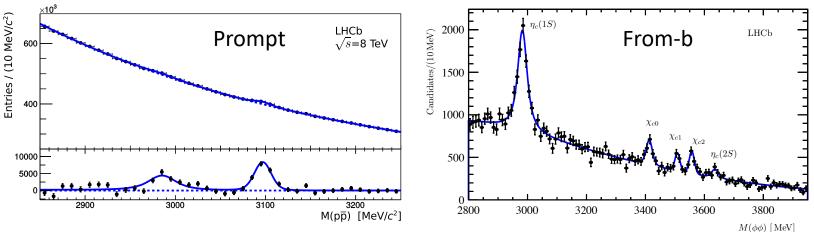
Charmonium(like) production in LHCb


Sergey Barsuk, Jibo He, Jean-Philippe Lansberg, Hua-Sheng Shao, Qi Shi, Zhenhong Wu, Vsevolod Yeroshenko, Yixiong Zhou, Valeriia Zhovkovska

Contacts: Sergey Barsuk (IJCLab), Jibo He (UCAS)

Introduction

- Theoretical review given by H.S. Shao.
 Comprehensive review given by S. Barsuk in FCPPL 2023
- Focus on experimental side of charmonium production using hadronic decays, which can be done only by LHCb so far

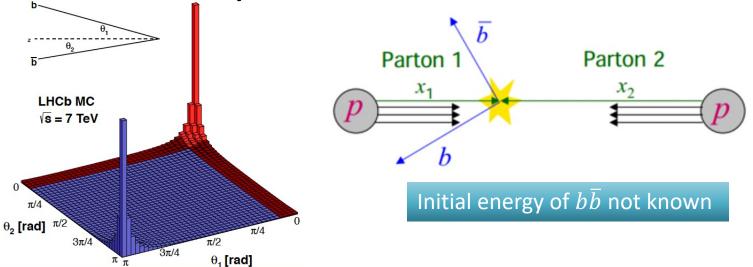
Large Hadron Collider

27 km

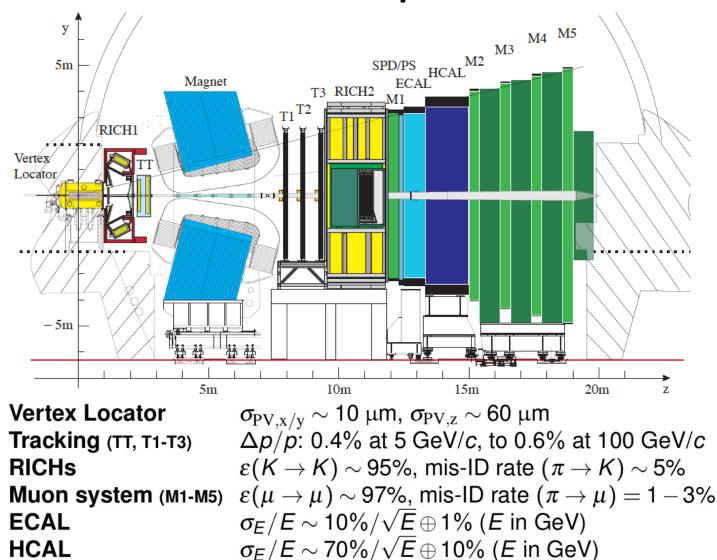
CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

