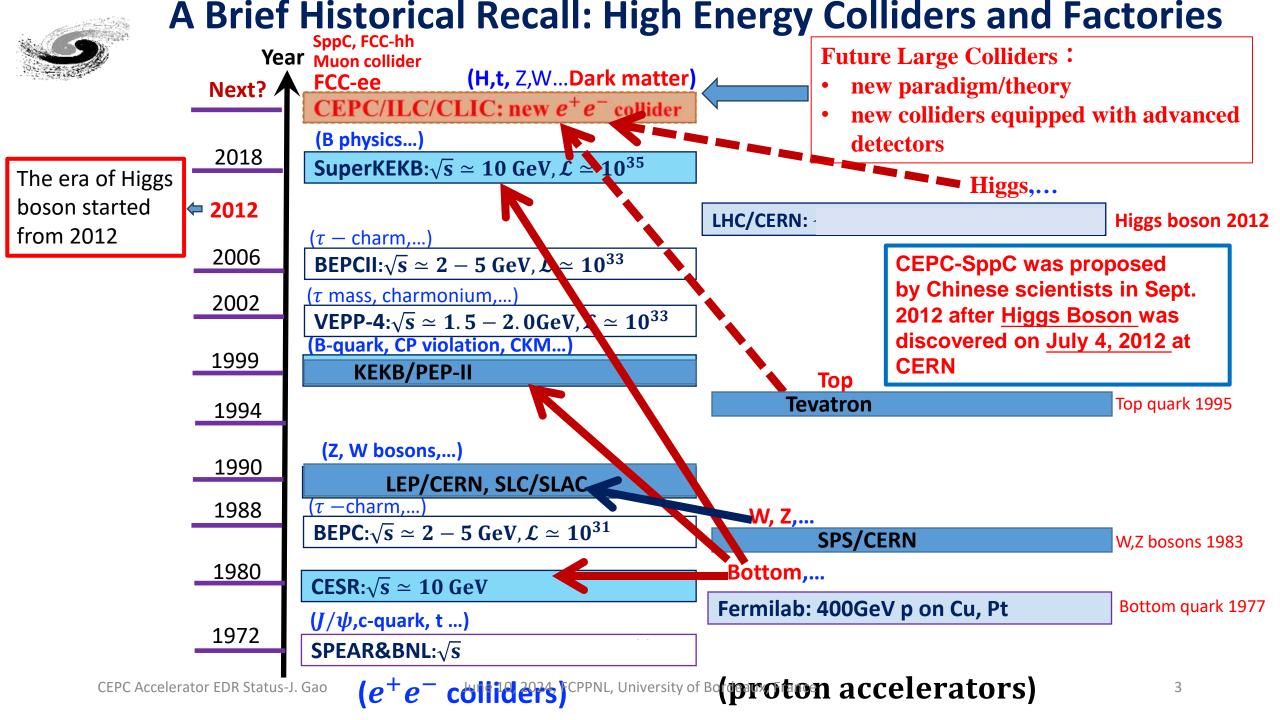



### **CEPC Accelerator EDR Status and Perspectives**

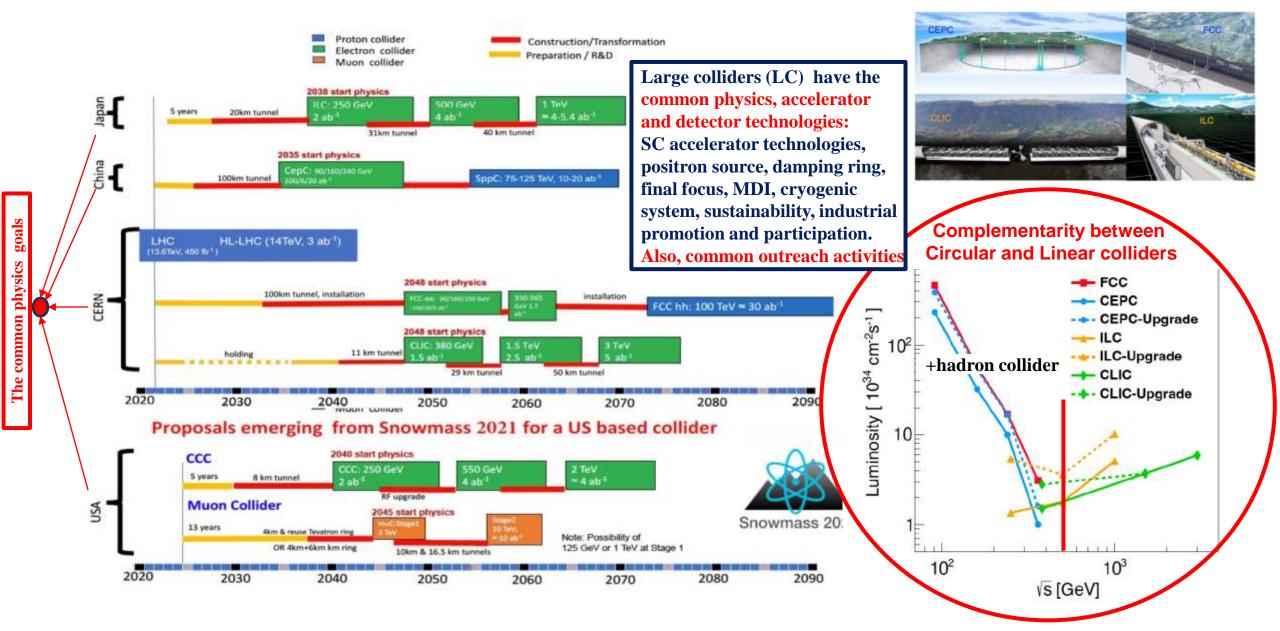
-Towards construction through EDR Phase

Jie Gao


**IHEP** 



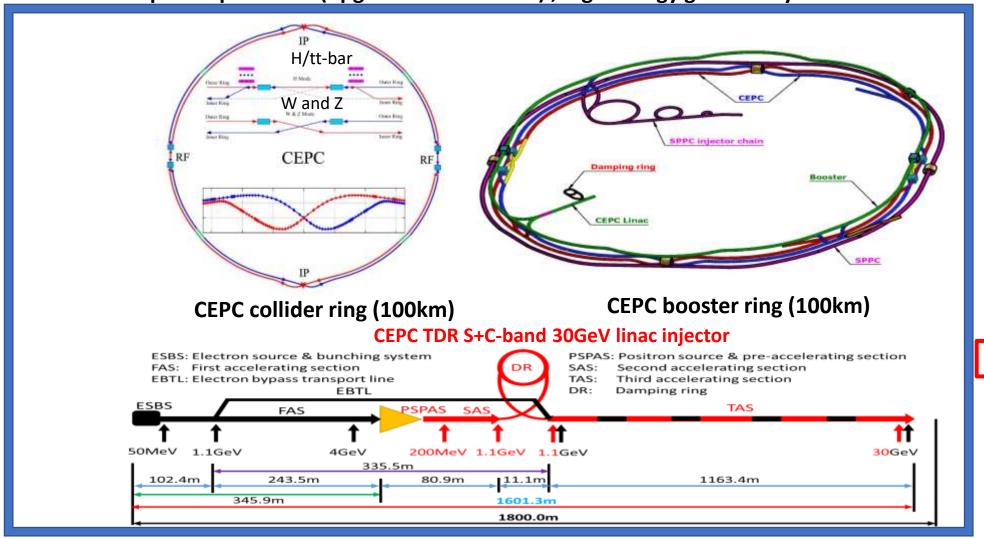


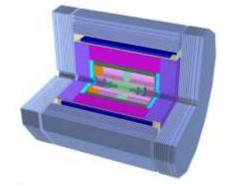

### **Contents**

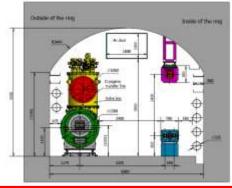
- Introduction
- CEPC EDR goals, plans and development towards construction
- CEPC accelerator EDR progress status based on TDR completion
- CEPC industrial preparation and international collaborations
- Summary



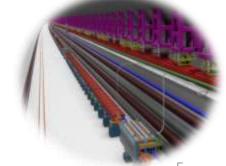



# Worldwide High Energy Physics Goal Timelines and Common Efforts




### **CEPC Higgs Factory and SppC Layout in EDR**


CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV



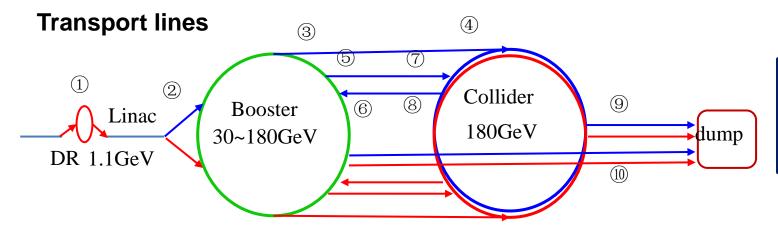




CEPC/SppC in the same tunnel






# **CEPC Accelerator System Parameters** in TDR and EDR

#### Linac Booster Collider

| Parameter                    | Symbol           | Unit | Baseline             |
|------------------------------|------------------|------|----------------------|
| Energy                       | $E_e$ / $E_{e+}$ | GeV  | 30                   |
| Repetition rate              | $f_{rep}$        | Hz   | 100                  |
| Bunch<br>number per<br>pulse |                  |      | 1 or 2               |
| Bunch<br>charge              |                  | nC   | 1.5 (3)              |
| Energy<br>spread             | $\sigma_E$       |      | 1.5×10 <sup>-3</sup> |
| Emittance                    | $\mathcal{E}_r$  | nm   | 6.5                  |

|                           |     | tt                 | H                  | I                 | $\boldsymbol{W}$   |          | Z          |  |
|---------------------------|-----|--------------------|--------------------|-------------------|--------------------|----------|------------|--|
|                           |     | Off axis injection | Off axis injection | On axis injection | Off axis injection | Off axis | sinjection |  |
| Circumfer.                | km  |                    |                    |                   | 100                |          |            |  |
| Injection energy          | GeV |                    |                    |                   | 30                 |          |            |  |
| Extraction energy         | GeV | 180                | 12                 | 0.                | 80                 | 45.5     |            |  |
| Bunch number              |     | 35                 | 268                | 261+7             | 1297               | 3978     | 5967       |  |
| Maximum bunch charge      | nC  | 0.99               | 0.7                | 20.3              | 0.73               | 0.8      | 0.81       |  |
| Beam current              | mA  | 0.11               | 0.94               | 0.98              | 2.85               | 9.5      | 14.4       |  |
