

European Science Cluster of Astronomy & Particle physics ESFRI research Infrastructures

The Dark Matter Test Science Project Caterina Doglioni - Lund University

Input from: Tanya Hryn'ova, Claire Adam Bourdarios, Arturo Sanchez Pineda, Simone Campana, Ian Bird, Xavier Espinal, Kay Graf (+ KM3Net), Vincent Poireau, Sam Meehan, Lukas Heinrich, Caterina Doglioni, Stephen Serjeant, + many others

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

@CatDogLund, she/her http://www.hep.lu.se/staff/doglioni/

Big science question: Dark Matter

NASA/CXC/M. Weiss

https://cordis.europa.eu/project/id/679305

ESCAPE How/why Test Science Projects? Slide from G. Lamanna

Propose Test Science Projects to demonstrate multi-domain science integration across ESCAPE / EOSC

Involve researchers to **demonstrate** new cutting edge **open science capabilities**, making use of the services implemented within EOSC

eresearchers can give feedback on the capabilities delivered by ESCAPE/EOSC

researchers can exploit synergies between the ESFRIs and among the scientific communities of Astrophysics/Astroparticle, accelerator-based Particle and Nuclear Physics

Supported by consortia of EU member states research agencies and institutes within the Joint ECFA NuPECC APPEC Activities (JENAA)

Different kinds of DM, and synergies

Many hypotheses for dark matter

- \rightarrow many ways to detect it
 - \rightarrow many different experiments
 - → many different data / workflow needs
 - \rightarrow many different data / result sharing policies

one of many models predicting Weakly Interacting Massive Particles (WIMP)

Astrophysics

Scientific added value of DM-TSP:

New plots of dark matter discoveries / constraints

https://arxiv.org/pdf/1912.12739.pdf

There are many combinations of results on the market... but none that sees them all work together with FAIR data & end-to-end workflows!

SM

HEP. See gist for calculation notes. 16/March/2019 erc

(full table uploaded by Ian Bird in Teams) Diagram only representing collider and direct detection

Differences in collaboration variety and size

- Differences in data volumes:
- Colliders: "Big Data" volumes (>> PB)
- DD: smaller data volumes (~TB/PB)

Synergies in statistical analysis and interpretation of results

Different modus operandi for indirect detection

Collaborations e.g. Fermi release data for general use ("observatory mode"), but also perform high-profile analyses themselves

Added value of DM-TSP:

Proof that communities with different data needs can use a common platform —> further demonstration of EOSC versatility, encourages future use by the entire scientific community

ESCAPE The TSP, in a nutshell

Experimental method	Partners	EOSC Tools	DA Tools (Al/ML)	Project outcome
Producing DM in the lab (collider): ATLAS @ CERN	CERN LAPP	Data Lake Software Catalogue Analysis Platform	ML algorithms for: 1. Data compression 2. Data reconstruction (e.g. pattern recognition) 3. Background rejection	Constraints(/projectio ns) on dark matter cross-section / DM mass plane and on dark matter velocity-averaged xsection / DM mass plane
Detecting dark matter from the sky (direct detection): DARKSIDE @ INFN	INFN	Data Lake Software Catalogue Analysis Platform	твс	Constraints(/projectio ns) on dark matter interaction cross-section/mass plane
Detecting interactions of dark matter using neutrinos (indirect detection): KM3NeT	FAU	Data Lake Software Catalogue Analysis Platform	твс	Constraints(/projectio ns) on dark matter cross-section/mass plane
Detecting interactions of dark matter in space (indirect detection)	LAPP	Data Lake Software Catalogue Analysis Platform	твс	Constraints(/projectio ns) on dark matter velocity-averaged xsection / DM mass plane
Surveying dark matter in the universe (astrophysical probes)	Open University [not in WP6 in EOSC-Futur e)	Data Lake Software Catalogue Analysis Platform	твс	Combination of constraints on different models using simulation + statistical analysis software (Gambit)
[TSP2] Exploiting the gravitational interactions of DM (GW probes)	See GW TSP	Software Catalogue Analysis (multimessenger) Platform	See GW TSP	твс

LUNDS UNIVERSITET

Table, originally designed by ESCAPE-TSP-GW, is still as a work in progress

Idea of Data Analysis Tools column: algorithms that can be shared beyond a single infrastructure / field

IWAPP was very useful in terms of food for thought on how to implement these common algorithms (especially ML)

How to follow up?