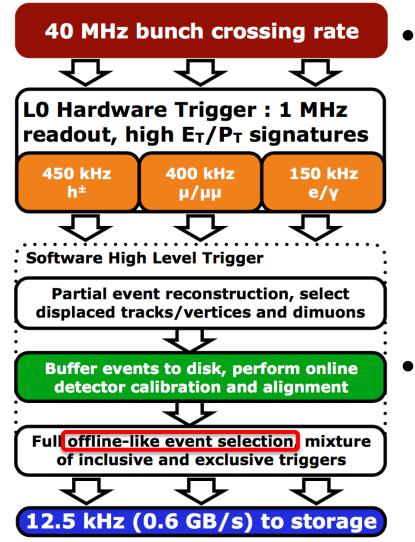
ATLA


ALICE

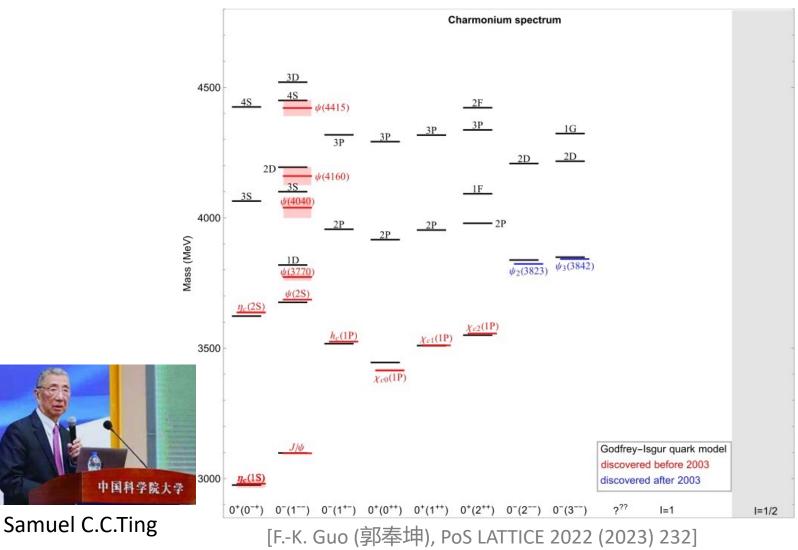
Beauty/charm production


- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

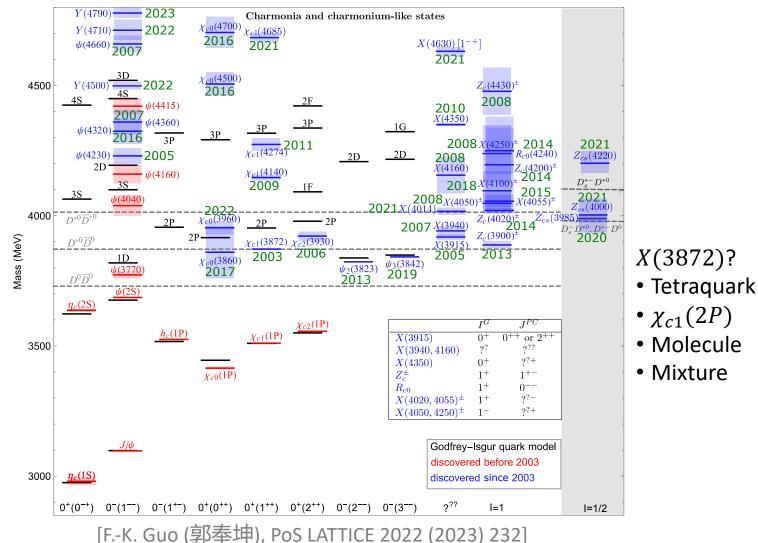
Flavour factory!


• Predominantly in forward/backward cones

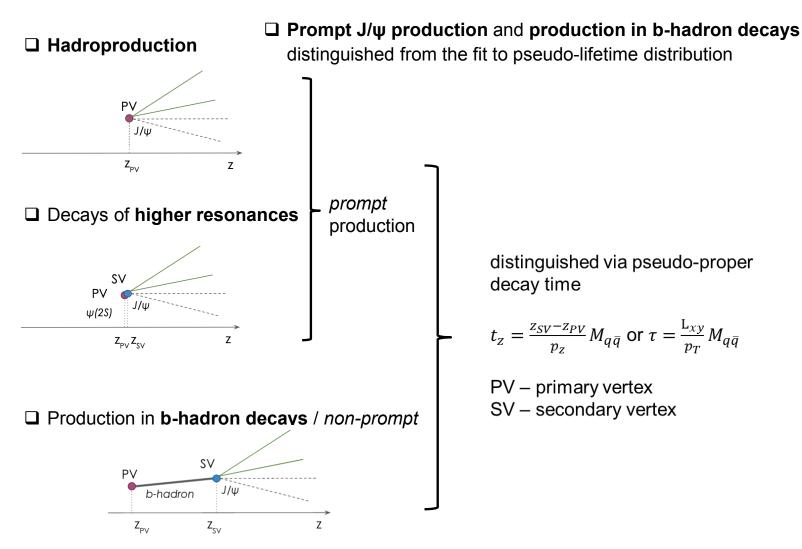
The LHCb experiment



The LHCb trigger (2018)

