TDR of A Reference Detector for The CEPC

Jianchun Wang IHEP, CAS

15th France China Particle Physics Network/Laboratory Workshop June 10-14, 2024, Bordeaux

- □ The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

O	peration mode	ZH	Z	W+M-	tī
\sqrt{s} [GeV]		~240	~91.2	~160	~360
Rı	un Time [years]	10	2	1	~5
30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	2×10 ⁷	5×10 ⁵

Both **50 MW** and $t\bar{t}$ modes are considered as upgrades

Conceptual Detector Designs

Requirements of Detector and Key Technologies

Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{\rm m}, X/X_0 < 0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \text{ ps}$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$
Magnet system	Ultra-thin	Magnet field $2 - 3$ T
	High temperature	Material budget $< 1.5X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

These specifications continue to be optimized

- International detector R&D efforts for the future Higgs factories
- Some were within the international detector R&D collaborations: CALICE, LCTPC, & RD*
- Now much broader participation in the ECFA DRD program

Technologies for Ref-TDR

R

System	Technologies				
Vertex	CMOS Pixel	CMOS+Stitching SOI			
	SPD ITrk				
Tracker	Pixelated TPC		PID Drift Chamber		
& PID				SPD OTrk	
	AC-LGAD OTrk		LGAD ToF		
FCAL	4D Crystal Ba	ır Stereo Cr		ystal Bar	
ECAL	GS+SiPM	PS+SiPM+W		SiDet+W	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe RPC		RPC+Fe	
Magnet	LTS		HTS		
Muon	PS Bar+SiPM		RPC		
TDAQ	Conventional		Software Trigger		
BE electr.	Common		Independent		
Baseline For Comparison To Be Decided					

- Prepare TDR of a reference detector, aiming for domestic endorsement, as recommended by the CEPC IAC
- Will continue to seek for better technologies, * and decide the final detectors within the **CEPC** international collaborations

Silicon Pixel Vertex Detector

 $3 \times$ dual-layer design

Goal: $\sigma(IP) \sim 5 \ \mu m$ for high P

Key specifications:

- Single point resolution ~ 3 μm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

 $\begin{array}{l} \textbf{JadePix4}\\ 356\times498 \text{ array of } 20\times29\ \mu\text{m}^2\\ \sigma_{\text{x/y}}\sim3\text{-}4\ \mu\text{m},\ \sigma_t\sim1\ \mu\text{s},\ \text{\sim}100\ \text{mW/cm}^2 \end{array}$

 $\begin{array}{c} \textbf{TaichuPix3} \\ 1024{\times}512 \text{ array of } 25{\times}25 \ \mu\text{m}^2 \end{array}$

A TaichuPix-based prototype detector was tested at DESY in April 2023

Spatial resolution ~ 4.9 μm

6/10/2024

TowerJazz 180nm CIS process

CEP

Continued R&D on The Vertex Detector

Al alloy support rings

- □ Further efforts on the sensor design to reach key specifications
 - MOST3 goal: $\sigma_{x/y} \sim 3 \mu m$, $\sigma_t \sim 100 ns$, heat dissipation ~100 mW/cm²
 - Using 65 nm instead of 180 nm technology can reduce power to ~30%
- □ Optimize the mechanical support structure, cabling & cooling scheme
- □ A design of long barrel only vs a combination of short barrel + endcap
- □ Air cooling for 25-28 °C operation temperature, air speed ~2.3 m/s
 - Assume that 40 mW/cm² can be reached
 - Thermal contact of the inner layer with the beam pipe at 16 °C

Pixelated TPC

- Initial TPC design has difficulty at high luminosity Z pole due to IBF
- * A pixelated TPC of (500 μ m)² readout pads reduces IBF×Gain ~1 at G=2000, and achieves σ (r- Φ) ~100 μ m
- * Full simulation study also shows $3\sigma \text{ K}/\pi$ separation at 20GeV
- ✤ Preliminary mechanical design \Rightarrow RL = 15% X₀ for endcap and 0.55% X₀ for barrel part
- Plan to have a test beam this fall to characterize the performance and validate the design

Silicon Pixel Inner Tracker

- □ Focus on HV-CMOS pixel inner tracker of ~15-20 m².
- □ Ladder design for barrel and disc for endcap
- Given what happened with the TSI 180nm production line, it is better to have backup foundries
- □ Exploring SMIC 55 nm and TPSCo 65 nm processes

<u>Zone 2</u>

20×32 pixels, 72×36µm² Designs of charge collection & cell electronics COFFEE2 chip with SMIC 55 nm process

<u>Zone 1</u>

6×9 pixels, 80×40μm² Diodes of different charge collection

<u>Zone 3</u>

26×26 pixels, 25×25μm² Peripheral digital processing and communication

CFRP truss structure: ~0.18% X_0 Outer layer may be attached to TPC

COFFEE2 Test Board

AC-LGAD Outer Tracker (Time Tracker)

- The outer silicon tracker ~ 85 m², the Z precision is not crucial \Rightarrow cost-effective Si strip detector
- Need a supplemental PID to TPC at low energy \Rightarrow LGAD ToF
- AC-LGAD Time Tracker combines the two needs in one detector, and expect $\sigma_t \sim 30 \text{ ps}, \sigma_{R\Phi} \sim 10 \mu \text{m}$

