTRATOR


□ Testing ongoing with demonstrator

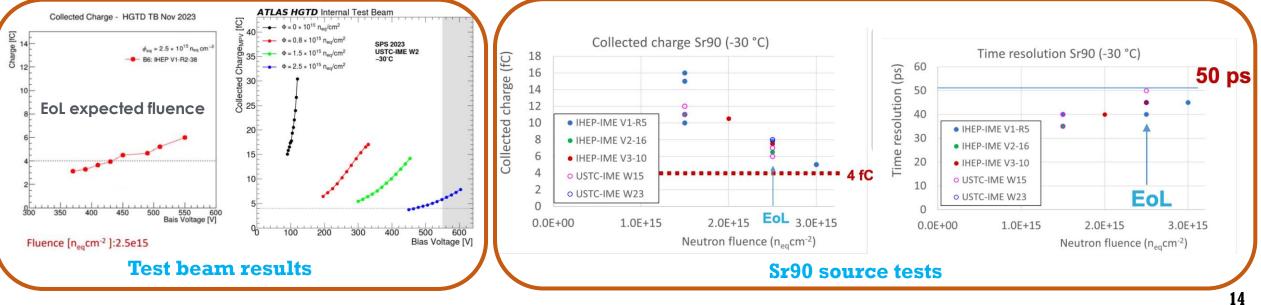

The activities based on the demonstrator are crucial for validating the design, components installation, and connections.

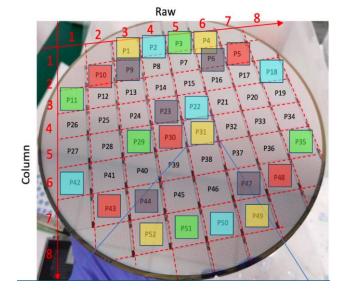
HV test

Charge scanning and noise analysis 11

SUMMARY

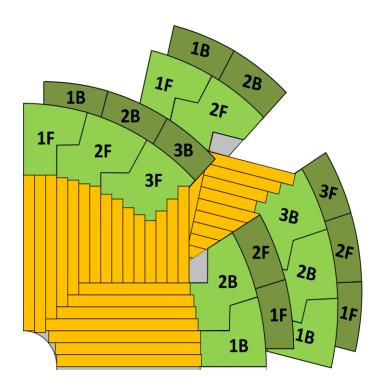
□ Good progress in all the main areas of the project


- Pre-production sensors so far in very good performance
 - PRR at the middle of July
- ALTIROC-A taped-out
 - A few minor digital and analog modifications included in ALTIROC-A
 - Finished FDR and ALTIROC-A submission in Feb., engineering run almost done, start to test soon
- Three detector units with 42 modules available and tested
 - The fourth detector unit under assembly
- PEB 1F prototype finished
 - Finished vendor qualification
- > A lot of tests performed with demonstrator
 - under test at low temperature in CERN


LGAD SENSOR

□ Pre-production QA/QC

- Full QA/QC deployed for pre-production and final production
 - Full-size Sensor Quality Check by vendor, check by HGTD on a subsample
 - Irradiation Tests (IT) using Sr90 source and test beam
 - Process Quality Control using Test Structures (QC-TS)
- Few pre-production wafers were used for early tests ahead of UBM
- Pre-production sensors so far have very good performance
 - All UBM-ed wafers tested so far are within the 4 fC and 50 ps specification



PERIPHERAL ELECTRONICS BOARDS (PEB)

- Six types of PEB to be designed (front and back side)
 - Board 1F, 2F, 1B and 2B can be used both on front and back
 - According to the optimization of mirror structure for module layout
 - Each board covers three or more readout rows in order to have a similar number of modules
- The front-end modules are connected via flex tails, arranged in rows, to the PEB @ 660 < r < 920 mm

PEB	Front side	Back side
1F	54 modules	55 modules
2 F	52 modules	56 modules
3 F	39 modules	-
3 B	-	39 modules
2B	52 modules	48 modules
1B	54 modules	53 modules