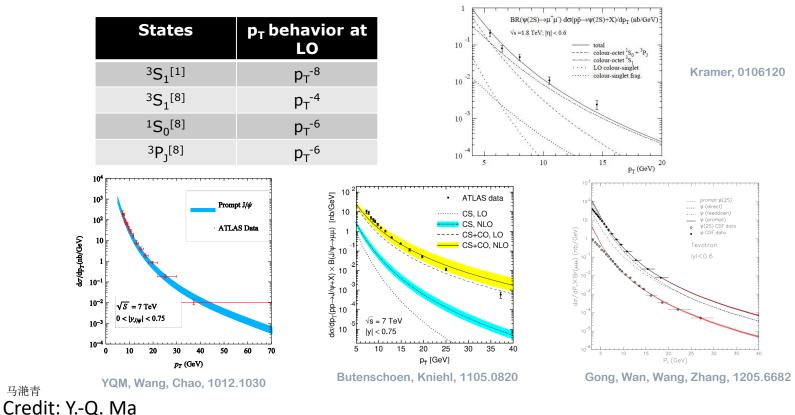


- LO, Hardware
 - $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \, {\rm GeV})^2$
 - $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
 - $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
 - $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
 - $-E_{\rm T}(h) > 3.7 {
 m GeV}$
- High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection


Charmonium states

Charmonium(like) states

 J/ψ production



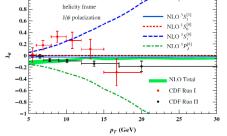
J/ψ hadroproduction

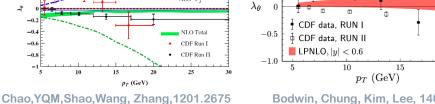
CO mechanism

\succ Nicely explain ψ' surplus by CO contributions

马滟青

10

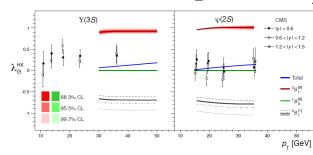

Polarisation?


Polarization puzzle at NLO

 $\succ J/\psi$: transverse polarization canceled (<u>why?</u>) in {}^{3}S_{1}^{[8]} and {}^{3}P_{I}^{[8]}

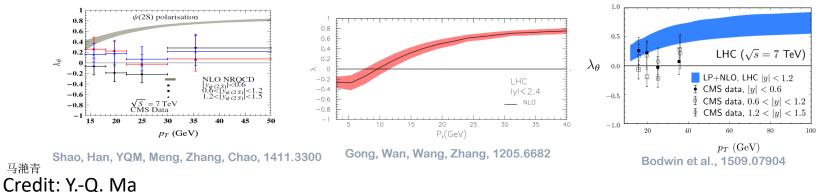
(a)

20



1.0

0.5


Tevatron

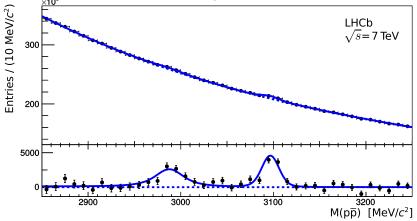
Bodwin, Chung, Kim, Lee, 1403.3612

Faccioli, Knunz, Lourenco, Seixas, Wohri, 1403.3970

$\succ \psi(2S)$: cancelation weak, hard to understand data

33/62

Hadronic decays


Sizable branching fractions

					$\mathcal{B} \times 10^3$				
	$p\bar{p}$	$\phi\phi$	$\phi K^+ K^-$	$\phi\pi^+\pi^-$	$\Lambda\overline{\Lambda}$	$\Xi^+\Xi^-$	$\Lambda(1520)\overline{\Lambda}(1520)$	$\eta_c \gamma$	$par{p}\pi^+\pi^-$
η_c	1.35 ± 0.13	1.58 ± 0.19	2.9 ± 1.4	unknown	1.02 ± 0.23	0.90 ± 0.26	-	-	5.5 ± 1.9
J/ψ	2.12 ± 0.03	forbidden	0.83 ± 0.11	0.94 ± 0.15	1.89 ± 0.09	0.97 ± 0.08	unknown	17 ± 4	6.0 ± 0.5
χ_{c0}	0.22 ± 0.01	0.80 ± 0.07	0.97 ± 0.25	unknown	0.36 ± 0.02	0.45 ± 0.02	0.31 ± 0.12	forbidden	2.1 ± 0.7
h_c	< 0.17	forbidden	unknown	unknown	unknown	unknown	unknown	570 ± 50	3.3 ± 0.6
χ_{c1}	0.076 ± 0.003	0.42 ± 0.05	0.41 ± 0.15	unknown	0.13 ± 0.01	0.06 ± 0.01	< 0.09	forbidden	0.50 ± 0.19
χ_{c2}	0.073 ± 0.003	1.06 ± 0.09	1.42 ± 0.29	unknown	0.18 ± 0.02	0.14 ± 0.01	0.46 ± 0.15	forbidden	1.32 ± 0.34
η_c'	< 2.0	< 1.0	unknown	unknown	unknown	unknown	unknown	forbidden	seen
ψ'	0.29 ± 0.01	forbidden	0.07 ± 0.02	0.12 ± 0.03	0.38 ± 0.01	0.29 ± 0.01	unknown	3.4 ± 0.5	0.60 ± 0.04