Strip AC-LGAD by IHEP / IME

Strip size 5.6 mm \times 100 μ m Pitch: 150, 200, 250 µm

Prototype PFA Calorimeters

□ ScW-ECAL: transverse 20×20 cm, 32 sampling layers

~6,700 channels, SPIROC2E (192 chips)

□ AHCAL: transverse 72×72 cm, 40 sampling layers

~13k channels, SPIROC2E (360 chips)

HCAL: scintillator (tile)+SiPM, steel

Prototypes developed within CALICE

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann Institute

4D Long Crystal Bar Calorimeter

- Double-end readout, potential positioning with timing
- Save readout channels, minimize dead materials
- Challenging in pattern recognitions with multiple particles

Testbeam of Prototype 4D Crystal ECAL

Beam

- ✤ A successful testbeam @ DESY, Oct 2023
- To address critical issues at system level
 - Validation: design of crystal-SiPM, light-weight mechanical structure
 - EM shower performance
- Module development
 - BGO crystal bars from SIC-CAS
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch
 - Front-end electronics with CITIROC, by CNRS OMEGA. An ASIC with a large dynamic range would be more desirable

Glass Scintillator HCAL

- To replace plastic scintillator with high density, low cost glass scintillator, for better hadronic energy resolution and BMR
- Key specifications:
 - Light yield: 1000~2000 ph / MeV
 - Density: 5~7 g/cm³
 - Scintillation time: ~100 ns
- The Scintillation Glass collaboration continues to progress on the quest for better GS
- The GS1 / GS5 measurements are from (5mm)³ small size samples. Tiles of 40×40×10 mm³ are needed for GS-HCAL

Parameters	Unit	BGO	LYSO	GAGG	GS1	GS5
Density	g/cm ³	7.13	7.5	6.6	6.0	5.9
Hygroscopicity		No	No	No	No	No
Rad. Length, X ₀	cm	1.12	1.14	1.63	1.59	1.61
Transmittance	%	82	83	80	80	80
Refractive Index		2.1	1.82	1.91	1.74	1.75
Emission peak	nm	480	420	520	390	390
Light yield, LY	ph/MeV	8000	3000	54000	1347	1154
Energy resol., ER	%	9.5	7.5	5.0	25.3	25.4
Decay time	ns	60, 300	40	100	80,600	90,300

LTS-based Superconducting Solenoid Magnet

- The baseline solenoid magnet was moved back to outside of HCAL with LTS coil
- Optimizing the design for better uniformity, thinner space, and cost-effectiveness.
- R&D on HTS cable continues

Yoke Parameters			
Barrel yoke weight	2300 ton		
Endcap yoke weight / 2	754 ton		
Total weight	3808 ton		
Diameter	10.97 m		
Length	11.75 m		

Coil Parameters			
Central magnetic field	3 T		
Inner diameter	7300 mm		
Operating current	16702 A		
Cable length	33 km		
Inductance	11 H		
Stored Energy	1.54 GJ		
Total mass	265 tons		

Magnetic flux distribution

Magnetic field distribution

.370E-05.36549 .730976 1.09646 1.46195 1.82743 2.19292 2.55841 2.92389 3.28938

Muon Detector

- Muon ID, combining with magnet return
- > Requirement: $\epsilon > 95\%$, $\sigma_T \sim 1-2$ ns
- > Total area ~ 4500 m^2 , ~40 k channels
- > Top options: plastic scintillator and RPC

MDI, Beam Background, LumiCAL

□ Interaction Region Layout/Parameters

- The inner diameter of central beampipe is 20mm
- L* = 1.9m / Detector Acceptance = 0.99
- The length of Interaction Region is ±7m at TDR Phase
- Beam Induced Background Estimation
 - Include major sources, both single beam and luminosity related
 - Multi-turn accelerator tracking when needed
- □ LYSO bar and Si pixel detector based LumiCal design

Background	Generation	Tracking	Det Simu.	
Synchrotron Radiation	<u>BDSim</u>	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH[Ref]		Mokka	
Beam-Gas Bremsstrahlung	PyBGB[Ref]	SAD	<u>CEPCSW</u> <u>FLUKA</u>	
Beam-Gas Coulomb	BGC in <u>SAD</u>	<u>SAD</u>		
Radiative Bhabha	BBBREM			
Touschek	TSC in SAD			

CEPC Software

Genera	tor	CEPC		
Simulat	ion	Applications		
Reconstru	ction	Analysis		
GeomSvc	FWCore	EDM4hep		
Gaudi framework				
Core Software				
LCIO	PODIO	DD4hep		
ROOT	Geant4	CLHEP	li i	
Boost	Python	Cmake		
External Libraries & Tools				

- **CEPCSW** is developed based on components of Key4hep: Gaudi, EDM4hep, K4FWCore DD4hep
- Single source of detector information, but support multiple designs
- Web-based Phoenix tool for visualization
- Releases towards ref-TDR
 - tdr24.3 including core software
 - tdr24.4 including tracking and bkg mixing
 - tdr24.5 including PID and muon
 - tdr24.6 including calorimeters

https://cepcvis.ihep.ac.cn/#/

Many Other Detector R&Ds

Optimal Timeline

