Common R&D efforts on CMOS pixel sensors for the experiment of electron-positron colliders

15th FCPPN/L Workshop,10 – 14 Jun 2024, Bordeaux

Yunpeng Lu

on behalf of the FCPPN/L collaboration teams

PROJECT TITLE: Belle II vertex detector upgrade (BUV) French Group: IPHC/IN2P3, Jérôme BAUDOT, Christine Hu-Guo, ... **Chinese Group:** IHEP/CAS, Qun OUYANG, Yunpeng Lu, ...

Outline

- > Introduction
 - Short review of collaboration history
 - BELLE II VTX upgrade proposal
 - R&D for CEPC vertex detector
- Common interests in MAPS* development
 - Large area sensor design OBELIX and JadePix-5
 - Digital on Top design methodology
 - Sharing mask area in TJ 180 nm CIS process
- > Summary

*Monolithic Active Pixel Sensor, or CMOS Pixel Sensor are used interchangeably in this talk without distinction

Short review of the collaboration history

- Regular visits on both institutions and on-line meetings
- $1 \ \ \$ The prototype of CMOS pixel sensor for the upgrade of BESIII-inner tracker
- ✓ Development of pixel detector ladder based on the MIMOSA28 sensors from IPHC
- ✓ common participation of beam test at DESY, to validate the ladder performance, space resolution, material budget, ...

Ref.: NIMA924(2019)287-292, NIMA986(2021)164810

2、 CMOS Pixel Sensors R&D for future e⁺ e⁻ colliders: *pixel sensor and double-sided ladder development* Since 2015, four engineering runs have been shared with TJ 180 nm CIS process

J. Baudot - CMOS Pixel Chip for the planned Belle 2 upgrade - Terascale detector workshop 2022

→ Proposal for replacement of VXD = PXD (DEPFET sensors) + SVD(Double Sided Strip Detector) by VTX detector. ⁴

VTX proposal

Proposed BELLE II VXT upgrade scheme

- 5 straight layers with Depleted Monolithic Active Pixel Sensors
- Identical chips on all layers: Optimized BELle II pIXel (OBELIX) sensor
- ~1m² silicon surface

OBELIX

– Tower 180 nm process

 \rightarrow OBELIX sensor

- Extension of TJ-Monopix2

 $- < 40 \,\mu m$ pitch, 100 ns integration

Belle II VTX <10-15μm 0.1-0.8 %Xo			
<10-15µm 0.1–0.8 %Xo			
0.1-0.8 %Xo			
120MHz/cm ²			
<100ns			
30 kHz 5-10μs			
<100 kGy/year <50x10 ¹² n _{eq} cm ⁻² /year			
<200mW/cm ²			
Key sensor specifications: • Pixel pitch: 30.40 µm			

- Integration time: *≲100 ns*
- Power dissipation: $\leq 200 \text{ mW/cm}^2$

5

OBELIX (Optimized for BELle II pIXell)

- Developed from TJ-Monopix2 sensor (Developed for ATLAS-ITK: doi: 10.1016/j.nima.2020.164460)
- □ Increase active area from 17x17 mm² to 15x29,6 mm²
- LDO implementation on lateral sides for **power drop compensation** on ladder
- Re-design digital periphery for handling VTX trigger requirements with additional features: TTT (Track Trigger Transmission) & PTD (Peripheral Time to Digital)
- Additional analog functionalities for improved **monitoring and safety** : Monitoring ADC, Temperature sensor, Power On Reset
- Design collaboration: IPHC, CPPM, HEPHY, KEK, INFN, University of Bergamo, University of Pavia, University of Pisa, University of Applied Sciences and Arts Dormund, University of Bonn, University of Valencia

	Analog
	Matrix
	DAC EoC & Buffer
ulator	Regulator Ctrl IDAC VDAC Monitoring ADC Temperature Sensor PowerOn. Reset
I/O Pads & Reg	Periphery (digital) TR0 (Trigger Group) TR60 (Trigger Group) E0C0 EOC1 EOC2 EOC3 S0 50 50 50 S1 S2 S2 S2 S2 S2 S3
	TXU (Transmission Unit) TTT(Track Trigger Transmission)
	CRU (Control Unit) Clock Divider, Synchronization

Physics requirements on the CEPC vertex detector

- Br (H -> cc) is extremely sensitive to the vertex design
- Br (H -> bb) is not really sensitive to the vertex design

Ref: ZG Wu, Optimization on silicon detectors at CEPC, CEPC workshop 2019

R&D for CEPC Vertex detector

Towards Baseline Requirements: CMOS and SOI R&D in Synergy

R&D for CEPC Vertex detector

FCPPL project: BELLE II vertex upgrade

- FCPPL collaboration proposal in 2023/2024 (approved)
- Common interests in OBELIX design:
 - Analog design \rightarrow

Critical issues in large area chip: Powering and Signal driving

- Digital design \rightarrow Data buffering and data transmission of low power
- Digital on Top integration flow \rightarrow Verification of complex design before tape-out
- Shared submission to Tower 180 nm process (Engineering Run)
 - 3/8 mask area for IHEP team (2 cm x 1.5 cm)
 - JadePix-5 design for CEPC R&D
 - Planed in Sep. 2024
- Discussion sessions have been launched on demand and Visit in person is foreseen during
 - Pixel 2024 workshop, Strasbourg, from 18 to 22 Nov. 2024

