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B-meson or Kaon decays occur at low energies, at scales µ ≪ MW .
We pass from the full theory of electroweak interactions to an effective theory by removing the high-
energy degrees of freedom, i.e. integrating out the W -boson and all the other particles with m ∼ MW .

L (full EW×QCD) −→ Leff = L QED×QCD

(

quarks 6= t

& leptons

)

+ N Σ
n
Cn(µ)Qn

Qn – local interaction terms (operators), Cn – coupling constants (Wilson coefficients).

Operators (dim 6) that matter for Bs → µ+µ−
read:

QA =
(

b̄γαγ5s
)

(µ̄γαγ5µ) – the only relevant one in the SM at the LO in QED

QS(P ) =
(

b̄γ5s
)

(µ̄(γ5)µ) =
i(b̄γαγ5s)∂α(µ̄(γ5)µ)

mb+ms
+ E + T

vanishing total
by EOM derivative

Necessary non-perturbative input: 〈0|b̄γαγ5s|Bs(p)〉 = ipαfBs
decay constant

Such a matrix element vanishes for (b̄γαs) and (b̄s) because Bs is a pseudoscalar.

It also vanishes for (b̄σαβs) because no antisymmetric tensor can be formed from pα
alone.

QV =
(

b̄γαγ5s
)

(µ̄γαµ) gives no contribution at the LO in QED because

pα(µ̄γαµ) = µ̄6pµ = µ̄(6pµ+ + 6pµ−)µ = µ̄(−mµ + mµ)µ = 0.

QS gets generated in the SM via the Higgs exchange, but. . . — see next page.
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Evaluation of the LO Wilson coefficients in the SM:

s b

µ µ

W W

u,c,t

ν

s bW

u,c,tu,c,t

µ µ
Z, h

s bu,c,t

WW

µ µ
Z, h

u,c,t

s bW

W

s bu,c,t

⇒
s b

µ µ

Z

b̄L 6DsL

C
(0)
A = 1

2Y0
(

m2
t/M

2
W

)

, Y0(x) = 3x2

8(x−1)2 lnx + x2−4x
8(x−1)

,

CS = O
(

mµ
MW

)

, CP = 0.

Effects of CS on the branching ratio are suppressed by M 2
Bs
/M 2

W ⇒ negligible.

Thus, only CA matters in the SM.
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Evaluation of the Wilson coefficients in the Two-Higgs-Doublet Model II

b s

µ µ

W, H
+− W, H

+−

u,c,t

ν

b sW, H
+−

u,c,tu,c,t

µ µ
Z, h, H, A

b su,c,t

W, H
+−W, H

+−

µ µ
Z, h, H, A

u,c,t

b sW, H
+−

W, H
+−

b su,c,t

⇒
b s

µ µ

Z, h, H, A

tanβ = v2/v1, z = M2
H±/m

2
t ,

CS ≃ CP ≃ mµmb tan2 β

4M2
W

ln z
z−1 > 0,

H.E. Logan and U. Nierste,

NPB 586 (2000) 39
(O(tan β) neglected)

B(Bs → µ+µ−) ≃ (const.)

[

∣

∣

∣

2mµ

MBs
CA − CP

∣

∣

∣

2

+ |CS|2
]

CA = CSM
A + ∆CA ⇒

{

suppression for moderate CS,P

enhancement for huge tanβ only
positive small

4



Average time-integrated branching ratio:

B(Bs → µ+µ−) =
|N |2M3

Bs
f2
Bs

8πΓs
H

β
(

|rCA − uCP |2 FP + |uβCS|2 FS

)

+ O(αem),

where N =
V ∗
tbVts G

2
FM2

W
π2 , r =

2mµ

MBs
, β =

√
1−r2, u =

MBs
mb+ms

,

FP = 1 − ∆Γs

Γs
L

sin2
[

1
2
φNP

s + arg(rCA − uCP)
] SM CP−→ 1 ,

FS = 1 − ∆Γs

Γs
L

cos2
[

1
2
φNP

s + arg CS

] SM CP−→ Γs
H

Γs
L

derived following [ K. de Bruyn et al.,

Phys. Rev. Lett. 109 (2012) 041801]
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In the limit of no CP-violation, mass eigenstates are CP eigenstates:

Heavier, CP-odd: BH
s = 1√

2
(Bs + B̄s), annihilated by b̄γ5s + s̄γ5b, (τH = 1.616(10) ps)

