TDR of A Reference Detector for The CEPC

Jianchun Wang IHEP, CAS

15th France China Particle Physics Network/Laboratory Workshop June 10-14, 2024, Bordeaux

- ❑ The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory.
- ❑ To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

Both **50 MW** and $t\bar{t}$ modes are considered as upgrades

Conceptual Detector Designs

Requirements of Detector and Key Technologies

These specifications continue to be optimized

- ❖ International detector R&D efforts for the future Higgs factories
- ❖ Some were within the international detector R&D collaborations: CALICE, LCTPC, & RD*
- ❖ Now much broader participation in the ECFA DRD program

Technologies for Ref-TDR

R

- ❖ Prepare TDR of a reference detector, aiming for domestic endorsement, as recommended by the CEPC IAC
- ❖ Will continue to seek for better technologies, and decide the final detectors within the CEPC international collaborations

Silicon Pixel Vertex Detector

3 × dual-layer design

Goal: σ (IP) ~ 5 µm for high P

Key specifications:

- **E** Single point resolution \sim 3 μ m
- **•** Low material $(0.15\% X_0 / \text{layer})$
- **•** Low power $(< 50$ mW/cm²)
- Radiation hard (1 Mrad/year)

JadePix4 356×498 array of 20×29 μ m² $\sigma_{x/y}$ ~ 3-4 μ m, σ_t ~ 1 μ s, ~100 mW/cm²

TaichuPix3 1024 \times 512 array of 25 \times 25 μ m²

A TaichuPix-based prototype detector was tested at DESY in April 2023

Spatial resolution \sim 4.9 μ m

6/10/2024

Continued R&D on The Vertex Detector

Al alloy support rings

- \Box Further efforts on the sensor design to reach key specifications
	- MOST3 goal: $\sigma_{x/y} \sim 3 \mu m$, $\sigma_t \sim 100$ ns, heat dissipation ~100 mW/cm²
	- Using 65 nm instead of 180 nm technology can reduce power to ~30%
- ❑ Optimize the mechanical support structure, cabling & cooling scheme
- ❑ A design of long barrel only vs a combination of short barrel + endcap
- \Box Air cooling for 25-28 °C operation temperature, air speed ~2.3 m/s

Chip temperature under cooling during beam test: Max 28.9 °C

- Assume that 40 mW/cm² can be reached
- Thermal contact of the inner layer with the beam pipe at 16 $\mathrm{^{\circ}C}$

Air cooling test setup

Pixelated TPC

- ❖ Initial TPC design has difficulty at high luminosity Z pole due to IBF
- A pixelated TPC of (500 μ m)² readout pads reduces IBF×Gain ~1 at G=2000, and achieves σ (r- Φ) ~100 μ m
- \div Full simulation study also shows 3σ K/ π separation at 20GeV
- $*$ Preliminary mechanical design \Rightarrow RL = 15% X_0 for endcap and 0.55% X_0 for barrel part
- ❖ Plan to have a test beam this fall to characterize the performance and validate the design

Silicon Pixel Inner Tracker

- □ Focus on HV-CMOS pixel inner tracker of $~15-20$ m^{2.}
- ❑ Ladder design for barrel and disc for endcap
- ❑ Given what happened with the TSI 180nm production line, it is better to have backup foundries
- ❑ Exploring SMIC 55 nm and TPSCo 65 nm processes

Zone 2

 20×32 pixels, $72\times36\mu$ m² Designs of charge collection & cell electronics

COFFEE2 chip with SMIC 55 nm

Zone 1

6 \times 9 pixels, 80 \times 40 μ m² Diodes of different charge collection

Zone 3

26 \times 26 pixels, 25 \times 25 μ m² Peripheral digital processing and communication

process CFRP truss structure: ~0.18% X₀ Outer layer may be attached to TPC

COFFEE2 Test Board

AC-LGAD Outer Tracker (Time Tracker)