| SR power                  | MW  | 0.93               | 0.94               | 1.66              | 0.94               | 0.323    | 0.49       |  |
| Emittance                 | nm  | 2.83               | 1.2                | 26                | 0.56               | 0        | .19        |  |
| RF frequency              | GHz |                    |                    |                   | 1.3                |          |            |  |
| RF voltage                | GV  | 9.7                | 9.7 2.17           |                   | 0.87               | 0.46     |            |  |
| Full injection from empty | h   | 0.1                | 0.14               | 0.16              | 0.27               | 1.8      | 0.8        |  |

|                                                                        |            | 1           |             | _         |  |  |  |
|------------------------------------------------------------------------|------------|-------------|-------------|-----------|--|--|--|
|                                                                        | Higgs      | Z           | W           | $tar{t}$  |  |  |  |
| Number of IPs                                                          |            | 2           | 2           |           |  |  |  |
| Circumference (km)                                                     |            | 10          | 0.0         |           |  |  |  |
| SR power per beam (MW)                                                 | 30         |             |             |           |  |  |  |
| Energy (GeV)                                                           | 120        | 45.5        | 80          | 180       |  |  |  |
| Bunch number                                                           | 268        | 11934       | 1297        | 35        |  |  |  |
| Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)                        | 0.64/1.3   | 0.27/1.4    | 0.87/1.7    | 1.4/4.7   |  |  |  |
| Beam size at IP $\sigma_x/\sigma_y$ (um/nm)                            | 14/36      | 6/35        | 13/42       | 39/113    |  |  |  |
| Bunch length (natural/total)<br>(mm)                                   | 2.3/4.1    | 2.5/8.7     | 2.5/4.9     | 2.2/2.9   |  |  |  |
| Beam-beam parameters $\xi_x/\xi_y$                                     | 0.015/0.11 | 0.004/0.127 | 0.012/0.113 | 0.071/0.1 |  |  |  |
| RF frequency (MHz)                                                     | 650        |             |             |           |  |  |  |
| Luminosity per IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 5.0        | 115         | 16          | 0.5       |  |  |  |



CEPC Technical Design Report (TDR) includes:

- 1) CEPC Accelerator TDR
- 2) CEPC Detector TDRrd (rd=reference design) will be released by June 2025



