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1. Issues and strategies at LHC

2. Reconstructing SUSY model (MSSM) parameters:
an alternative bottom-up approach

Motivations: reconstruct SUSY basic parameters for
“minimal” set of identified sparticles, within different scenarios
(e.g. in SUSY if GUT scale universality assumptions or not)

3. Summary

– p. 2



1. LHC: General issues and Strategies

Very optimistic SUSY scenario: all MSSM sparticles
+Higgses found; fit mSUGRA model; find sthing like ’SPS1a’
Real life probably harder...
Recent years, focus shifted from “discovering SUSY and
measuring its parameters" to gradual questions:

• How to discover SUSY-like (weakly interacting theory with
partners at TeV) or/and non SUSY-like (strongly interact.
EFT)
To begin, already experimental and theoretical issues:
•Trying to tell signal from backgrounds (a challenge both for
TH and EXP)
•Tune MC to (signal free) data, see if any deviation from SM,..
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Here much more focused aim:
How to measure basic parameters accurately enough to
extract underlying SUSY symmetry breaking scale pattern?

Beware the “LHC inverse problem”
i.e. discrete ambiguities (potentially many) in reconstructing
basic MSSM parameters (Arkani-Hamed, Kane, Thaler, Wang ’05)

However, ambiguity levels clearly reduced if using most
sophisticated analysis, both experimental and theoretical:
-Efforts to calculate all signals at NLO accuracy
-Global fits, new observables (e.g. “footprints” in signature
space (Arkani-Hamed et al))
-Low energy constraints, interplay with ILC and dark matter
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MSSM basic parameter reconstruction

Very lively debate now on what will be most efficient
approach: standard “top-down” versus bottom-up; “blind”
analysis; fewer observable based, etc.

- Up to now mostly "top-down" approach:
GUT scale Lagrangian → RG evolution → Electroweak
Symmetry Breaking (low scale) → Spectrum determination
(diagonalization+ rad. corr.)
Fit model parameters (e.g mSUGRA) to data set (masses,
cross-sections, etc)
+ Pb if too much parameters: hardly fitting general MSSM (22
parameters) even if all sparticle masses, x-sections known..
(but recent progress made e.g. SFitter → see next talk by D.
Zerwas)
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2.1 Top-down reconstruction (some recent developments)

SFITTER (Lafaye, Plehn, Rauch, D.Zerwas) takes LHC measurements:
kinematic edges (from long gluino/squark decay chains), masses, mass differences, cross

sections, BRs) +Indirect constraints (g − 2)µ; BR(b → sγ), DM Ωh2

Compare to th predictions (Spectrum calculators: SoftSUSY, SuSPECT,

ISASUSY; Cross sections and BRs: Prospino2, MsmLib, SUSYHit (HDecay + SDecay))

Find best fits using different techniques (Gradient search (Minuit),

Markov Chains techniques, Simulated Annealing (Fittino [Bechtle, Desch, Wienemann])

From kinematic edge +other “SPS1a” data (∼ 15 sparticle mass input):

only stat errors (+th errors)

tan β 9.8 ± 2.3 (4.5)

M1 101.5 ± 4.6 (7.8)

M2 191.7 ± 4.8 (7.8)

M3 575.7 ± 7.7 (14.5)

µ 350.9 ± 7.3 (14.5)

Mq̃R
506.2 ± 11.7 (17.5)
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2.2 An alternative “Bottom-up” approach

From physical masses to basic (Lagrangian) parameters
(at EWSB scale; then RG evolve up to high (GUT) scale
•Analytic, if possible
•Some tree-level inversions worked out in the past
(Moultaka, JLK ’98); extended by Kalinowski et al, P. Zerwas et al +many

(but mainly ILC context)
•Transparent, exhibit explicit correlations → useful guide to
more elaborated analysis
•New: incorporating as much as possible of the radiative
corrections
•Delineate results valid in a general vs. constrained MSSM
(i.e. with GUT scale universality relations)
-Limited scope yet: not related with MC, only mass input,..
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Experimental assumptions and strategy

