Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
	Heavy	Hadron	s at LHC	
	available at http://lpse	c.in2p3.fr/theorie/R	ichard/SemConf/Talks.htn	าไ
		Jean-Marc Rich	hard	
Laboratoire de Physique Subatomique et Cosmologie Université Joseph Fourier–IN2P3-CNRS–INPG Institut de Physique Nucléaire de Lyon UCBL–IN2P3-CNRS				
	Theory-Li	HC, Grenoble, Oc	tober 24, 2009	
	Laboratoire de Physique Subatonique et de Cosnologie	Lyon 1		
		_{јмв} Неа	avy Hadrons	

Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
Table of	contents			

Introduction

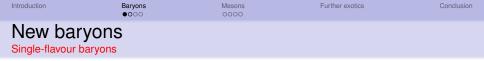
Baryons

- Single-flavour baryons
- Triple-charm baryons
- Exotic baryons
- 3 Me

Mesons

- Heavy quarkonia
- Hybrid mesons
- Multiquark mesons

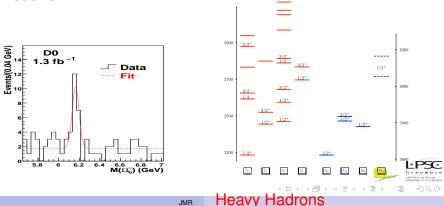
Further exotics


Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
Introduction				

Encouraging recent results

- new states seen in high-energy experiments,
- for instance, $D_{s,J}$, X(3872), $\eta_c(2S)$
- many new single-charm or single-beauty baryons
- while low-energy experiments sometimes gave misleading results (pentaquarks)
- even complex and fragile structures, such as antideuterium produced at high energy

Less encouraging


- spectroscopy and flavour program also foreseen at heavy-ion facilities (RHIC)
- see, e.g., BNL Workshop, May 2002
- but never given enough priority in detector tuning and in analysis

Many new states, in particular at CLEO. At present, 34 charmed baryons and 7 beauty baryons are known.

Hope: Understanding light-quark dynamics from charmed baryons, before light baryon resonances?

Problems

Introduction	Baryons O●OO	Mesons 0000	Further exotics	Conclusion
New bary				

- (*ccq*) and *b* analogues (*bcq*) and (*bbq*)
- Tentatively seen by SELEX
- Not seen elsewhere, in particular at BaBar,
- Combine the charmonium-like dynamics (non-relativistic limit of QCD)
- With the *D*-like dynamics (ultra-relativistic regime)
- In a single hadron, with also interesting weak-decay properties

JMR

Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
New bary				

- (*ccc*) and *b* analogues (*bcc*), (*bbc*) and (*bbb*)
- The ultimate goal of baryon spectroscopy (Bjorken)
- To probe the real three-quark interaction of QCD, independently of light-quark complications
- The baryon analogue of heavy quarkonium
- Large binding effects in weak decay

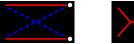
Introduction	Baryons ○○○●	Mesons 0000	Further exotics	Conclusion
New bary Exotic baryons	rons			

- QQQg, on the same footing as the more advertised hybrid mesons (QQg)
- but with the same quantum numbers as (QQQ)
- Heavy pentaquarks (1987 vintage, Lipkin, Gignoux et al.) (Qqqqq)
- Predicted on the same (fragile) chromomagnetic mechanism as Jaffe's *H* dibaryon

Introduction	Baryons 0000	Mesons •୦୦୦	Further exotics	Conclusion
Mesons Heavy quarkonia				

- Missing (*bb̄*) states, e.g., the η_b(nS) (n = 1 seen reported recently)
- (*bc*) spectroscopy, probing flavour independence
- $(b\bar{c})$ decays, in particular binding effect, role of *c* vs. *b*, etc.
- Production mechanisms

Introduction	Baryons 0000	Mesons O ● O O	Further exotics	Conclusion
Mesons Hybrid mesons				


- Predicted since the late 70's, on the basis of models (Gilles and Tye (1978), Mandula and Horn (1978), and Hasenfratz, Horgan, Kuti and R. (1980), etc.
- Confirmed in more elaborated approaches, e.g., Lattice QCD
- Better seen in heavy quarkonia? (cleaner background of "ordinary states")
- Possibility of exotic JPC
- Already some speculations for *X*(3872), *X*(3940) or *Y*(4260)

Introduction	Baryons 0000	Mesons ○○●○	Further exotics	Conclusion
Mesons Multiquark mesons				

- Very old problem. In particular for light scalar mesons. Some of them often described as S-wave (qqqqq) rather than P-wave (qq)
- For light quarks and antiquarks, chromomagnetism is a possible source of stability (or metastability) against dissociation into two mesons,
- Heavy quarks more sensitive to chromoelectric forces, hence new type of configurations become favoured
- An example, on which all theorists agree is $(QQ\bar{q}\bar{q})$ (double-flavour mesons), which should be *below* the threshold $(Q\bar{q} + (Q\bar{q}))$ if the mass ratio Q/q is large enough
- Same mechanism by which in atomic physics (ppe⁻e⁻) is more stable than (e⁺e⁺e⁻e⁻): the 4-body compound benefits of the heavy-heavy binding, and this effect is not active in the threshold.

Introduction	Baryons 0000	Mesons ○○O●	Further exotics	Conclusion
(<i>QQqqq</i>)				

- Favourable heavy-light asymmetry confirmed by QCD sum rules
- A better treatment of confinement, as suggested by lattice QCD, gives a more realistic (and much more difficult to handle) potential

gives more attraction than the additive ansatz used previously.

• Similarly $(\bar{q} q_1 q_2 q_3 q_4)$ found to be stable if q_i different

Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
Further e	xotics			

- Four-quark mesons sometimes described as meson-meson molecules
- Bound by nuclear forces (Törnqvist, Swanson, Ericson & Karl, Manohar, etc
- Other states predicted in this approach, in particular bound states of charm baryons
- For instance (ccq) (ccq) (Riska & Julia-Diaz)

Introduction	Baryons 0000	Mesons 0000	Further exotics	Conclusion
Conclusion				

- LHC can contribute to confinement and flavour physics
- Many states await discovery
- Some predictions are fragile and controversial
- Other predictions are more solid, e.g. $(QQ\bar{q}\bar{q})$
- LHC offers a good opportunity
- If a reasonable fraction of efforts devoted to this physics