Lighter, CP-even: BL
s = 1√

2
(Bs − B̄s), annihilated by b̄γ5s − s̄γ5b, (τL = 1.519(4) ps)

Our interactions in this limit are all CP-even:

QA + Q†
A =

[(

b̄γαγ5s
)

+ (s̄γαγ5b)
]

(µ̄γαγ5µ)

QP + Q†
P =

[(

b̄γ5s
)

+ (s̄γ5b)
]

(µ̄γ5µ)

QS + Q†
S =

[(

b̄γ5s
)

− (s̄γ5b)
]

(µ̄µ)

}

annihilate BH
s , produce CP-odd dimuons

}

annihilates BL
s , produces CP-even dimuons

With SM-like CP-violation – still QA,P annihilate BH
s and QS annihilates BL

s .

Beyond SM – interesting time-dependent observables, see arXiv:1303.3820, 1407.2771. 5



Evaluation of the NNLO QCD matching corrections in the SM
[T. Hermann, MM, M. Steinhauser, JHEP 1312 (2013) 097]

W -boxes:
(1LPI)

(a) (b) (c)

s b

l− l+

W W

ν

u, c, t s b

l− l+

W W

ν

u, c, t s b

l− l+

W W

ν

u, c, t

Z-penguins:
(1LPI)

(a) (b) (c)
l− l+

s bW

Z

u, c, t u, c, t

l− l+

s bu, c, t

Z

W W

l− l+

s b

Z

W W

Subtleties: (i) counterterms with finite parts ∼ b̄L 6DsL

(ii) evanescent operators: EB = (b̄γνγργσγ5s)(µ̄γσγργνγ5µ) − 4(b̄γαγ5s)(µ̄γαγ5µ)

ET = Tr (γνγργσγαγ5)(b̄γνγργσs)(µ̄γαγ5µ)+24(b̄γαγ5s)(µ̄γαγ5µ)
(a) (b)

l− l+

s b

l− l+

s b

(a) (b)l− l+

s b

Z

W

l− l+

s b

Z

Renormalization of EB Diagrams generating ET
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Perturbative series for the Wilson coefficient at µ = µ0 ∼ mt,MW :

CA(µ0) = C
(0)
A (µ0) + αs

4π
C

(1)
A (µ0) +

(

αs
4π

)2
C

(2)
A (µ0) + αem

4π
∆EWCA(µ0) + . . .

The top quark mass is MS-renormalized at µ0 with respect to QCD, and on shell with respect

to the EW interactions. Both αs and αem are MS-renormalized at µ0 in the effective theory.

Μ0=m t
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y =MW � m t

y
2

C
AZ
H2
L

C
(n)
A = C

W,(n)
A + C

Z,(n)
A

To deal with single-scale tadpole integrals,

we expand around y = 1 (solid lines) and

around y = 0 (dashed lines), where y = MW/mt.

The expansions reach (1−y2)16 and y12 , respectively.

The blue band indicates the physical region.

NNLO
NLO
LO
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0.21

0.22

0.23

0.24

0.25

Μ0 in GeV

ÈC
A
È

2

Matching scale dependence of |CA|2 gets significantly

reduced. The plot corresponds to ∆EWCA(µ0) = 0.

However, with our conventions for mt and the global

normalization, µ0-dependence is due to QCD only.

NNLO fit (with ∆EWCA(µ0) = 0):

CA = 0.4802
(

Mt

173.1

)1.52
(

αs(MZ)
0.1184

)−0.09

+ O(αem)
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Evaluation of the NLO EW matching corrections in the SM
[C. Bobeth, M. Gorbahn, E. Stamou, Phys. Rev. D 89 (2014) 034023]

Method: similar to the NNLO QCD case. Two-loop integrals with three mass scales are present.

Dependence of the final result on µ0 in various renormalization schemes (dotted – LO, solid – NLO):

100 200 300
µ0 [GeV]

−9.0

−8.5

−8.0

G
2 F
M

2 W

π
2

c̃
1
0

×10−8 OS-2
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4
G

F
√

2
c
1
0
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µ0 [GeV]

HY
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In all the four plots: no QCD corrections to CA included, mt(mt) w.r.t. QCD used.