At LHC, can determine quite accurately some masses from
“kinematical endpoints" analysis of (2-body) cascade decays

g̃ → q̃Lq → χ0
2qfq → l̃Rlqfq → χ0

1lf lqfq

→quite precise mg̃,mN2
,mN1

,mq̃L
,ml̃R

,mb1 determination
from “kinematical endpoints" analysis
(Allanach et al ’01, Gjelsen, Miller, Osland ’05)

+eventually Mh, + eventually other (independent) q̃ decay
NB q̃ = ũ, d̃, c̃, s̃ or b̃1, b̃2 (could be t̃1, t̃2 too but not for SPS1a)
No way to distinguish experimentally q̃ (similar B.R., no q̃

charge/flavor tagging at LHC)
Above sparticle mass set defines our “minimal” input
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different gradually optimistic assumptions on the amount of sparticle mass measurements at
the LHC, from gluino cascade and other decays

scenarios measured mass expected LHC decay or process

(+th assumptions) accuracy (GeV)

(minimal): mg̃ , 7.2 g̃ cascade decay

S1(MSSM), mχ̃0

1

, 3.7 " "

S2(universality) mχ̃0

2

. 3.6 " "

S4, mq̃L
, 3.7 " "

S′

4
(universality) ml̃R

6.0 " "

S3 = S1 +: mχ̃0

4

5.1 q̃L → χ̃0
4

+ .. cascade

S5, mb̃1
, 7.5 g̃ cascade decay

S′

5
(universality) mb̃2

7.9 " "

S6 = S2 + S′

4
+ S′

5
+: mh 0.25 (exp)–2 (th) h → γγ (mainly)

(Accuracies from Weiglein et al ’04 report +Gjelsen, Miller, Osland ’05)
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Bottom-up MSSM reconstruction at LHC

-Three naturally separated sectors (at tree level):
-gauginos/Higgsinos M1, M2, µ, tan β

-squarks/sleptons µ, tan β, m̃qL
, m̃qR

, m̃eL
,..

-Higgs parameter sector µ, tan β, MHu , MHd
, MA

NB µ, tan β common to all sectors! (and very crucial
parameters)
For each sector there are simple analytical inversions (at
tree-level): linear or quadratic eqs.
Strategy crucially depend on available input masses...(but
also the case for standard top-down approach)
Proceed "step by step", in the 3 sectors, rather than global “all
at once" fit
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Concrete example: Gaugino/Higgsino sector

- Consider the Neutralino mass matrix:

MN =

0

B

B

B

B

B

@

M1 0 −mZsW cos β mZsW sin β

0 M2 mZcW cos β −mZcW sin β

−mZsW cos β mZcW cos β 0 −µ

mZsW sin β −mZcW sin β −µ 0

1

C

C

C

C

C

A

Trick: use the 4 invariants (under diagonalization) (Moultaka,JLK ’98):

TrMN ,
(TrMN )2

2
−

Tr(M2
N )

2
, (TrMN )3 + · · · ; DetMN

give (rather simple) equations; flexible input/output choice (e.g. only 2 M̃Ni
input!)

P 2
ij+(µ2+m2

Z−M1M2+(M1+M2)Sij−S2
ij)Pij+µm2

Z(c2W M1+s2
W M2)sin 2β − µ2M1M2 = 0

(M1 + M2 − Sij)P
2
ij + (µ2(M1 + M2) + m2

Z(c2W M1 + s2
W M2 − µ sin 2β))Pij

+µ(m2
Z(c2W M1 + s2

W M2)sin 2β − µM1M2)Sij = 0

Sij ≡ M̃Ni
+ M̃Nj

, Pij ≡ M̃Ni
M̃Nj

where i, j = 1, ..4
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Incorporating Radiative Corrections