### **CEPC Operation Plan and Goals in EDR**

| Particle | E <sub>c.m.</sub><br>(GeV) | Years | SR<br>Power<br>(MW) | Lumi. per IP<br>(10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | Integrated<br>Lumi.<br>per year<br>(ab <sup>-1</sup> , 2 IPs) | Total<br>Integrated L<br>(ab <sup>-1</sup> , 2 IPs) | Total no. of events   |
|----------|----------------------------|-------|---------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------|
| H*       | 240                        | 10    | 50                  | 8.3                                                                  | 2.2                                                           | 21.6                                                | $4.3 \times 10^6$     |
|          |                            |       | 30                  | 5                                                                    | 1.3                                                           | 13                                                  | $2.6 \times 10^{6}$   |
| Z        | 91                         | 2     | 50                  | 192**                                                                | 50                                                            | 100                                                 | $4.1 \times 10^{12}$  |
|          | 91                         | ۷     | 30                  | 115**                                                                | 30                                                            | 60                                                  | $2.5 \times 10^{12}$  |
| W        | 160                        | 1     | 50                  | 26.7                                                                 | 6.9                                                           | 6.9                                                 | $2.1 \times 10^8$     |
|          | 100                        | 1     | 30                  | 16                                                                   | 4.2                                                           | 4.2                                                 | 1.3 × 10 <sup>8</sup> |
| $tar{t}$ | 360                        | 5     | 50                  | 0.8                                                                  | 0.2                                                           | 1.0                                                 | $0.6 \times 10^6$     |
|          |                            |       | 30                  | 0.5                                                                  | 0.13                                                          | 0.65                                                | $0.4 \times 10^{6}$   |

<sup>\*</sup> Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

<sup>\*\*</sup> Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

<sup>\*\*\*</sup> Calculated using 3,600 hours per year for data collection.

Fraction

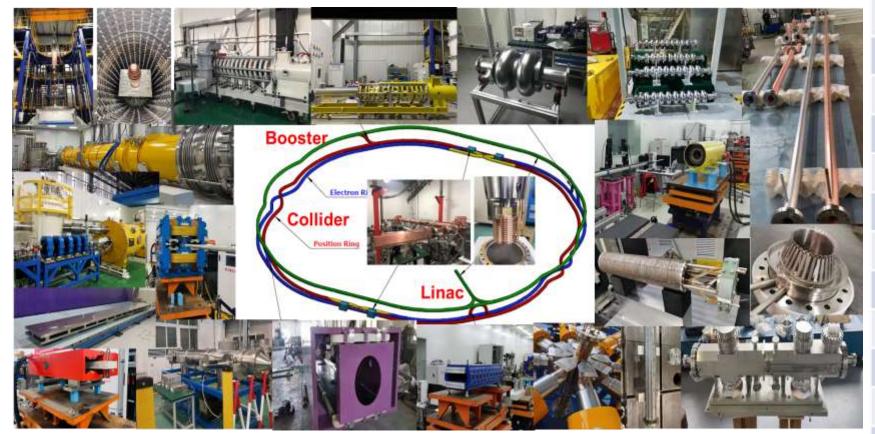
27.3%

18.3%

9.1%

7.6%




### **CEPC Key Technology R&D Status in TDR**

**Specification Met** 



**Prototype** Manufactured





Magnet power supplies 7.0% ✓ SC RF 7.1% Cryogenics 6.5% Linac and sources 5.5% Instrumentation 5.3% Control 2.4% Survey and alignment 2.4% Radiation protection 1.0% SC magnets 0.4% Damping ring 0.2%

Accelerator

Magnets

Vacuum

Mechanics

RF power source

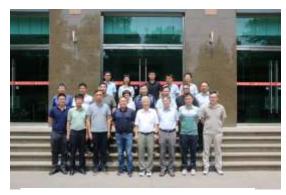
Key technology R&D in TDR spans all component lists in CEPC CDR



### **Power Consumption of CEPC @ Higgs**

| 2270 | 5                     |          |         | Н     | liggs 30 | OMW  |                  |        |          |         | Н     | iggs 50 | MW   |                  |        |
|------|-----------------------|----------|---------|-------|----------|------|------------------|--------|----------|---------|-------|---------|------|------------------|--------|
| SN   | System                | Collider | Booster | Linac | BTL      | IR   | Surface building | Total  | Collider | Booster | Linac | BTL     | IR   | Surface building | Total  |
| 1    | RF Power Source       | 96.90    | 1.40    | 11.10 |          |      |                  | 109.40 | 161.60   | 1.73    | 14.10 |         |      |                  | 177.40 |
| 2    | Crygenic system       | 9.72     | 1.71    |       |          | 0.14 |                  | 11.57  | 9.17     | 1.77    |       |         | 0.14 |                  | 11.08  |
| 3    | Vacuum System         | 5.40     | 4.20    | 0.60  |          |      |                  | 10.20  | 5.40     | 4.20    | 0.60  |         |      |                  | 10.20  |
| 4    | Magnet Power Supplies | 44.50    | 9.80    | 2.50  | 1.10     | 0.30 |                  | 58.20  | 44.50    | 9.80    | 2.50  | 1.10    | 0.30 |                  | 58.20  |
| 5    | Instrumentation       | 1.30     | 0.70    | 0.20  |          |      |                  | 2.20   | 1.30     | 0.70    | 0.20  |         |      |                  | 2.20   |
| 6    | Radiation Protection  | 0.30     |         | 0.10  |          |      |                  | 0.40   | 0.30     |         | 0.10  |         |      |                  | 0.40   |
| 7    | Control System        | 1.00     | 0.60    | 0.20  |          |      |                  | 1.80   | 1.00     | 0.60    | 0.20  |         |      |                  | 1.00   |
| 8    | Experimental devices  |          |         |       |          | 4.00 |                  | 4.00   |          |         |       |         | 4.00 |                  | 4.00   |
| 9    | Utilities             | 37.80    | 3.20    | 1.80  | 0.60     | 1.20 |                  | 44.60  | 46.40    | 3.80    | 2.50  | 0.60    | 1.20 |                  | 54.50  |
| 10   | General services      | 7.20     |         | 0.30  | 0.20     | 0.20 | 12.00            | 19.90  | 7.20     |         | 0.30  | 0.20    | 0.20 | 12.00            | 19.90  |
|      | Total                 | 204.12   | 21.61   | 16.80 | 1.90     | 5.84 | 12.00            | 262.27 | 276.87   | 22.60   | 20.50 | 1.90    | 5.84 | 12.00            | 339.71 |

Various measures will be studied and implemented towards a green collider, as discussed in the Mini workshop of accelerator, Jan. 18-19, 2024, HKUST-IAS, Hong Kong


https://indico.cern.ch/event/1335278/timetable/?view=standard



# CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong



CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong



Domestic Civil Engineering Cost Review, June 26, 2023, IHEP



CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong



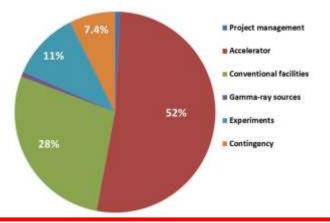

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP





Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

| Total                   | 364 | 100% |
|-------------------------|-----|------|
| Project management      | 3   | 0.8% |
| Accelerator             | 190 | 52%  |
| Conventional facilities | 101 | 28%  |
| Gamma-ray beam lines    | 3   | 0.8% |
| Experiments             | 40  | 11%  |
| Contingency (8%)        | 27  | 7.4% |