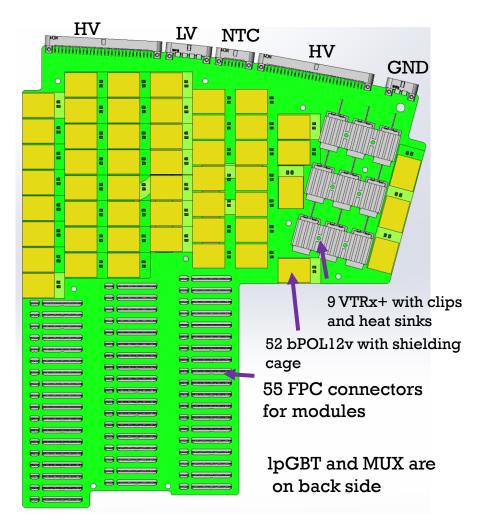
Number of modules attached to the different PEBs at the front and back sides

One quadrant of the two instrumented disks. The PEBs (in green) are attached to the readout rows

• 80 boards per HGTD vessel, thus 160 boards in total.

PEB	1F	2 F	3 F	3 B	2 B	1 B
Total Qty.	32	32	16	16	32	32

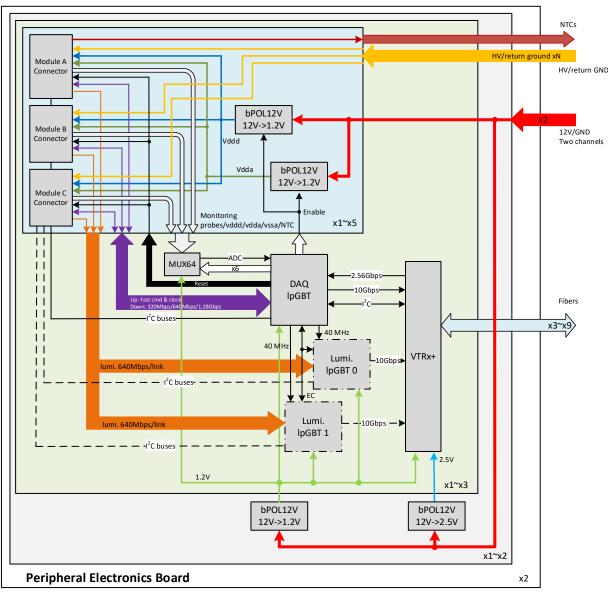
CHALLENGES TO ON-DETECTOR ELECTRONICS


Basic functions of PEB

- Control, monitoring & data aggregation and transmission
 - 8032 front-end modules
 - Clock and fast command distribution
 - Up to 50k analog monitoring
 - TOT/TOA data, up to 10 Tbps to TDAQ, on average, 63 Gbps per PEB
- LV & HV power-supply distribution
 - Low noise, heat dissipation, system level shielding and grounding considerations
- Thermistor connection between the front-end modules and the interlock system
 - 896 Negative Temperature Coefficient (NTC) sensors to monitor disk temperature
- Area and height restrictions
 - Limited surface area for connectors, chips and power blocks
 - Height < 10 mm, hard to find low-profile air-core inductors and connectors

Radiation tolerance for PEB

From simulation	Safety factor	Design requirement
$< 1.4 \text{ x } 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3	$2.73 \ge 10^{15} \text{ neq} / \text{cm}^2$
$< 0.32 \text{ x} 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3 x 2	$1.25 \ x \ 10^{15} \ neq \ /cm^2$
< 36 Mrad (0.36 MGy)	1.5	54 Mrad (0.54 MGy)
	$< 1.4 \ge 10^{15} \text{ neq /cm}^2$ $< 0.32 \ge 10^{15} \text{ neq /cm}^2$	< $1.4 \ge 10^{15} \text{ neq}/\text{cm}^2$ 1.5 x 1.3 < $0.32 \ge 10^{15} \text{ neq}/\text{cm}^2$ 1.5 x 1.3 x 2