•R.C gives highly non-linear dependence on parameters →

“brute force” inversion untractable
To very good approximation, keeps tree-level form: e.g
µ → µ + ∆µ, M1 → M1 + ∆M1,.. (where ∆µ, ∆M1, ∆M2

depend on other sector: squarks, sleptons, ..)
→ preserves analytic form of inversion
•Leading R.C. for g̃ involve q̃ of cascade
(and vice-versa): → known!
•Once some parameters determined, eventually assume
universality (SUGRA) relations within loops (should be good
approximation in many cases)
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General R.C. picture, RGE, etc

RGE

Diagonalization

(1)

mYXm

X i Y j (GUT)

iterations

(EWSB)

Adding

(2)

mpole
i

X= m + ∆(mX, m mZ )Y
,

rad. corr.(3)

RGE

mYXm

X i Y j (GUT)

iterations

(EWSB)

Subtracting

(3)

(un)Diagonalization (2)

rad. corr. (1)

Top-down (left) versus bottom-up (right) mappings and their similarities.

1 (3): Xi, Yj,.. running parameters: RGE GUT ↔ EWSB
2: Xi and Yj may mix: diag. → running masses mX ,mY

3 (1): R. C. linking running to pole masses mi
pole added

(subtracted) may depend on extra unknown parameters Zk, mk: → Specific

assumptions +iterations needed.
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“Fit" strategy

-Solve these analytical (tree-level) equations for various
input/output choices;
-vary mass input within errors (uniform “flat prior” or Gaussian
distributed)
-determine allowed contours, or χ2, for output basic MSSM
parameters within different TH asumptions
-A bit simple-minded w.r.t. sophisticated M.C.+ MINUIT χ2

minimization..
but very easy +fast! +exhibit clearly correlations/ambiguities
(multi solutions)
•We compare with MINUIT top-down fits with same input at
different stages
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Scenario S1: non-univ.M1, M2 from mN1
mN2

M2 (left) and M1 (right) (M1 < M2 case) as functions of µ. Spreading of points is due to

1 < tan β < 50 (green) plus mN1
, mN2

variation within SPS1a accuracy (red).

•Exhibit clear correlations
•Very simple solutions:

M2 ∼ mN2
+ m2

W
(mN2

+µ sin 2β)

µ2−m2
N2

+ O(m4
W ), M1 ∼ mN1

+ ..

•Very good (few %) M1,2 determination except near “pole” µ

regions (but eliminated if e.g. using µ(EWSB) ∼ 300 − 400 GeV, or 3 χ0 input)
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M1, M2 from mN1
, mN2

in Non-univ MSSM: 1) green: 0 <
∼

µ <
∼

1 TeV, 0 <
∼

tan β <
∼

50; 2)

blue: ∆tan β = 10, ∆µ = 100 GeV; 3) red: +mN4
input, 1 < tan β < 50, ∆µ ∼ 30 GeV.

Notice two-fold ambiguity: M1 < M2 (mSUGRA-like) or
M2 < M1! consistent with SFITTER results (next talk)
Still, may “favor" different scenarios (mSUGRA, AMSB) rather
simply at low-energy
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what if 3 neutralino mass input?

M1, µ from mN1
, mN2

mN4
in Non-univ MSSM.

Extra eq. is:
µ2 = M1M2 − m2

Z − (P124 + S124(M1 + M2 − S124))

S124 = mN1
+ mN2

+ mN4
; P124 = mN1

mN2
+ perm.

But multi-fold ambiguities! (M1 ↔ M2 ↔ |µ|)
Clearly need extra TH/EXP info to discriminate (e.g. relic
density, etc)
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Scenario S2:µ, tan β determination for gaugino Mi universality

IF M1 = M2 = M3 (GUT): same Eqs. → µ, tan β from M1,M2:

Assuming third MN4
measurement:
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Squark, slepton parameter (first two generations)

m2
ũ1

= m2
ũL

+ (
1

2
−

2

3
s2
W )m2

Zcos 2β

m2
ẽ2

= m2
ẽR

− s2
W m2

Zcos 2β

- linear combination to eliminate the tan β dependence ("sum rule"):

s2
W m2

ũ1 + (
1

2
−

2

3
s2
W )m2

ẽ2 = s2
W m2

ũL
+ (

1

2
−

2

3
s2
W )m2

ẽR

simple to work out RG evolution:

d
dt

h

s2
W m2

ũL
+ (1

2
− 2

3
s2
W )m2

ẽR

i

= s2
W

dm̃2

uL

dt
+ (1

2
− 2

3
s2
W )

dm2

ẽR

dt
+

ds2

W

dt
(m̃2

uL
− 2

3
m̃2

eR
) (1)

where t ≡ ln Q and
ds2

W

dt
= (

3

5
g2
1 + g2

2)−1

„

3

5
c2W

dg2
1

dt
− s2

W

dg2
2

dt

«

NB this RGE (one-loop) only depend on gaugino Mi and gauge cplings!

– p. 19



84 (86) GeV <∼ m
q,l
0

<∼ 116 (112) GeV

for linear (quad.) error combination, independently of tan β.

Constraints (from Gaussian scan) on mq,l
0

, tan β: orange: 2-σ from combined mẽR
, mũ1

;

indigo: 2-σ from separating mũ1
relation; black: 1-σ from mũ1

. Red: excluded by tachyon τ̃1.
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Sbottom sector 1: scalar non-universality

b̃1, b̃2 involved in g̃ decay (though more difficult for b̃2)

Simple inverted relations to determine mQ3L
, mbR

mQ3L(bR) =

[

S + (−)D

2

]1/2

S = m2
b̃1

+ m2
b̃2

+
m2

Z

2
cos 2β − 2m2

b

D = −Y +
[

(m2
b̃2
− m2

b̃1
− 2mbXb)(m

2
b̃2
− m2

b̃1
+ 2mbXb)

]1/2

Y = (−1
2
+ 2

3
s2

W )m2
Z cos 2β, Xb = Ab − µ tan β
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Red: tan β ∼ 9.73, µ ∼ 357 GeV (Ab = 0). Yellow: 3 <
∼

tan β <
∼

35, ∆µ ∼ 10 GeV,

−100GeV < Ab < 100GeV ; blue: 3 <
∼

tan β <
∼

35, ∆µ ∼ 200 GeV, −1TeV < Ab < 1TeV .
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Sbottom sector 2: scalar universality

Relate mQ3L
,mbR

to m
q,l
0 constraints:

mQ3L
(QEWSB) ∼ 498 ± 1.2 ± 7GeV, mbR

(QEWSB) ∼ 521 ± 1.8 ± 6GeV

(NB dominant error from RGE via M3 uncertainty)

2 mb Xb = −
[

(m2
b̃2
− m2

b̃1
)2 − (m2

Q̃3L
− m2

b̃R
+ Y )2

]1/2

Constraints on tan β, Xb = Ab − µ tan β from Gaussian scan: indigo: one-σ (68% C.L.);

orange: two-σ (95% C.L.).

– p. 23



Determination in Higgs sector parameters

In general MSSM: running mA value:

m̄2
A(Q) = m2

Hd
+ m2

Hu
+ 2µ2 =

m̄2
h(m

2
Z − m̄2

h)

m2
Z cos2 2β − m̄2

h

+ Rad. Corr.

m2
h = m

2,tree
h +

3gm4
t

8π2m2
W

[

ln

(

mt̃1mt̃2

m2
t

)

+
X2

t

M2
S

−
X4

t

12M4
S

]

where Xt = At − µ cot β, M2
S ≃ mt̃1mt̃2

NB we use more elaborated 1(2)-loop mh R.C. (Heinemeyer, Hollik,

Weiglein ’99)
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-general MSSM: poorly constrained IF nothing know on stop
sector, or mA... (not expected for SPS1a)

-IF universality: m
q,l
0 ≡ mHu(QGUT ) = mHd

(QGUT ) → mA(Q)

determined
→ Xt, tan β constraints

Constraints on tan β and Xt ≡ At − µ tan β: indigo: 1-σ; orange: 2-σ; green: 1-σ if adding

sbottom mass measurements.
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Renormalization Group “bottom-up" evolution

•Once parameters determined at QEWSB scale, evolve them
to GUT scale
RGE evidently invertible, but to evolve MSSM parameters
from EWSB scale UP to GUT scale, while matching
low-energy (gauge+yukawa) data is not staightforward.