Distribution of CEPC Project total TDR cost of **36.4B RMB** 

CEPC accelerator TDR has been completed and formally released on December 25, 2023:

http://english.ihep.cas.cn/nw/han/y23/202312/t20231229\_654555.html

**CEPC** accelerator TDR has been published formally in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024:

DOI: 10.1007/s41605-024-00463-y

https://doi.org/10.1007/s41605-024-00463-y



### **CEPC Engineering Design Report (EDR) Goal**

**2012.9** CEPC proposed

**2015.3** Pre-CDR

2018.11 CDR

2023.10 TDR

CEPC Proposal
CEPC Detector
reference design

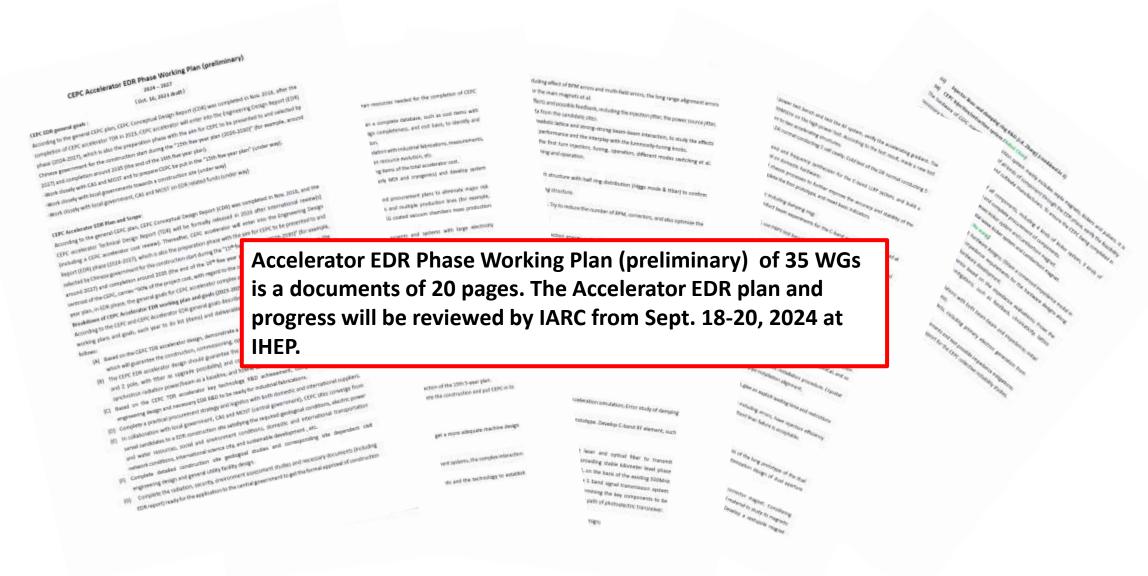
2025

2027 15<sup>th</sup> five year plan

**EDR** Start of construction

**CEPC EDR Phase General Goal: 2024-2027** 

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).


**CEPC EDR includes accelerator and detector (TDRrd)** 

CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR Phase goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 20 pages to be reviewed by IARC in 2024