 High multiplicity in *pp* collisions, high level of background due to too many combinations, chanllenging even for LHCb that has excellent hadron particle-identification

Charmonium $\rightarrow p\bar{p}$, the "history" in one slide

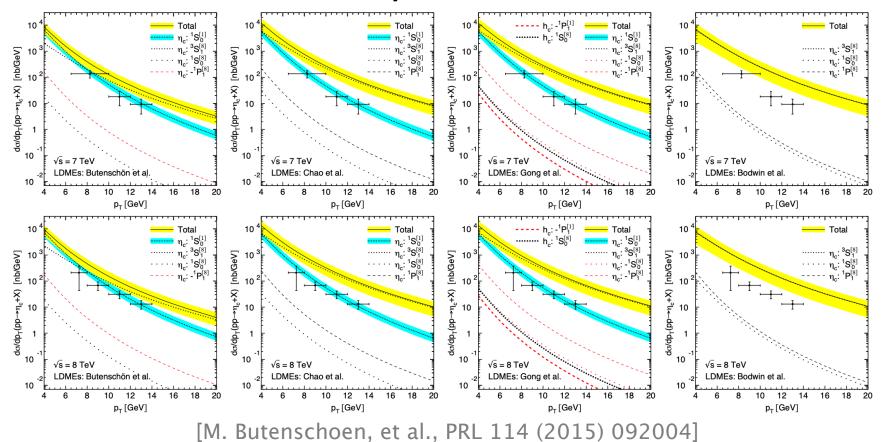
- Developed dedicated HLT2 trigger for prompt $p\bar{p}$ in 2010 [29/03/2010]
 - $\varepsilon_{\rm trg}$ improved by a factor of ${\sim}5$
 - First prompt $J/\psi \rightarrow p\bar{p}$ peak @ hadron collider
- Developed dedicated HLT1 trigger for prompt $p\bar{p}$ in 2011 [07/03/2011]
 - $\varepsilon_{\rm trg}$ improved by another factor of ${\sim}3$
- Provided first measurement of η_c hadroproduction [EPJC 75 (2015) 311]

 However, the life of these trigger lines was never easy, trigger high-up kept asking to tighten and tighten cuts...

5900

3/9

February 24, 2016

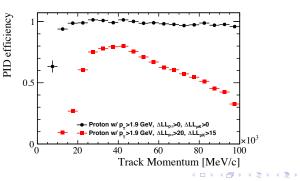

$\eta_c(1S)$ production at 7/8 TeV

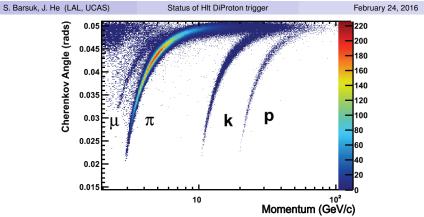
[LHCb, EJPC 75 (2015) 311]

• $\eta_c(1S)$ hadroproduction LHCb detached firstly measured by LHCb 1000 Prompt signal suffers from high background $M(p\bar{p})$ [MeV/ c^2] Entries / (10 MeV/c²) LHCb prompt \sqrt{s} =8 TeV 600 400 10000 5000 3200 2900 3000 3100 $M(p\overline{p})$ [MeV/ c^2]

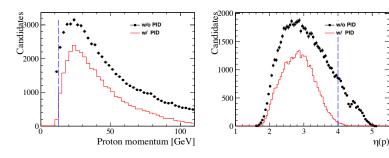
$\eta_c(1S)$ production at 7/8 TeV

• Results described by NLO CS?

