Direct Photon Production In Association With A Heavy Quark - from the Tevatron to the LHC

Tzvetalina Stavreva

Florida State University Dept. of Physics

September 24, 2009

Table of contents

Introduction

Theory Overview

Tevatron

LHC

Conclusions

Direct Photons and Heavy Quarks

What are Direct Photons and Why are they important?

- Any photon that is produced during the hard scattering process or via fragmentation
- Not to be confused with γ coming from the decay of hadrons, such as $\pi^0\to\gamma\gamma$, $\eta\to\gamma\gamma$
- Carriers of electromagnetic force
- Escape confinement
- Photon acts as a probe of the hard scattering
- Charge coupling allows for a distinction between charm and bottom

$\gamma + Q$ production

- Direct photons are produced in association with many different particles
- Look at one part of the cross section → piece with heavy quarks
- Better understand the role of heavy quarks in high p_T collisions
- Possibility to better constrain Parton Distribution Functions of heavy quarks

Hardscattering Production

• Leading Order - $\mathcal{O}(\alpha \alpha_s)$ - Only one hard-scattering subprocess

• Next-to-Leading Order - $\mathcal{O}(\alpha\alpha_s^2)$

 $2 \rightarrow 3$ hard-scattering subprocesses

$$\begin{array}{lll} g+g \rightarrow Q + \bar{Q} + \gamma & Q+Q \rightarrow Q + Q + \gamma \\ g+Q \rightarrow g + Q + \gamma & Q+\bar{Q} \rightarrow Q + \bar{Q} + \gamma \\ Q+q \rightarrow q + Q + \gamma & q+\bar{q} \rightarrow Q + \bar{Q} + \gamma \\ Q+\bar{q} \rightarrow Q+\bar{q} + \gamma & q+\bar{q} \rightarrow Q + \bar{Q} + \gamma \end{array}$$

Also need to include Direct Photons which are produced via fragmentation

Photon Fragmentation

- ullet If photon is emitted collinearly to a quark o singularity
- Absorb singularity in $D_{\gamma/q,g}(z,\mu_F)$; resum large logs in $D_{\gamma/q,g}(z,\mu_F)$ FF via DGLAP
- Photon couples to quark, responsible for behavior of $D_{\gamma/q,g}(z,\mu_F)\sim \mathcal{O}(\alpha/\alpha_s)$

Fragmentation Effects

• LO: include all $2 \to 2$ subprocesses $\sim \mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha_s^2) \otimes \mathcal{D}_{\gamma/q,g} \sim \alpha_s^2 \alpha/\alpha_s = \alpha \alpha_s$

• NLO: same idea as in LO case, convolute all 2 ightarrow 3 $\sim \mathcal{O}(\alpha_s^3)$ with γ FF

Tevatron Predictions

• **DØ** cuts: $p_{T\gamma} > 30 \text{ GeV}, p_{Tb} > 15 \text{GeV}, |y_{\gamma}| < 1, |y_{Q}| < 0.8$

- As $p_{T\gamma}$ increases the difference between LO and NLO grows
- What drives this difference?

Subprocess Contributions

- At $p_{T\gamma} \sim 70~{
 m GeV}~qar q o Qar Q\gamma$ starts to dominate
- PDFs of light valance quarks are prevalent
- Take a closer look at the annihilation subprocess

Annihilation Subprocess

- Diagram 1) $\sim e_Q^2$ photon couples to heavy quark, Diagram 2) $\sim e_q^2$ photon couples to initial quarks
- \bullet Diagram 2) dominant \rightarrow difference between c and b decreases with

 p_T

Comparison between theory and data Measurements by DØ Collaboration

- There is really good agreement between data and theory for the bottom cross section
- For charm the data points at large $p_{T\gamma}$ lie above the theory curve \rightarrow possible explanation existence of intrinsic charm

Intrinsic Charm

- CTEQ6.6M radiatively generated charm $c(x, \mu = m_c) = 0$
- Three intrinsic charm models Non-perturbative charm component of the nucleon
 - Sea-like model $c(x) \sim \bar{u}(x) + \bar{d}(x)$
 - BHPS IC appears mainly at large x
 - Meson Cloud model IC appears mainly at large x

Comparison between theory and data - IC $c+\gamma$

- With the use of the BHPS PDFs the cross section grows at large $p_{T\gamma}$, but is still below the data
- However if we are to look at the ratio of the c to b cross section ...

Ratio of c and b

Things look better

LHC Predictions

The difference between NLO and LO no longer grows at large $p_{T\gamma}$

Subprocess Contributions

- qq̄ no longer dominates
 - No valence \bar{q}
- LO and subprocesses with initial g dominate \rightarrow
 - Larger center of mass energy probes lower values of $x \ (\sim \frac{p_T}{\sqrt{S}})$, region where gluon PDF dominates

Intrinsic Charm at the LHC

- Due to smaller x probed at the LHC can still test IC, but mainly the Sea-like model
- At 7 TeV and forward rapidity can slightly differentiate between BHPS and radiatively generated charm

Conclusions

Tevatron

- At Tevatron energies $q\bar{q}$ dominates the cross section at large $p_{T\gamma}$
- Good distinction between different IC models, can test for BHPS, Sea-like
- Good comparison between data and experiment for $\gamma+b$, for $\gamma+c$ some discrepancy at high p_T

LHC

- At the LHC (pp 14 TeV) subprocesses with initial gluons and heavy quarks dominate
- Sensitivity to initial state heavy quarks
- Can test the low x behavior of heavy quark PDFs once LHC data is available

Conclusions

Isolation

To be detected a direct photon needs to be isolated

- Helps acquire a reliable measurement of the photon's energy
- Helps reduce background from photons coming from the decay of hadrons

- Hadronic energy less than $E_h = \epsilon * E_{\gamma}$ in $R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- Isolation requirements modeling the DØ requirements: $R_1 < 0.2$, $\epsilon_1 < 0.04$ and $R_2 < 0.4$, $\epsilon_2 < 0.07$

NLO Fragmentation

- \bullet No isolation - NLO fragmentation increases the cross section up to $\sim 30\%$
- \bullet Isolation requirement decreases the NLO fragmentation contribution to a few %

Photon Fragmentation Function

$$\frac{dD_{\gamma/Q}(z)}{dt} = \frac{\alpha}{2\pi} P_{\gamma \leftarrow Q}(z) + \frac{\alpha_s}{2\pi} \int \frac{dy}{y} [D_{\gamma/Q}(z/y) P_{Q \leftarrow Q}(y) + D_{\gamma/g}(z/y) P_{g \leftarrow Q}(y)]$$

$$\frac{dD_{\gamma/g}(z)}{dt} = \frac{\alpha_s}{2\pi} \int \frac{dy}{y} [D_{\gamma/Q}(z/y) P_{Q \leftarrow g}(y) + D_{\gamma/g}(z/y) P_{g \leftarrow g}(y)]$$