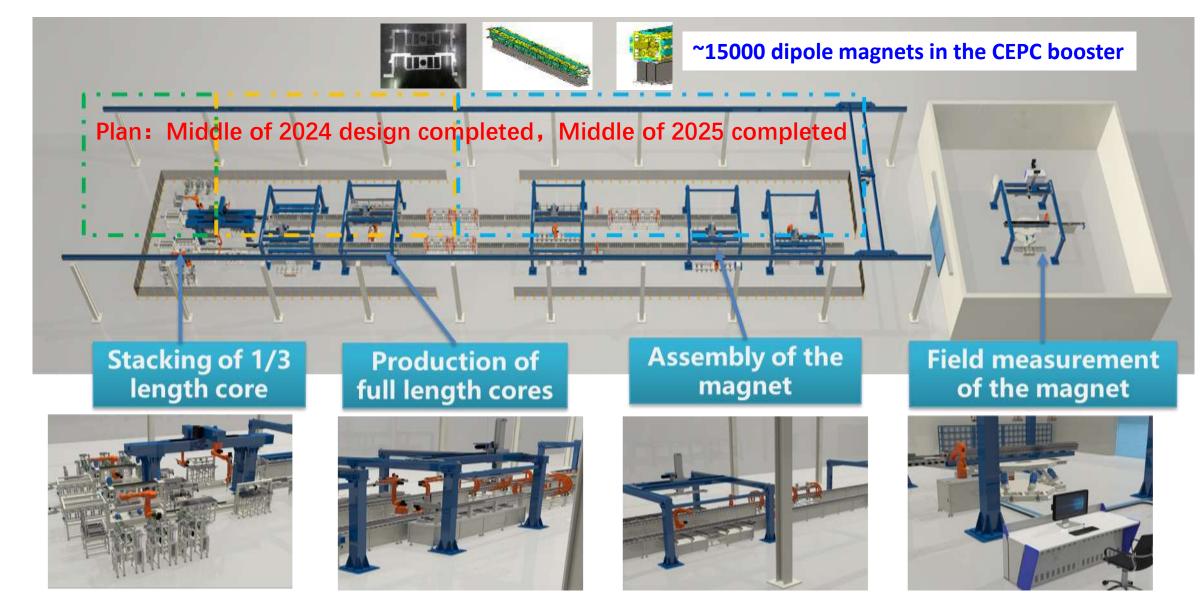


### **CEPC EDR Goal, Plan and Scope**



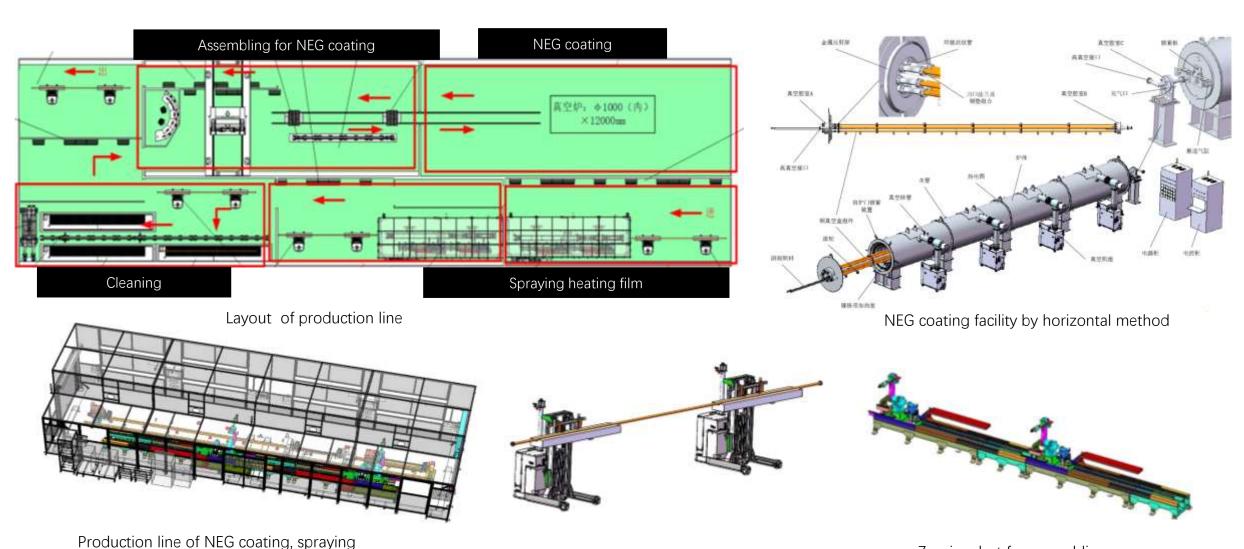


### **CEPC IARC Members in EDR Phase**


|    | Name Institution    | on           | Country      | /Region     | Email                      |
|----|---------------------|--------------|--------------|-------------|----------------------------|
| 1  | A. Sidorin JINR     | Russia       | sidorin@     | jinr.ru     |                            |
| 2  | Makoto Tobiyama     | KEK          | Japan        | makoto.t    | obiyama@kek.jp             |
| 3  | Marica Biagini (ch  | nair)        | INFN         | Italy       | marica.biagini@Inf.infn.it |
| 4  | Phillip bambade     | LAL          | France       | bambade     | e@lal.in2p3.fr             |
| 5  | Eugene Levichev (   | AC)          | BINP         | Russia      | e.b.levichev@inp.nsk.su    |
| 6  | Steinar Stapnes (IA | NC)          | CERN         | Norway      | steinar.stapnes@cern.ch    |
| 7  | Katsunobu Oide (IA  | AC)          | KEK          | Japan       | oide1@icloud.com           |
| 8  | Brian Foster (IAC)  | Oxford       | U.K          | brian.fos   | ter@physics.ox.ac.uk       |
| 9  | In-Soo KoPOSTTE     | CH           | Korea        | isko@po     | stech.ac.kr                |
| 10 | Zhentang Zhao       | SINAP        | China        | zhaozhe     | ntang@sinap.ac.cn          |
| 11 | Carlo Pagani        | INFIN-M      | ilano        | Italy       | carlo.pagani@mi.infn.it    |
| 12 | Norihito Ohuchi     | KEK          | Japan        | norihito.c  | ohuchi@kek.jp              |
| 13 | Paolo Pierini, ESS, | Linac and    | Klystrons    | and SRF,    | Paolo.Pierini@esss.se      |
| 14 | Michael Koratzinos  | CERN, IR     | quadrupo     | le design,  | michael.koratzinos@cern.ch |
| 15 | Roberto Kersevan,   | CERN, va     | cuum, robe   | erto.kersev | van@cern.ch                |
| 16 | Akira Yamamoto, Kl  | EK, cryoge   | enics, akira | ı.yamamot   | to@kek.jp                  |
| 17 | K. Furukawa, KEK,   | injection, k | kazuro.furu  | ıkawa@ke    | ek.jp                      |
| 18 | Gero Kube, DESY, i  | nstrument    | ation and    | diagnostic  | , Gero.Kube@desy.de        |
| 19 | Hiroyuki Nakayama   | , KEK, bac   | kgrounds     | and MDI,    | hiroyuki.nakayama@kek.jp   |
| 20 | Xiaoye He, USTC, a  | alignment,   | xyhe@us      | tc.edu.cn   |                            |

IARC will review CEPC accelerator EDR progress and report to IAC

The first IARC EDR review meeting will take place in Sept. 18-20, 2024, IHEP




### **CEPC Magnet Automatic Production Line in EDR**





## **CEPC NEG Coated Vacuum chamber Automatic Production Line in EDR**



Plan: Middle of 2024 design completed, Middle of 2025 to be completed

AGV(Automatic Guided Vehicle) transport

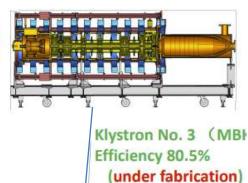
7-axis robot for assembling



### **CEPC 650MHz High Efficiency High Power Klystron Development and RF Power Distribution System**

#### CEPC klystron R&D




300

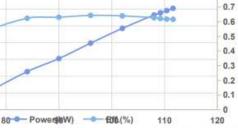


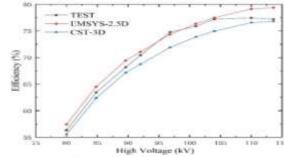





Klystron No. 2 Efficiency 77% (2021)

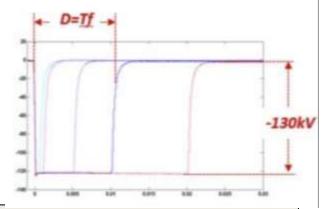


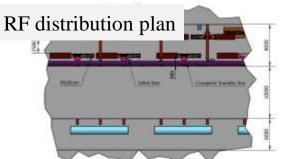

Power Supply Modulator

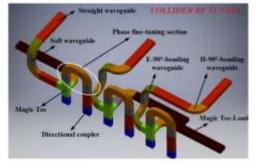



Klystron No. 1 Efficiency 65% (2020)

Pulsed RF Mode (30% duty factor, 60ms/5Hz) 77.2%@849kW pulsed in 2024



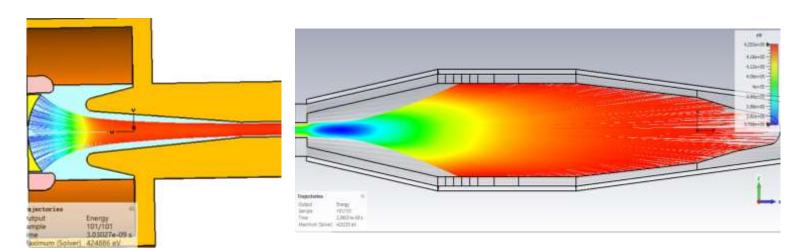




To be tested in 2024



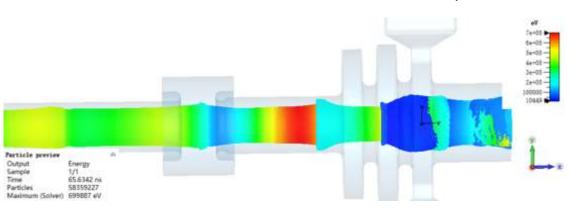


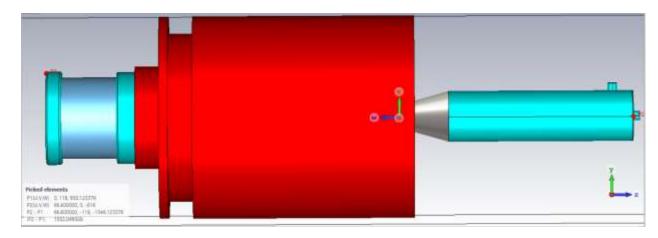





- Three prototypes of the 650MHz 800KW CW klystrons are developed. The efficiency reaches 77.2%
- PSM is developed with the industrial collaboration
- RF tunnel distribution was planed