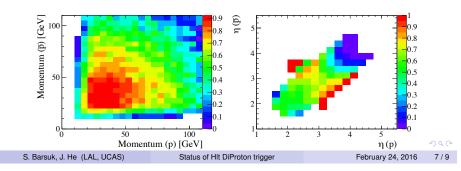



Made it possible for 13 TeV

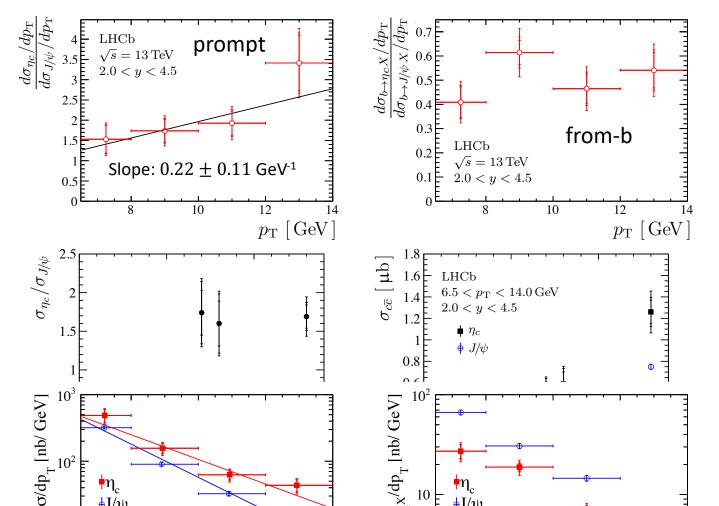
6/9


Asked to reduce rate of Hlt1DiProton...

- As it is taking 12.5 kHz (?)...
- 10.9 kHz (8.8 kHz exclusive) after applying track chi2<4
- 6.5 kHz (5.1 kHz exclusive) after giving up 3.3-4.0 GeV, and only focus on η_c and J/ψ; & tightening track chi2<2.5
- \sim 5 kHz after shaving the phase space, P>12.5 GeV, (PT/P)>0.0366, signal efficiency still high (>90%)



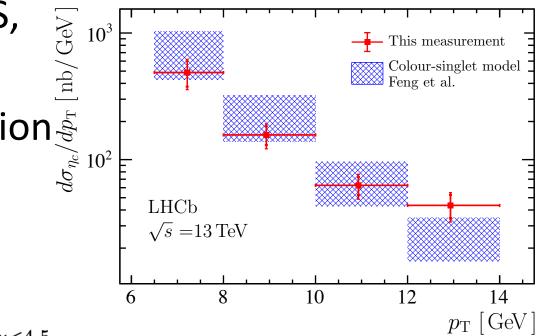
- Cannot afford running RICH reconstruction at HIt1 level
- Used 10% bandwidth!
- Non-PID cuts to redude bandwidth


PID efficiency as function of p/η

$\eta_c(1S)$ production at 13 TeV

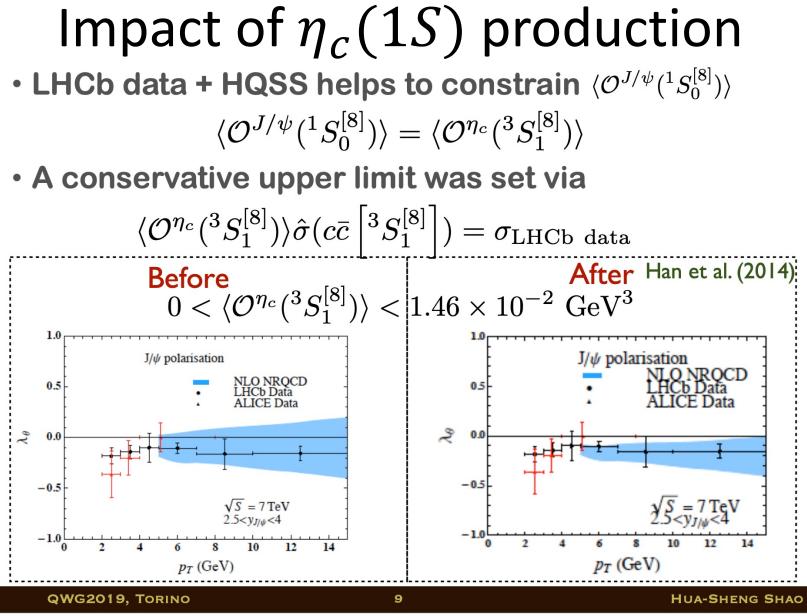
[LHCb, EPJC 80 (2020) 191]

• Different $p_{\rm T}$ dependence for prompt $\eta_c(1S)$ and J/ψ ?