- Magnetic field
 - Amplitude: 0.382 T ~ 0.433 T
 - Angle 23.1° ~ 32.3°
- Operating Temperature:
 - On disk (with front-end modules and CO2 cooling): -35 $^\circ\!\mathrm{C}$ ± 5 $^\circ\!\mathrm{C}$
 - Testing/debugging (with cooling): -40 $^\circ \!\!\! C$ to 55 $^\circ \!\!\! C$

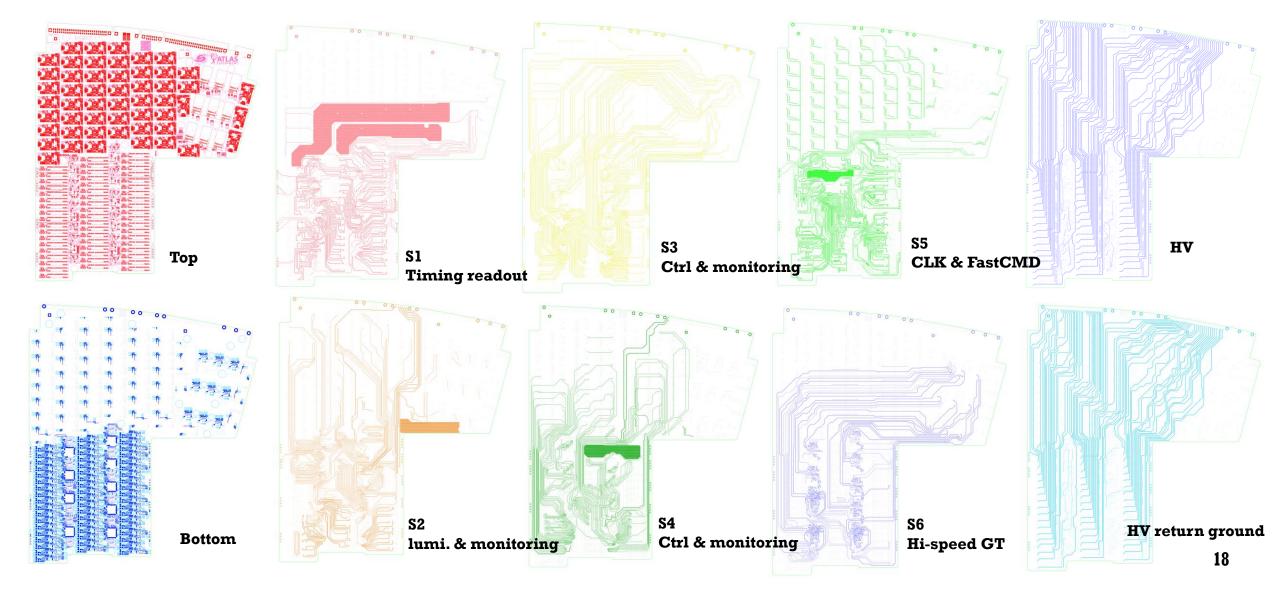
Top view of PEB 1F

CONCEPTUAL DESIGN OF PEB

- Two LV channels
 - Each up to 12A @ 12V
- Up to 3 modules share two bPOL12v
 - One for analog power, the other for digital power
- One TDAQ lpGBT and 1~2 luminosity lpGBTs share one VTRx+
- Control
 - I2C of lpGBT
 - Module and VTRx+ configuration
 - I2C0 of TDAQ lpGBT is connected to the VTRx+ only
 - Output
 - Module reset
 - Module power on/off
 - MUX64 channel selection
- Monitoring
 - ADC of lpGBT
 - Module state monitoring
 - VDDA, VDDD, GNDA, PROBE0/1(internal state and temperature), NTC
 - PEB state monitoring
 - lpGBT voltage, temperature
 - VTRx+ RSSI(average optical power of the received light) and NTC
 - bPOL12v temperature
 - On board NTC
 - Input of lpGBT
 - bPOL12v power good signal

Each lpGBT has a 8 channel multiplexed ADC. With ~7 modules/lpGBT, an external 64-to-l MUX is required: MUX64 17

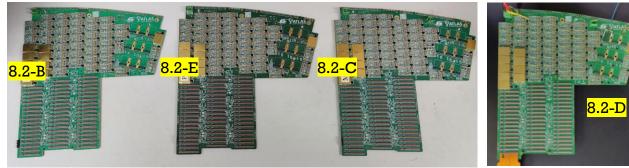
bPOL12V:


provide the 1.2V analog and digital voltages for the ALTIROCs

lpGBT:

Bi-directional slow control and monitoring communication between the FELIX and the lpGBT is done via the IC and EC channels.

