Machine Learning workflows in KM3NeT

Stefan Reck IWAPP workshop 2021-03-10

→ detection principle: measure Cherenkov radiation of charged particles

DOM	31 PMTs
String	18 DOMs
Total (planned)	3 blocks of 115 strings each
Currently	6 strings (ORCA) 1 string (ARCA)

https://arxiv.org/abs/1601.07459

KM3NeT ORCA

for neutrinos with GeV energy

- neutrino oscillations, mass ordering, ...

- height: 150m

line spacing: about 20 - 23m

KM3NeT ARCA

- for neutrinos with TeV energy
- cosmic neutrinos, ...
- height: 600m
- line spacing: about 90m

Neutrino interactions

Detector signatures

Machine Learning workflows in KM3NeT

KM3NeT backgrounds

- Two types of background producing photons in the deep sea:
 - 1. Atmospheric muons passing the detector from above
 - 2. Random noise, by K-40 beta decays and bioluminescent organisms

Event topologies

https://arxiv.org/abs/1601.07459

Up-going v_{μ} – CC **track**-like event

 v_e – CC **shower**-like event

Event topologies

Up-going v_{μ} – CC **track**-like event

 v_e – CC **shower**-like event

- ensemble of decision trees
- input: "hand-crafted" features
 - → these need to be manually designed

in total: ~150 features!

- each tree is trained on random subset of features
- each tree outputs either "track" or "shower"
- → final score: $S = \frac{N(\text{trees voting for target class})}{N(\text{total trees})}$

what are the input features?

- → e.g. fit quality
- use maximum-likelihood-based reconstruction of observables
- compare the reco quality of track and shower hypothesis

what are the input features?

- → e.g. hit distribution
- compare distribution of hits to expectation in simulations
- shower events are more spherical

Result:

- good separation between tracklike and shower-like events
- define separation power S: quantifies the overlap between the distributions

Result:

- good separation between tracklike and shower-like events
- define separation power S: quantifies the overlap between the distributions

RDFs are also used for separating neutrinos from background

• Problem: **feature design is not easy** and maybe we missed some good features?

- Problem: **feature design is not easy** and maybe we missed some good features?
- idea: let an algorithm learn the features directly on low-level simulations

Convolutional networks

Successful model architecture in image recognition:

Convolutional neural networks (CNNs)

Simplified working principle of a CNN

Our data

How does our data look like?

→ spatial: 3D detector

→ temporal

→ pmt direction: 31 orientations per DOM

Our data: X-Y-plane

JINST 15 P10005 (2020)

- line anchors in x-y plane are not on rectangular grid
- apply grid with <1 anchor per bin (assuming static detector)
- → 11 bins in X, 13 bins in Y (ORCA115)

Our data: Z-plane

- each line has 18 DOMs
- → similar heights for all lines
- → can be easily binned (assuming static detector)

Our data: time

JINST 15 P10005 (2020)

- time coordinate is unbounded and continuous
- → only use hits in a time window (e.g. 750 ns)
- → choose time resolution (e.g. 7.5 ns/bin)

- time resolution limited by hardware
- choose e.g. 100 time bins

Signal hit time distribution for $v_u - CC$ events

Our data: pmt direction

31 pmts arranged on a 2 sphere

- → no spherical convolution in tensorflow, so we use the color channel of convolutions
- → instead of multiple colors, we supply multiple pmt directions!

Input for convolutional networks

Input for convolutional networks

- In total, we end up with 5d data (x, y, z, t, pmt)
- But tensorflow only supports up to 4D input to convolutions!
- → Solution:
 - Stack two projections of the event: xyz-pmt and xyz-t
 - use color channel of convolution for stacked dimension

Event topology classification

Separability between track and shower

Neural network vs random forest

Background classification

JINST 15 P10005 (2020)

 separate atmospheric muons and neutrinos

Neural network vs random forest

Graph networks

- Convolutional networks on our data have various issues:
 - no 5D convolution
 - xyz positions need to be binned (problem for non-static detector)
 - fixed time window with limited resolution

Idea: Use a network architecture that operates on graphs

Input for graph networks

Edge convolution

https://arxiv.org/abs/1902.08570

each hit is a **node** $\overrightarrow{x_i}$

= $(x, y, z, t, \overrightarrow{pmt})$ of the hit

2 nodes are connected with **edge** $\overrightarrow{e_{ij}}$

= $(\overrightarrow{x_i}, \overrightarrow{x_i} - \overrightarrow{x_j})$ of the hits i,j

Edge convolution

Then:

- define a multi-layer perceptron and convolve over all edges
 - \triangleright produces an **update** $\overrightarrow{u_{ij}}$ from each edge

Edge convolution

Then:

- define a multi-layer perceptron and convolve over all edges
 - \triangleright produces an **update** $\overrightarrow{u_{ij}}$ from each edge
- Update central node $\vec{x_i}$ with averaged updates from k nearest neighbours:

$$\overrightarrow{x_i} \rightarrow \overrightarrow{x_i} + \left\langle \overrightarrow{u_{ij}} \right\rangle_i$$

Graph networks

- Convolutional networks on our data have various issues:
 - no 5D convolution Fixed, can use n-D convolution
 - xyz positions need to be binned (problem for non-static detector)
 Fixed, no spatial binning necessary
 - fixed time window with limited resolution

Fixed, unlimited resolution/time window

Idea: Use a network architecture that operates on graphs

Graph networks

How good is the EdgeConv compared to convolutions?

	Convolution	Graph
train time / epoch	8.3h	2.0h
free parameters	8.4m	370k

→ faster, fewer parameters (→ less overfitting)

Graph networks: direction

goal: reconstruct direction of atmospheric muons

Best validation loss

Convolution	Graph
0.0354	0.0349

(mean absolute error)

loss (here: mean absolute error) is used to judge performance of the reconstruction – the lower the better!

iviaciline learning workhows in rivisine i

Graph networks: multiplicity

goal: reconstruct number of atmospheric muons in an event

Best validation loss:

Convolution	Graph
0.389	0.361

(categorical cross-entropy)

Graph networks: muon distance

• goal: reconstruct distance between atmospheric muons

Best validation loss:

Convolution	Graph
-1.911	-2.156

(negative log-likelihood)

Summary

- Machine Learning is an important tool for event reconstruction in KM3NeT
- allows to solve otherwise difficult to tackle problems
- workflows are improved continuously and adapted to our data