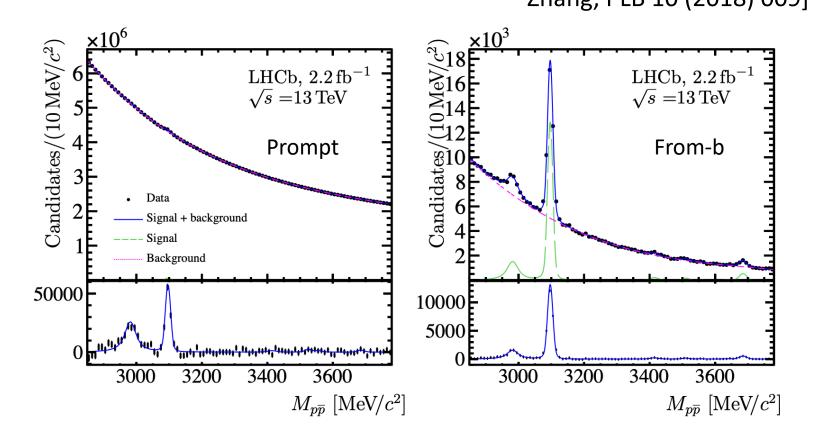


17

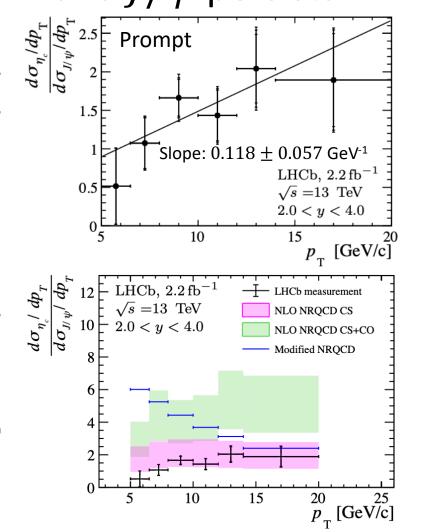
$\eta_{c}(1S)$ production at 13 TeV

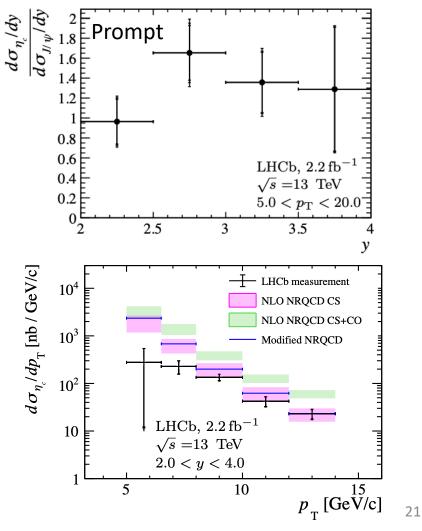

[LHCb, EPJC 80 (2020) 191]

- Comparison w/ CS,
- Theoretical precision $\int_{0}^{10} \int_{0}^{10} \int_{0}^{0$


 $(\sigma_{\eta_c}^{\text{prompt}})_{12 \text{ TeV}}^{6.5 < p_{\text{T}} < 14.0 \text{ GeV}, 2.0 < y < 4.5}$ $= 1.26 \pm 0.11 \pm 0.08 \pm 0.14 \,\mu b$

> Prediction: $1.56^{+0.83}_{-0.49}$ (scale) $^{+0.38}_{-0.17}$ (CT14NLO) µb [Y. Feng, et al., NPB 945 (2019) 114662]


η_c production in 2018


• Dedicated trigger added in 2018 to cover $\eta_c(2S)$, thanks to theoreticla work, [J.P. Lansberg, H.-S. Shao, H.-F. Zhang, PLB 10 (2018) 009]

New

• Different $p_{\rm T}$ dependence for prompt $\eta_c(1S)$ and J/ψ persists

[LHCb-Paper-2024-004, in preparation]

LHCb-Paper-2024-004, in preparation]

Hen

First upper limits at 95% CL on $h_c(1P)$ and $\eta_c(2S)$ hadroproduction for $5 < p_T < 20$ GeV, 2 < y < 4

$$\frac{(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.14,$$

$$\frac{(\sigma_{h_c(1P)} \times \mathcal{B}_{h_c(1P) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.13.$$

