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LUUJhat this 1s asbout

With new technologies emerging (e.g., deep learning),
scientific computing environment are becoming more and more
heterogeneous. Several parallel computing devices (GPGAs,
GPUs, etc) can be exploited to accelerate traditional
algorithms and 1nclude deep Ilearning components 1n the
processing workflows. A wide set of dedicated computing
devices (TPUs, IPUs, ...) are targeting specific use cases,
e.g., convolutional neural networks, recurrent networks,
graph networks. Neuromorphic computing opens the possibility
to use spiking neural networks for signal processing. On a
longer term, quantum computing might offer 1nteresting
alternatives to solve Jlarge combinatoric problems. With
private companies dictating the direction followed by
Tnnovation, big scientific collaborations might have to adapt
their data processing to follow this trend, which cou7d offer

specific advantages. erc




The hardware landscape s changlng

® In the past, CPUs were the main working horses used for Big
Science application

® For real-time applications, ASICs on custom electronics were a
typical choice

® Then parallel computing changed the landscape

® FPGAs replaced ASICs as a common choice for RT (at least 1n
HEP)

® GPUs (and FPGAs?) offer now speed up opportunity thanks to
parallelism

® B1g 1nvestments towards Deep Learning and Quantum computing
will reshape the landscape around us and we should adapt
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MNew Hardware: exampl

BIOLOGICAL INSPIRATION

Neuromorphic technology is based on neurons and neural circuits in the brain.
Like the brain, it uses much less power than standard computer chips.

Each neuron has about 10,000
of these tiny junctions, which
receive signals in the form of
voltage spikes coming in from
other neurons.

Neuron cell body

in both real neurons and
neuromorphic versions,
voltages and currents vary
smoothly rather than jump
in digital fashion from one
discrete value to another.

Each emulated neuron
receives signals through
several thousand of these
links, which are often much
simpler than biological
synapses.

This fibre, which can be up to
1 metre long, transmits the
voltage spikes to other neurons.

 Emulated neuron

Both real and emulated
neurons add up, or integrate,
incoming signals until they
pass a threshold and “fire’,
producing an outgoing series
of voltage spikes.

g Wire

This mimics the axon, and
carnes the voltage spikes to
other emulated neurons.
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IPU-Tiles™

1472 independent IPU-Tiles™ each with an
IPU-Core™ and In-Processor-Memory™

IPU-Core™

1472 independent IPU-Core™

8832 independent program threads
executing in parallel

In-Processor-Memory™

900MB In-Processor-Memory™ per IPU

47.5TB/s memory bandwidth per IPU
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IPU-Exchange™

Non-blocking, any communication pattern
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The blg proolem
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® We could take more data, but we don’t
® because we cannot process them (CPU taken by MC)
® because we could not generate the corresponding MC
® because we cannot store them
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Our resources don't scale up

® Scientific challenges grow 1n complexity
® Brute-force computing power increase at fixed cost worked so far
@ It will not 1n the past (Moore’s law saturation)
® Example: projected HL-LHC computing power 1s x10 off wrt needs
® We need to look at new resources outside
® Those resources don’t target us as main customers
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HPC sites evolution

® Computing environment around us 1s evolving

® HPC s1ites

® Cloud platforms GPU-Accelerated

Computing

® These sites are 1nvesting massively
on GPUs
® Cloud providers have even more

heterogenous environments

2000 2010

® FPGAs TPUs TPUs 40 Years of CPU Trend Data

® How can we take advantage of that?
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Bl The (HEP) computing evolution

® We are transitioning from edge to 1980-2000 -

cloud computing N A
® We are not anymore the leading figure

(compare CERN computer centre to 2000-2020

cloud providers) .
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@ It 1s l1kely that scientific ‘

computing 1n the future will be

largely outsourced to HPC sites and ‘
(opportunistically?) to Cloud

providers

2020-???
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® e.g., Amazon cloud 1ntegrated to
LHC Computing Grid as a virtual
extension of FNAL Tier

® This opens the room to new workflows,
which would exploit hardware
heterogeneity -
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Which Particle?
Which Energy?
Which Direction?

® Big push to dedicated i1nfrastructures

® GPU/CPU ratio 1n HPC sites 1ncreasing to accommodate
more and more training & inference needs

® We might have to make ourselves more DL compliant to ..
benefit of these resources erc wny
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Cloud vs. Edge

Heterogeneous Cloud Resource
SRpC

CPU farm

h AL
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CMSSW
1

| Network input

* Remote: cmslpc @ FNAL to Azure (VA), <time» = 60 ms

o Highly dependent on network conditions

| Prediction

T~

Heterogeneous Edge Resource

* On-prem: run CMSSW on Azure VM, «time> = 10 ms
o FPGA: 1.8 ms for inference

o Remaining time used for classifying and I/O

* Cloud service has latency

e Run CMSSW on Azure cloud machine
— simulate local installation of FPGAs
(“on-prem” or “edge”)
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Ol Towards the discussion

® These are only a few considerations to start with
® Taken from my personal experience with HEP and 1n particular LHC

@ I would be very 1nterested to hear about experience from other
fields

® long-term needs (storage and computing)
@ migration to heterogenous environments
® edge computing vs cloud computing

® the role of Deep Learning 1n all of this

® Based on this, we should come out with a li1st of Tnteresting
hardware options
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