### **CEPC 80MW C-band Klystron Development in EDR**


#### Plan: Middle of 2024 design completed, March of 2025 high power test



| Parameters     | Value           |
|----------------|-----------------|
| Frequency      | 5712 MHz        |
| Output Power   | 80MW            |
| Drive power    | 350W            |
| Gain           | 54 dB           |
| Efficiency     | 47%             |
| 3dB bandwith   | ±10MHz          |
| Beam voltage   | 420 kV          |
| Beam current   | 403 A           |
| Focusing field | ~0.27 T maximum |

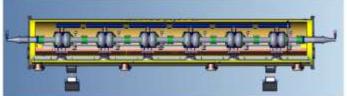
Gun and collector beam optics





Beam dynamic with CST code

Mechanical configuration




### **CEPC Accelerator Development in EDR**

#### 9

#### CEPC 650MHz SC Full Size Cryomodule Development in EDR



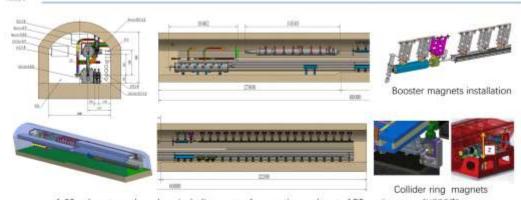


CEPC collider ring 650MHz 2\*cell short test module has been completed in TDR phase



The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

Plan: Middle of 2024 design completed, End of 2025 to be completed


CEPC Accelerator EDH Status - J. Gao.

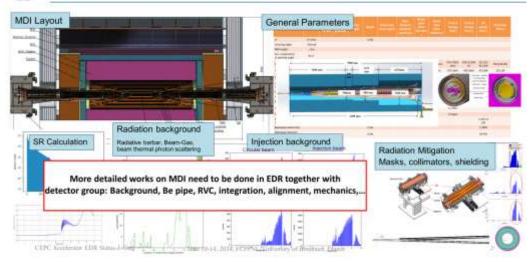
June 10 - 14, 2024, HOFFIG., University of Bardinian, Franc

- 13

#### 9

#### **CEPC Mockup Tunnel in EDR**

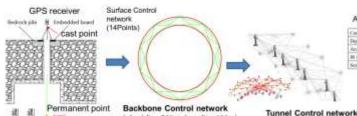



A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Plan: Middle of 2025 to be completed




#### **CEPC MDI in EDR**



#### 9

#### CEPC Alignment and Installation Plan in EDR





\*implement beam-based alignment

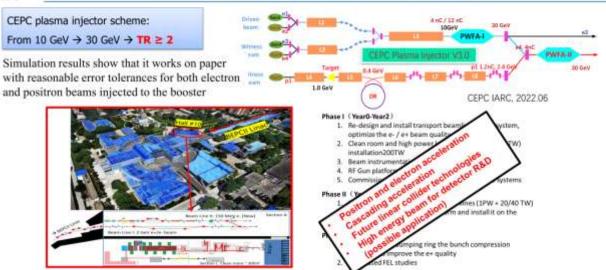
(short line:300m; long line 600m)

CEPC Assertions, EDR (Warm & Gor)

THE R. W. S. BETTER, Committee of Bandware Property

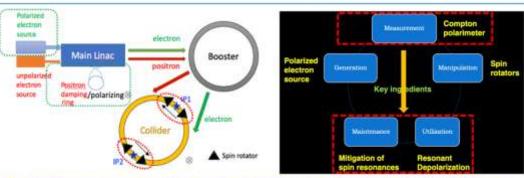
(interval of 6 meters)

....




### **CEPC Accelerator Alternative Options**




#### CEPC Plasma Injector (alternative option) and TF Plan.

#### **CEPC Polarization Studies (alternative option)**



PWFA/LWFA TF based on BEPC-II Linac and HPL has been founded by CAS 90M RMB in Sept. 2023

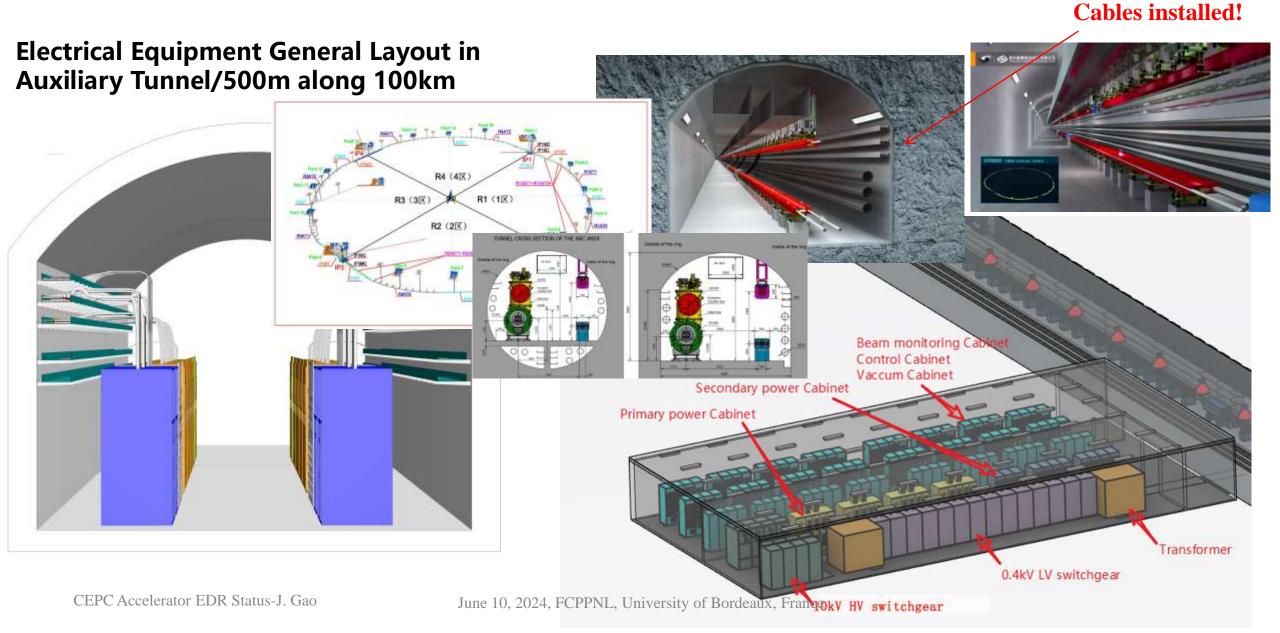
Plasma accelerator technology development towards CEPC injector and future e+e- linear colliders