+ Care to be taken: Tr[Y m2] 6= 0 may increase error
propagations

NB public bottom-up RGE option now installed in (new)
SuSpect ver ≥ 2.40
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Bottom-up RG evolution with error propagations

par. input(GeV) GUT output ∆M3 = ∓1% ∆mHu
= ∓1% ∆mQ3L

= ∓1%

M1 101.5 250.004 negl. negl. negl.

M2 191.6 249.998 " " " " " "

M3 586.6 249.999 ±2.2 " " " "

m2
Hd

(179.9)2 (100.004)2 (100.6)2– (100.7)2– (101.2)2–

(99.4)2 (99.2)2 (98.7)2

m2
Hu

−(358.1)2 (100.017)2 (132.6)2– (64.9)2– (63.7)2–

(48.4)2 (124.4)2 (126.4)2

(µ) 356.9 353

meR
136 99.998 100–99.9 98.4–101.6 96.8–103.1

mQ1L
545.8 100.001 121–72 99.7–100.3 99.1–100.8

mQ3L
497 100.005 131–52 94.6–104.6 55.2–130.4

muR
527.8 99.997 121–72 101–99 101.8–98.1

mtR
421.5 100.006 140–14 90.6–107.5 81.9–115.3

mbR
522.4 99.997 122–72 99.4–100.6 98.5–101.5

−At 494.5 100.009 111 −−89 " " " "

−Ab 795.2 100.002 106 −−94 " " " "
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Combining all determination from bottom-up approach

Assumptions Parameter Constraint (GeV) SPS1a

gen. MSSM M1(QEWSB)⋆ ∼95–115 101.5

" " M2(QEWSB)⋆ ∼175–225 191.6

" " M3(QEWSB) ∼580–595 586.6

" " (3
8
m2

uL
+

m2

eR

4
)1/2(QGUT ) ∼68–89 ∼ 79

" " mQ3L
(QEWSB)⋆ ∼488–518 497

" " mbR
(QEWSB)⋆ ∼510–540 522

" " µ(QEWSB)⋆ ∼280–750 357

+ mN4
µ(QEWSB) ∼350–372 357

q̃, l̃-universality mq,l
0

(QGUT ) ∼90–112 100

Mi-universality Mi(QGUT ) ∼ 245–255 250

b̃1, b̃2 +universality tan β(QEWSB) ∼3–28 9.74

mSUGRA m0 ∼90-112 100

m1/2 ∼245–255 250

−A0 ∼ -100-350 100

tan β(mZ) ∼ 5.5–28 10
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Comparison with standard top-downχ2 fits

Combined constraints on mSUGRA basic parameters from top-down fit with minuit of g̃

decay + Mh measurements.

Assumptions Parameter Constraint (GeV) SPS1a value

mSUGRA m0 99.96 ± 11.2 100

2-loop RGE + q̃ R.C. + 2-l mh (99.95 ± 11.7)

(1-loop RGE+ no q̃ R.C. +mh approx.) m1/2 250.0 ± 3.7 250

(249.5 ± 4.7)

A0 -104.2 ±379 -100

(-100.6 ±136)

tan β(mZ) 9.9 +9.4
−4.7 10

(9.96 ±4.11)
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Conclusion
-Quite simple-minded approach but clear handle on possible
obstacles in bottom-up approach
May suggest new strategies/discriminating variables, not
automatically foreseen by global fit (e.g. combination
observables in squark/slepton sector, etc)
-Compare reasonably well with more standard top-down
fitting approaches
could be linked with other tools (SFITTER, ...) as “guidelines”

-likely to help solving part of the dicrete ambiguities (LHC
inverse pb) (needs further dedicated studies)
May help also to distinghish from other BSM (specific SUSY
spectrum properties)
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