- □ The outer silicon tracker \sim 85 m², the Z precision is not crucial \Rightarrow cost-effective Si strip detector
- ❑ Need a supplemental PID to TPC at low energy \Rightarrow LGAD ToF
- ❑ AC-LGAD Time Tracker combines the two needs in one detector, and expect σ_t ~30 ps, σ_{Rb} ~10 µm

Strip AC-LGAD by IHEP / IME

Strip size 5.6 mm \times 100 µm Pitch: 150, 200, 250 um

Prototype PFA Calorimeters

 \Box ScW-ECAL: transverse 20 \times 20 cm, 32 sampling layers

▪ ~6,700 channels, SPIROC2E (192 chips)

 \Box AHCAL: transverse 72×72 cm, 40 sampling layers

■ ~13k channels, SPIROC2E (360 chips)

HCAL: scintillator (tile)+SiPM, steel

Prototypes developed within **CALICE**

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann Institute

4D Long Crystal Bar Calorimeter

- ❑ Double-end readout, potential positioning with timing
- ❑ Save readout channels, minimize dead materials
- ❑ Challenging in pattern recognitions with multiple particles

Testbeam of Prototype 4D Crystal ECAL

- ❖ A successful testbeam @ DESY, Oct 2023
- ❖ To address critical issues at system level
	- Validation: design of crystal-SiPM, light-weight mechanical structure
	- **EM shower performance**
- ❖ Module development
	- ◼ BGO crystal bars from SIC-CAS
	- SiPM: 3×3 mm² sensitve area, 10um pixel pitch
	- ◼ Front-end electronics with CITIROC, by **CNRS OMEGA.** An ASIC with a large dynamic range would be more desirable

Glass Scintillator HCAL

- ❑ To replace plastic scintillator with high density, low cost glass scintillator, for better hadronic energy resolution and BMR
- ❑ Key specifications:
	- **Example 1000~2000 ph** / MeV
	- **•** Density: $5-7$ g/cm³
	- Scintillation time: ~100 ns
- ❑ The Scintillation Glass collaboration continues to progress on the quest for better GS
- ❑ The GS1 / GS5 measurements are from (5mm)³ small size samples. Tiles of 40×40×10 mm³ are needed for GS-HCAL

LTS-based Superconducting Solenoid Magnet

- The baseline solenoid magnet was moved back to outside of HCAL with LTS coil
- Optimizing the design for better uniformity, thinner space, and cost-effectiveness.
- R&D on HTS cable continues

Magnetic flux distribution Magnetic field distribution

 $\overline{.370E-05}$ $\overline{.36549}$ $\overline{.730976}$ $\overline{1.09646}$ $\overline{1.46195}$ $\overline{1.82743}$ $\overline{2.19292}$ $\overline{2.55841}$ $\overline{2.92389}$ $\overline{3.28938}$

Muon Detector

- ➢ Muon ID, combining with magnet return
- \geq Requirement: ϵ $>$ 95%, σ _T ~1-2 ns
- \geq Total area ~ 4500 m², ~40k channels
- ➢ Top options: plastic scintillator and RPC

MDI, Beam Background, LumiCAL

❑ Interaction Region Layout/Parameters

- The inner diameter of central beampipe is 20mm
- $L^* = 1.9$ m / Detector Acceptance = 0.99
- The length of Interaction Region is ± 7 m at TDR Phase
- ❑ Beam Induced Background Estimation
	- Include major sources, both single beam and luminosity related
	- Multi-turn accelerator tracking when needed
- ❑ LYSO bar and Si pixel detector based LumiCal design

CEPC Software

- ❑ **CEPCSW** is developed based on components of Key4hep: Gaudi, EDM4hep, K4FWCore DD4hep
- ❑ Single source of detector information, but support multiple designs
- ❑ Web-based **Phoenix** tool for visualization
- ❑ Releases towards ref-TDR
	- tdr24.3 including core software
	- **tdr24.4 including tracking and bkg mixing**
	- **■** tdr24.5 including PID and muon
	- tdr24.6 including calorimeters

<https://cepcvis.ihep.ac.cn/#/>

Many Other Detector R&Ds

Optimal Timeline