#### Both the transverse and longitudinal polarization and Z, W, are feasible (Higgs under study)

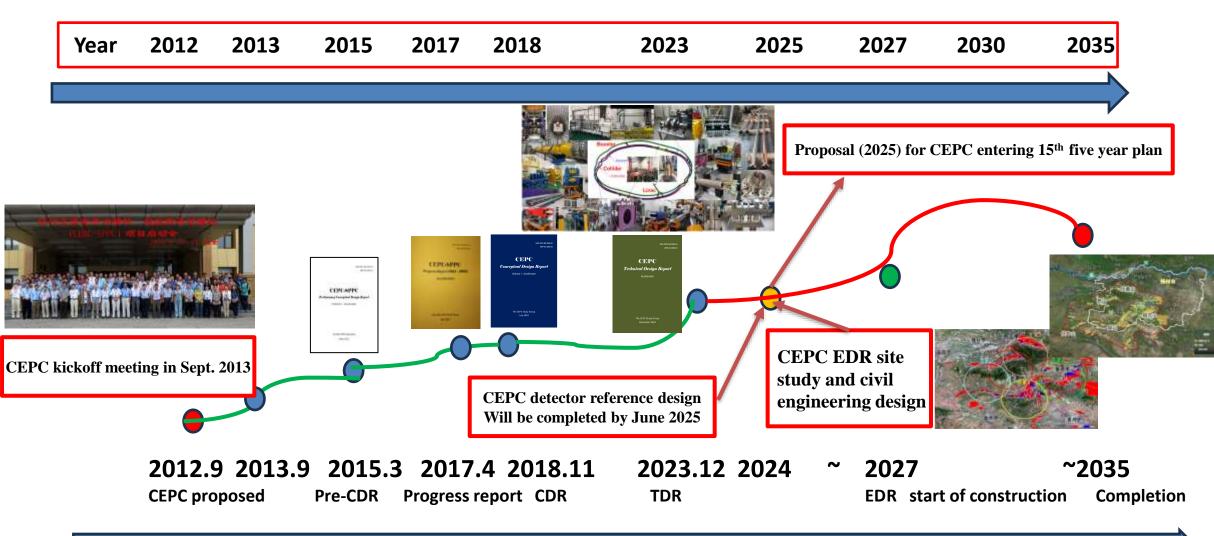
- Implement the lattice design to accommodate polarized beams: spin rotator, wiggler, Compton polarimeters, dumping ring and booster design, etc.
- · R&D of Compton polarimeter, polarized electron sources, spin rotator, etc.
- · Simulate the process and effects of errors
- Carry out experiments at BEPCII & HEPS booster

Status of the CEPC Projects-J. Goo


LCWS2024, July 8, 2024, Tokyo University, Japan



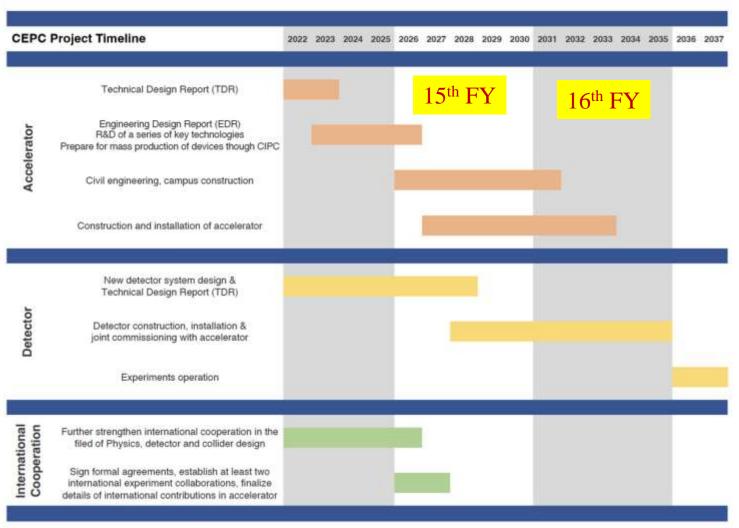
Polarization beam technology development towards precision physics experiments




### **CEPC Conventional Facility and Civil Engineering**






### **CEPC Evolution Milestones and Timeline**





### **CEPC Planning, Schedule and Teams**

#### TDR (2023), EDR(2027), start of construction (2027-8)



#### **CEPC team (domenstic)**

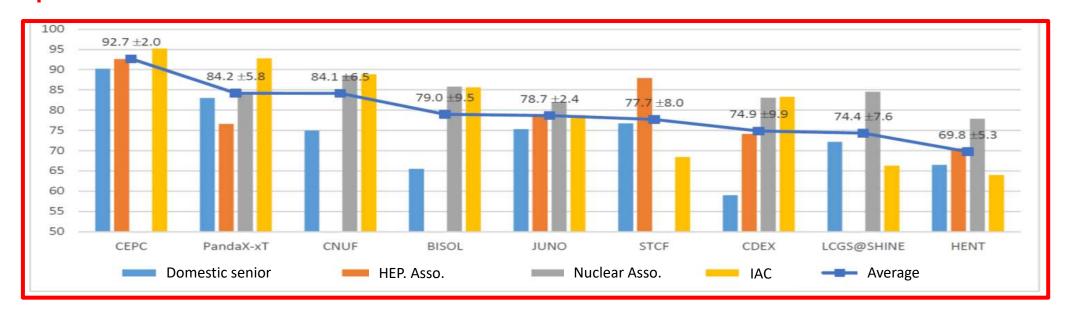
CEPC accelerator and detector/experiments/theory group is an highly experienced team with strong international collaboration experiences. It has demonstrated its expertise and achievements is the following related projects, both domestic and international ones, such as:

BEPC-BEPCII (BES-BESIII), BFELP, CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, BELLE-II, CLEO, Daya Bay, JUNO, etc.