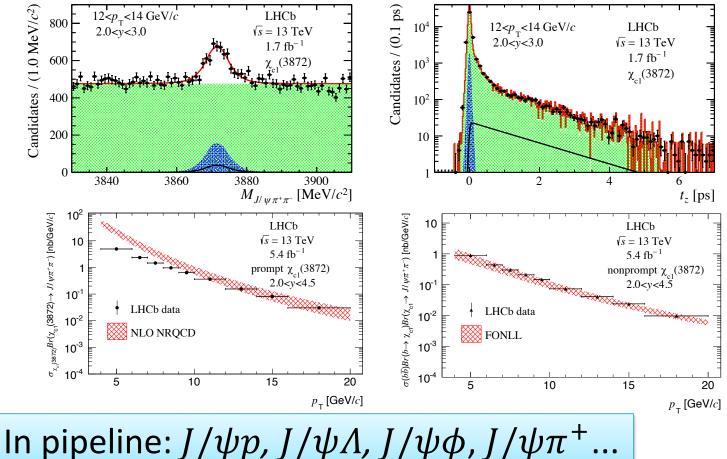
Most precise measurements:

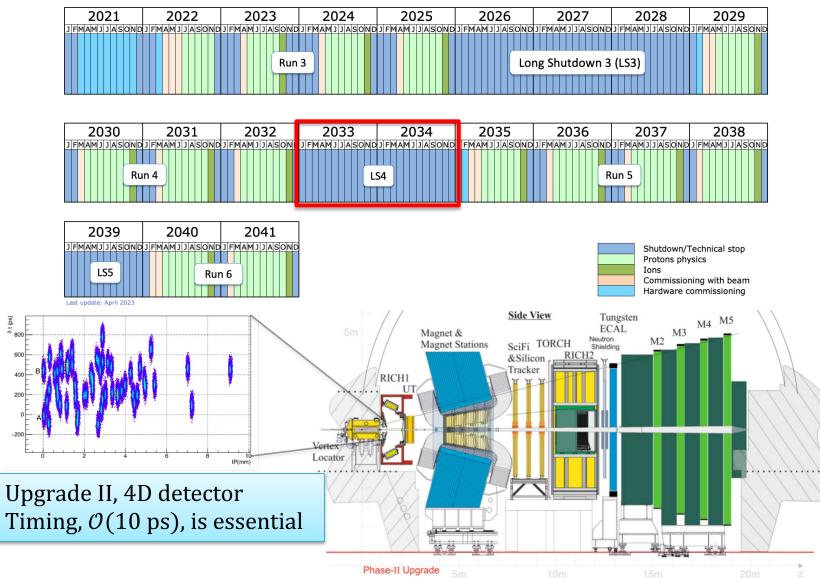
$$\mathcal{B}_{b \to \chi_{c0} X} = (3.05 \pm 0.54 \pm 0.08 \pm 0.29) \times 10^{-3},$$

$$\mathcal{B}_{b \to \chi_{c1} X} = (5.11 \pm 1.20 \pm 0.14 \pm 0.50) \times 10^{-3}$$

third uncertainty due to $\mathcal{B}_{\chi_{c0,1} \to p\bar{p}}$, $\mathcal{B}_{J/\psi \to p\bar{p}}$, $\mathcal{B}_{b \to J/\psi X}$