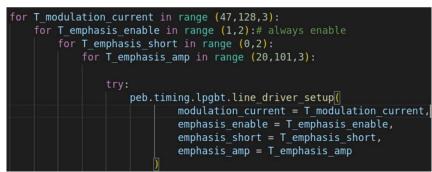
PEB 1F ROUTING



PEB 1F-PROTOTYPE FABRICATION AND PRE-QUALIFICATION

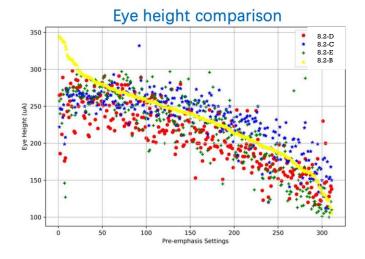
- Highly qualified vendor to be chosen for the PCB fabrication and assembly.
 - The qualification process includes participation of the candidate vendors in the PEB prototype, and evaluation of the quality of the delivered product
 - 4 companies joined PEB 1F prototype fabrication by Nanjing University

Vendor	2022 annual revenue in China (*)	PCB Material	Start date	Finish date	Fabrication time	Comment		Assembly: To verify the PCB and save the chips, only one group of each board is assembled	
8.2-D	In top20	IT-170	Sep. 27 th	Nov. 20 th	54 days	Failed to merge the sandwich in the first batch, alignment problem; The second batch is OK	l group -	Finished at Nov. 29 th , 2023	
8.2-C	In top100	EM-890K	Sep. 15 th	Dec. 13 th	89 days	Failed in the first batch; The second batch is OK	l group -	Finished at Dec. 21 st , 2023	
8.2-B	In top5	EM-890K	Nov. 10 th	Dec. 19 th	<mark>39 days</mark>	High quality, promised fabrication time	l group Full assembly	Finished at Jan. 2nd, 20242 pcs finished at Jan. 15th, 2024One kept in IHEPOne sent to CERN at Jan. 22th, 2024The third one under assemble for reliability testing	
8.2-E	Taiwan	TU-883A	Nov. 28 th	Dec. 18 th	20 days	High quality, very fast, but need international transport	l group -	Finished at Dec. 27 th , 2023	