JadePix-5

- > The largest design of JadePix series
 - Pixel array 896 rows \times 480 col.
 - Sensitive area 17.9 mm \times 14.4 mm (86%)
- Functional blocks verified in JadePix-3/4
 - Sensing diode
 - Analog frontend
 - Pixel logic
 - AERD and DAC
- Optimizations on power distribution and signal driving
 - Voltage drop across the matrix
 - Signal transition on long metal lines
- Optimizations on peripheral readout
 - SRAM size and clock frequency

Readout Architecture

- A major improvement: Rolling shutter (JadePix-3) \rightarrow Hit-driven readout logic(JadePix-5)
 - Faster by 3 orders of magnitude and remain the same low power
 - Larger pixel size: 20 μ m imes 30 μ m
- Time stamp depends on how fast the hit information can be
 - registered in the pixel —

Comparison of JadePix-3 and JadePix-5

- > JadePix-3 targeting on smallest pitch of 16 μ m × 23.1 μ m for spatial resolution ~ 3 μ m
- ➤ JadePix-5 targeting on fast time stamp ~ 1 us, improved by a factor of 100
 - Trade off between shaping time and amplifier current in the analog frontend
 - Hit-driven readout logic, occupied ~ 1/4 pixel area

- Pixel footprint:
- 1: Sensing diode
- 2: Analog frontend
- 3: Digital frontend
- 4: Hit-driven RO logic

	JadePix-3	JadePix-5
Pixel size	16 μ m $ imes$ 23.1 μ m	20 μ m $ imes$ 30 μ m
Time stamp precision	98.3 µs	~ 1 µs
Average power	< 100 mW/cm ²	< 100 mW/cm ²
Pixel array	512 row × 192 col.	896 row $ imes$ 480 col.
Mask area	10.4 mm $ imes$ 6.1 mm	20 mm $ imes$ 1. mm

Supply voltage distribution

- A major concern as JadePix-5 has a dimension of half full size (2 cm × 1.5 cm)
 - Voltage drop and ground bounce across the pixel matrix
 - Due to $r_{metal_line} = 40 \text{ mOhm/square}$
- > Estimated by a simple model based on the <u>actual pixel layout</u>
 - Line width of TOP_M = 5 μ m
 - Pixel pitch = $30 \ \mu m$
 - Load current in each pixel ~ 20 nA
 - 480 pixels in a row
 - Voltage drop on the center pixel 0.14 mV

$$\Delta V = \frac{n}{4} \left(\frac{n}{2} + 1\right) \operatorname{Ir} \times \frac{\operatorname{pitch}_x}{d} = 0.14 \ mV$$
Very low current/pixel
Smaller n in row-wise

Detailed results will be given after power analysis

Set Apr 27 15:13:09 2024

2 cm long metal line, C = 4 pF/cm

80 mOhm/square, line width = 0.28 um

Transition delay on long signal lines

Control lines

- Driven from outside of pixel matrix
- Buffering with large cells in term of current and layout
- Verified with ELMORE delay mode and simulation
- **Fast transition time ~ 3 ns** (green line in the waveform)

circuit simulation of control lines

Transition delay on long signal lines

- Column bus lines
 - Driven out of pixel matrix
 - Buffering cells limited by layout area
 - Insertion of Buftd4 **improved transition time** from 58 ns to 38 ns
 - Verified by circuit simulation
- Pixel hits sent to end of column at this speed

SRAM block size

- > 15 SRAM blocks, as data buffer, receive **hit information** from pixel matrix
 - Poison distribution in time, 10 MHz hit/cm² on average
 - Evenly distributed in position
 - Each 1024×8b SRAM handle one matrix region
 - (16 double-columns each region)
 - Numerical simulation results:

Maximum usage < 30, Average usage 6

Peripheral readout circuit (block diagram)

Digital on Top integration flow

- There is a gap in terms of design methodology
 - IPHC team: more advanced Digital on Top flow is in regular use
 - IHEP team: **traditional** Analog on Top flow with digital implemented blocks
- > Common interests for IHEP team to participate the **simulation and verification** of OBELIX design
 - Static Timing Analysis, supply voltage distribution, Power Analysis ...
 - Work together will help fill the gap both in terms of methodology and expertise

OBELIX floorplan and IR drop simulation of the matrix without regulator Ref: 2024 JINST 19 C04020

Summary

- Common R&D efforts of monolithic CMOS Pixel Sensor for the e⁺e⁻ collider experiments since 2010
 BES III upgrade, ILC/CEPC, BELLE II upgrade
- The IPHC team is a main participant of the VTX project for BELLE II upgrade, currently designing the OBELIX
 - The IHEP team is not yet a member of the VTX collaboration, but willing to work with the OBELIX design team for the preparation of next submission
- ➢ JadePix-5 will be submitted this year in a shared engineering run with IPHC team
- Common interests in addressing design challenges in terms of large area CMOS pixel sensors
 - Supply voltage distribution
 - Signal transition on long lines
 - SRAM and low power design
 - Verification with digital flow tools
- Plan to visit Strasbourg in Nov. this year

Thank you for your time!