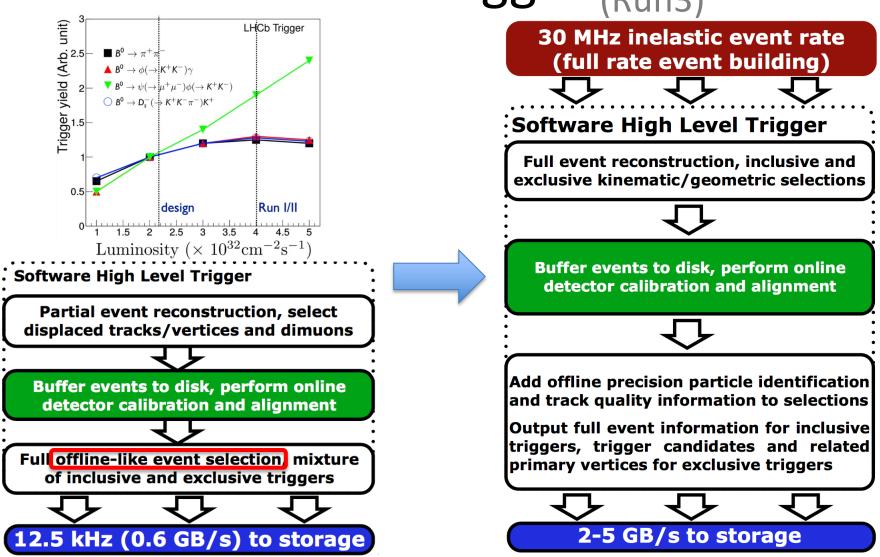
Charmonium to $\phi\phi$


Inclusive production from b-decay


 $\begin{aligned} \mathcal{B}(b \to X(3872)X) \times \mathcal{B}(X(3872) \to \phi\phi) &< 4.5(3.9) \times 10^{-7}, \\ \mathcal{B}(b \to X(3915)X) \times \mathcal{B}(X(3915) \to \phi\phi) &< 3.1(2.7) \times 10^{-7}, \\ \mathcal{B}(b \to \chi_{c2}(2P)X) \times \mathcal{B}(\chi_{c2}(2P) \to \phi\phi) &< 2.8(2.3) \times 10^{-7}. \end{aligned}$

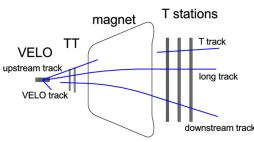
X(3872) production

- First double-differential cross-section
- Consistent with $\chi_{c1}(2P) + D^0 \overline{D}^{*0}$ mixture


The LHCb upgrades

[CERN-LHCC-2018-027, 2021-012]

25


The LHCb trigger (Run3)

Prospects at LHCb

	$\mathscr{B} imes 10^3$									
	$p\bar{p}$	$\phi\phi$	$\phi K^+ K^-$	$\phi\pi^+\pi^-$	$\Lambda\overline{\Lambda}$	Ξ+Ξ-	$\Lambda(1520)\overline{\Lambda}(1520)$	$\eta_c \gamma$	$par{p}\pi^+\pi^-$	
η_c	1.35 ± 0.13	1.58 ± 0.19	2.9 ± 1.4	unknown	1.02 ± 0.23	0.90 ± 0.26	-	-	5.5 ± 1.9	
J/ψ	2.12 ± 0.03	forbidden	0.83 ± 0.11	0.94 ± 0.15	1.89 ± 0.09	0.97 ± 0.08	unknown	17 ± 4	6.0 ± 0.5	
χ_{c0}	0.22 ± 0.01	0.80 ± 0.07	0.97 ± 0.25	unknown	0.36 ± 0.02	0.45 ± 0.02	0.31 ± 0.12	forbidden	2.1 ± 0.7	
h_c	< 0.17	forbidden	unknown	unknown	unknown	unknown	unknown	570 ± 50	3.3 ± 0.6	
χ_{c1}	0.076 ± 0.003	0.42 ± 0.05	0.41 ± 0.15	unknown	0.13 ± 0.01	0.06 ± 0.01	< 0.09	forbidden	0.50 ± 0.19	
χ_{c2}	0.073 ± 0.003	1.06 ± 0.09	1.42 ± 0.29	unknown	0.18 ± 0.02	0.14 ± 0.01	0.46 ± 0.15	forbidden	1.32 ± 0.34	
η_c'	< 2.0	< 1.0	unknown	unknown	unknown	unknown	unknown	forbidden	seen	
ψ'	0.29 ± 0.01	forbidden	0.07 ± 0.02	0.12 ± 0.03	0.38 ± 0.01	0.29 ± 0.01	unknown	3.4 ± 0.5	0.60 ± 0.04	

- Charmonia to $p\bar{p}$ in Run-3
 - Hlt1 for hadroproduction still challenging, GPU/FPGA and AI to accelerate RICH reconstruction?
- Charmonia to $p\bar{p}\pi^+\pi^-$, as $\phi\phi$, ϕKK
 - No trigger (and challenging) for hadroproduction, first $\mathcal{B}(b \rightarrow h_c X)$ ongoing
- Λ reconstruction not very efficient, improved in Run-3

Summary

- 50 years after the discovery of J/ψ particle, its hadroproduction still not fully understood
- Thanks to the support of FCPPL, continued efforts on studying charmonium(like) production in LHCb, providing unique inputs!

$$-\eta_c(1S)$$
 hadroproduction, $b \rightarrow \chi_c X$

 $-b \rightarrow h_c(1P)X$ in pipeline

Trigger still the bottleneck for Run-3

 GPU/FPGA, AI to accerelate, wider collaboration