* * * * * European

Council Commission

European Science Cluster of Astronomy & Particle physics ESFRI research Infrastructures

Backup slides

@CatDogLund, she/her http://www.hep.lu.se/staff/doglioni/

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

ESCAPE Services towards the European Open Science Cloud (EOSC)

Slide from G. Lamanna

ESCAPE services

Data Lake:

Build a scalable, federated, data infrastructure as the basis of open science for the ESFRI projects within ESCAPE. Enable connection to compute and storage resources.

Software Repository:

Repository of "scientific software" as a major component of the "data" to be curated in EOSC. Implementation of a community-based approach for the continuous development of shared software and for training of researchers and data scientists.

Virtual Observatory:

Extend FAIR standards, methods, tools of the Virtual Observatory to a broader scientific context; demonstrate EOSC ability to include existing platforms

Science Platforms:

Flexible science platforms to enable the analysis of open access data

Citizen Science:

• Open gateway for citizen science on ESCAPE data archives and ESFRI community CS projects

ESCAPE software catalogue Slide from K. Graf

OSSR Overview

_		
	ESFRI/RI	Institute/SME
	СТА	CNRS-LAPP
	СТА	CTAO
	СТА	IFAE
	СТА	MPG-MPIK
	СТА	UCM
	EGO-Virgo	EGO
	ELT	HITS
	EST	AIP
	EST	NWO-I-CWI
	EST	UNITOV
	FAIR	GSI
	HL-LHC, CERN	CERN
	JIVE	JIVE
	KM3NeT	CNRS-CPPM
	KM3NeT	FAU
	KM3NeT	INFN
	KM3NeT	NWO-I-Nikhef
	SKA	SKAO
	SME	OROBIX
	9 ESFRI / RI	19 Partners

10/2020

ESCAPE Dark matter complementarity

DM discoveries need complementary experiments that involve DM with cosmological origin / can produce DM

- Direct detection can **discover DM that interacts** inside the detector
- Indirect detection can see **annihilating/decaying DM** through its decays
- Accelerators/colliders can produce DM and **probe the dark interaction**

Indirect Detection (+ cosmic surveys)

Direct Detection

Particle Accelerators (colliders & extracted beam lines)

Work on "common language / common resources" (plots, scenarios, tools) ongoing in <u>Snowmass</u> / <u>iDMEu JENAA EOI</u> / many other communities

Caterina Doglioni - EOSC-Future meeting - 22/01/2020

12

Synergistic initiatives following European Strategy Update

searches & interpretation

software & data

More initiatives and links in backup slides

JENAS EoI: Initiative for Dark Matter in Europe and beyond: Towards facilitating communication and result sharing in the Dark Matter community (iDMEu)

https://indico.cern.ch/event/869195/ ESCAPE newsletter APPEC newsletter

build a discussion platform to facilitate collaboration of existing groups/efforts on **dark matter searches** and **interpretation**

> Towards a Dark Matter Test Science Project

ESCAPE Progress Meeting, 2020

compare **end-to-end analysis workflows** for WIMP searches, towards their implementation in a common **Software Catalogue** and as input to the design of the **European Open Science Cloud** provides a discussion platform for the **comparison of common DM interpretations**

allows to **create experimental curves** by **example ESCAPE experiments**, comparing and contrasting analysis pipelines that use ESCAPE / EOSC tools

Caterina Doglioni - TOOLS workshop - 04/11/2020

Initiative for Dark Matter in Europe and beyond

Many DM discussions, from Granada to the ApPEC-ECFA-NuPECC JENAS meeting held in Orsay in October 2019

- Talk on ESCAPE (G. Lamanna) in plenary programme
- <u>HEP Software Foundation meeting</u> on possible software synergies

JENAS prompted a new initiative centered around dark matter: <u>https://indico.cern.ch/e/iDMEu</u>, also featured in ESCAPE <u>newsletter</u>

- *iDMEu* aiming to build a discussion platform to facilitate collaboration of existing groups/efforts
- Dark Matter Test Science Project targeting data, software and tools sharing where necessary/useful
- Points of contact between *iDMEu* and *TSP*:
 - participation of DM community to software catalogue
 - help with common repositories of data and final results (e.g. versioning)
 - e.g. DMTools, DM Limit Plotter