**CEPC** international partners and collaborators



### CEPC in Synergy with other Accelerator Projects in China 23


| Project name | Machine type                                        | Location                                             | Cost (B RMB)                | Completion time                         |
|--------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------|-----------------------------------------|
| CEPC         | Higgs factory Upto ttar energy                      | Led by IHEP, China                                   | 36.4 (where accelerator 19) | Around 2035 (starting time around 2027) |
| BEPCII-U     | e+e-collider 2.8GeV/beam                            | IHEP (Beijing)                                       | 0.15                        | 2025                                    |
| HEPS         | 4 <sup>th</sup> generation light source of 6GeV     | IHEP (Huanrou)                                       | 5                           | 2025                                    |
| SAPS         | 4th generation light source of 3.5GeV               | IHEP (Dongguan)                                      | 3                           | 2031 (in R&D, to be approved)           |
| HALF         | 4th generation light source of 2.2GeV               | USTC (Hefei)                                         | 2.8                         | 2028                                    |
| SHINE        | Hard XFEL of 8GeV                                   | Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai) | 10                          | 2027                                    |
| S3XFEL       | S3XFEL of 2.5GeV                                    | Shenzhen IASF                                        | 11.4                        | 2031                                    |
| DALS         | FEL of 1GeV                                         | Dalian DICP                                          | -                           | (in R&D, to be approved, )              |
| HIAF         | High Intensity heavy ion Accelerator Facility       | IMP, Huizhou                                         | 2.8                         | 2025                                    |
| CIADS        | Nuclear waste transmutation                         | IMP, Huizhou                                         | 4                           | 2027                                    |
| CSNS-II      | Spallation Neutron source proton injector of 300MeV | IHEP, Dongguan                                       | 2.9                         | 2029                                    |

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

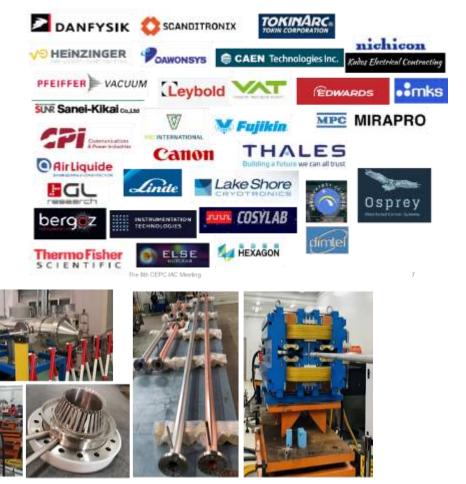


### **CEPC Project Development towards Construction**

- TDR has been completed (review + revision) to be formally released on Dec. 25, 2023.
- CAS is planning for the 15<sup>th</sup> 5-years plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- High energy physics and nuclear physics, is one of the 8 groups (fields).
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee both domestic and international one among all the collected proposals.
- A final report has been submitted to CAS for consideration.
- The above mentioned actual process is within CAS and the following national selection process will be decisive.






# Participating and Potential Collaborating Companies in China and Worldwide

|    | System               |
|----|----------------------|
| 1  | Magnet               |
| 2  | Power supplier       |
| 3  | Vacuum               |
| 4  | Mechanics            |
| 5  | RF Power             |
| 6  | SRF/ RF              |
| 7  | Cryogenics           |
| 8  | Instrumentation      |
| 9  | Control              |
| 10 | Survey and alignment |
| 11 | Radiation protection |
| 12 | e-e+Sources          |

## CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)



## Potential international collaborating suppliers and partners worldwide





### **CEPC International Collaboration-1**

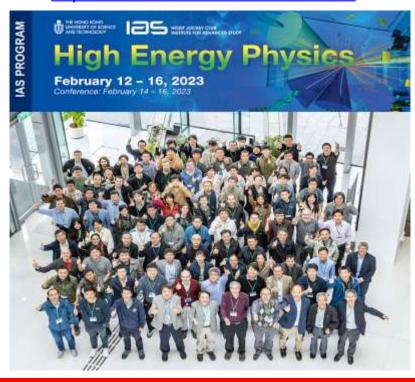
## CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) arXiv: 2312.14363





- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015






### **CEPC International Collaboration-2**

HKIAS23 HEP Conference Feb. 14-16, 2023

https://indico.cern.ch/event/1215937/



The 2023 International Workshop on Circular Electron Positron Collider, EUEdition, University of Edinburgh, July 3-6, 2023

https://indico.ph.ed.ac.uk/event/259/overview





The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

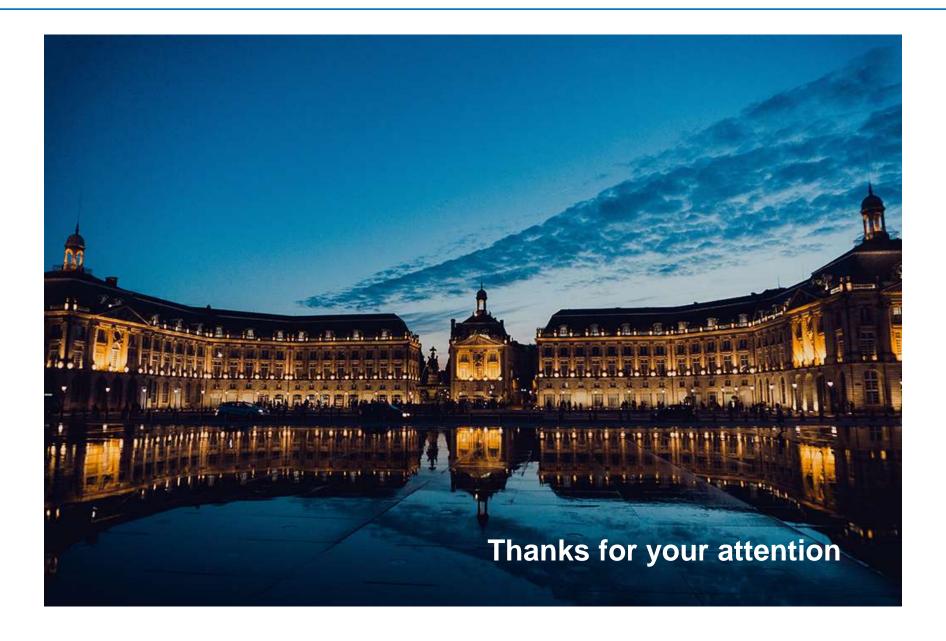


The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. https://indico.in2p3.fr/event/20053/overview

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. <a href="https://indico.cern.ch/event/1335278/timetable/?view=standard">https://indico.cern.ch/event/1335278/timetable/?view=standard</a>

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) will be held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/




Professor Peter Higgs passed away on **April 8, 2024**. We miss him.



### **Summary**

- CEPC addressed most pressing & critical science problems in particle physics
- Accelerator design and technology R&D are reaching maturity, TDR completed in 2023, ready for construction in 3-5 years after EDR phase
- CEPC proposal for the China's 15<sup>th</sup> 5-year plan will be submitted in 2025
- CEPC has a strong and experienced group, backed by IHEP and international teams
- Schedule will follow China's 15<sup>th</sup> 5-year plan, Call for collaboration and proposals once CEPC is (preliminary) approved
- Continue to work with government and funding agencies to get support
- International collaborations are mostly welcome.