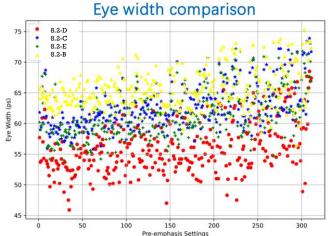


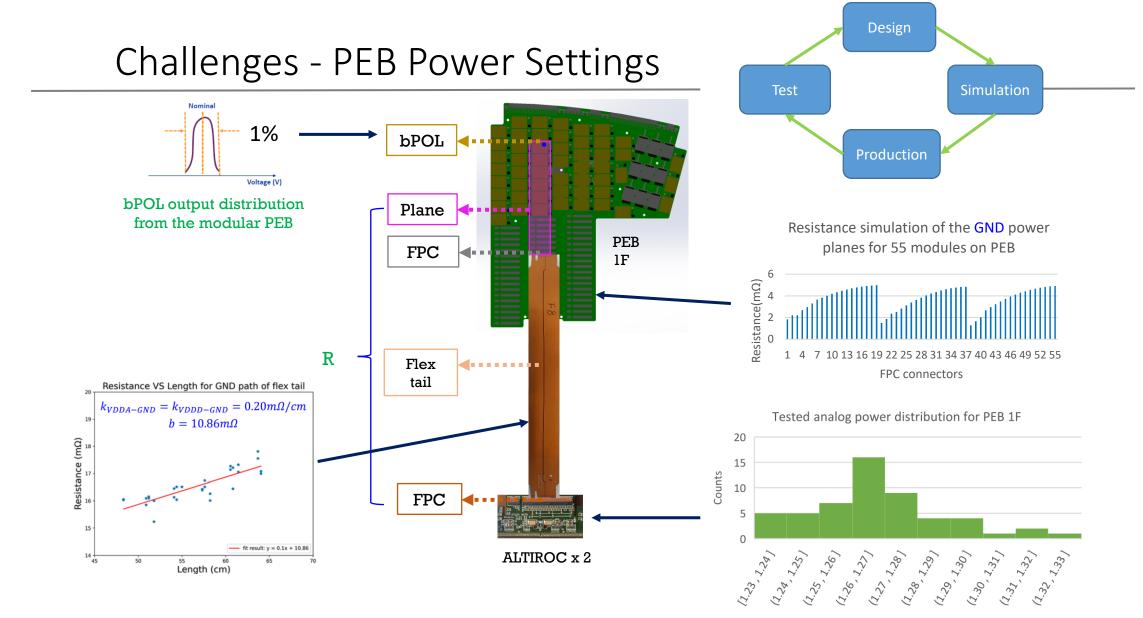
*Note: https://www.eet-china.com/mp/a133351.html

Photos of PEB 1F from four manufactures


PEB 1F-PRE-QUALIFICATION

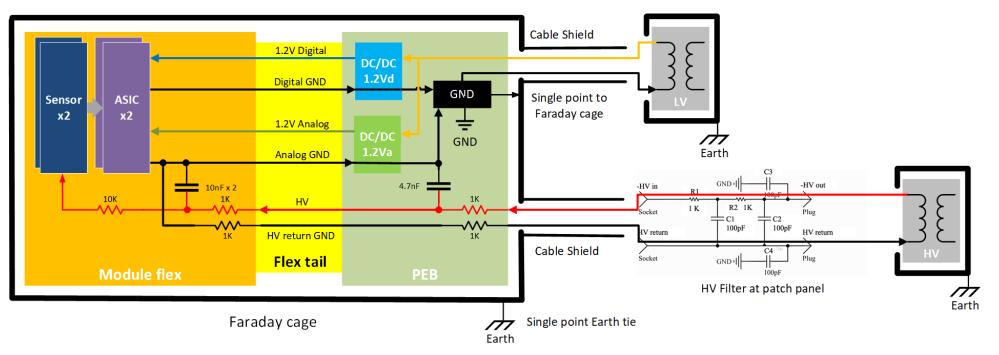
- Eye Diagram Test for 10Gbps
 - Setup
 - Use FELIX to provide down link data for lpGBT clock recovery
 - Use UPL to configure the pre-emphasis parameters of lpGBT
 - Use PC to configure Oscilloscope and record eye diagram parameters and waveforms.
 - Follow the steps below for scanning.


Down link FELIX Up link(10G) PFB Adapter Oscilloscope 20G



Test result

- Eye height: 8.2-B, 8.2-C are better than 8.2-D, 8.2-E
- Eye width: 8.2-B > 8.2-C > 8.2-E > 8.2-D
- The result is consistent with the materials used by each vendor
- We plan to use 8.2-B as the qualified vendor
 - One of the "official" vendors from CERN.



Voltage/V

GROUNDING & SHIFLDING

- Single point connection
 - The hermetic vessel acts as the Faraday cage, which is referenced to the experiment ground by a single dedicated copper braid per end cap.
- Each PEB will have be referenced to the Faraday cage by one single low ohmic strap to the conductive layer of the outer ring.
 - The modules and the PEB shall have thermal conductive connection to the cooling plate but be electrically isolated from the cooling plate.
- The stage2 LV supplies are referenced to ground by their return lines being connected to the ground planes of the PEB which they supply.
- The HV at each module is then referenced to ground through the analog ground plane at the module end.