OS-2 scheme: Global normalization factor in Leff set to N = V ∗
tbVtsG

2
FM

2
W/π2

Masses at the LO renormalized on-shell w.r.t. EW interactions (including MW in N)

Plotted quantity: −2CA G2
FM

2
W/π2 in GeV−2

NLO EW matching correction to the BR: −3.7%

other schemes: Global normalization factor in Leff set to 4V ∗
tbVtsGF/

√
2

At the LO, αem(µ0) used

MS: Masses and sin2 θW renormalized at µ0

OS-1: Masses as in OS-2, sin2 θW on-shell

HY (hybrid): Masses as in OS-2, sin2 θW as in MS.
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Radiative tail in the dimuon invariant mass spectrum

1
-
Γµµ

d
--
dmµµ

ΓµµHγL

mµµ @GeVD
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100

Ggreen vertical lines – experimental “blinded” windows [CMS and LHCb, Nature 522 (2015) 68]

Red line – no real photon and/or radiation only from the muons. It vanishes when mµ → 0.

[A.J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, Eur.Phys.J. C72 (2012) 2172]

[S. Jadach, B.F.L. Ward, Z. Was, Phys.Rev. D63 (2001) 113009], Eq. (204) as in PHOTOS

Blue line – remainder due to radiation from the quarks. IR-safe because Bs is neutral.

Phase-space suppressed but survives in the mµ → 0 limit.

[Y.G. Aditya, K.J. Healey, A.A. Petrov, Phys.Rev. D87 (2013) 074028]

[D. Melikhov, N. Nikitin, Phys.Rev. D70 (2004) 114028]

Interference between the two contributions is negligible – suppressed both by phase-space andm2
µ/M

2
Bs

.
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Enhanced QED effects in Bq → ℓ+ℓ−

The leading contribution to the decay rate is suppressed by
m2

ℓ

M2
Bq

.
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Enhanced QED effects in Bq → ℓ+ℓ−

The leading contribution to the decay rate is suppressed by
m2

ℓ

M2
Bq

.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152,

some of the QED corrections receive suppression by
m2
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b
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C9,10

ℓ̄

ℓ

q̄ ℓ

b
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γ
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ℓ̄

ℓ

q̄ ℓ

γ
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q̄
γ

Ci
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ℓ

q′
γ
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See also the lecture by RS at the Paris-2019 workshop:
https://indico.in2p3.fr/event/18845/sessions/12137/attachments/54326/71064/Szafron.pdf
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Consequently, the relative QED correction scales like
αem
π

MBq

Λ
.
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Their explicit calculation implies that the previous results for all the Bq → ℓ+ℓ− branching ratios

need to be multiplied by

ηQED = 0.993 ± 0.004.
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Thus, despite the
MBq

Λ
-enhancement, the effect is well within the previously estimated ±1.5%

non-parametric uncertainty.
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Thus, despite the
MBq
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-enhancement, the effect is well within the previously estimated ±1.5%

non-parametric uncertainty.

However, it is larger than ±0.3% due to scale-variation of the Wilson coefficient CA(µb). 10



SM predictions for all the branching ratios Bqℓ ≡ B(B0
q → ℓ+ℓ−)

including 2-loop electroweak and 3-loop QCD matching at µ0 ∼ mt

[ C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

Bse × 1014 = η
QED

(8.54 ± 0.13)Rtα Rs,

Bsµ × 109 = η
QED

(3.65 ± 0.06)Rtα Rs,

Bsτ × 107 = η
QED

(7.73 ± 0.12)Rtα Rs,

Bde × 1015 = η
QED

(2.48 ± 0.04)Rtα Rd,

Bdµ × 1010 = η
QED

(1.06 ± 0.02)Rtα Rd,

Bdτ × 108 = η
QED

(2.22 ± 0.04)Rtα Rd,

where

Rtα =

(

Mt

173.1 GeV

)3.06 (

αs(MZ)

0.1184

)−0.18

,

Rs =

(

fBs
[MeV]

227.7

)2( |Vcb|
0.0424

)2(|V ⋆
tbVts/Vcb|
0.980

)2 τ s
H [ps]

1.615
,

Rd =

(

fBd
[MeV]

190.5

)2 (|V ⋆
tbVtd|

0.0088

)2 τ av
d [ps]

1.519
.
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Update of the input parameters

2014 paper this talk source

Mt [GeV] 173.1(9) 172.69(30) PDG 2022, http://pdglive.lbl.gov

αs(MZ) 0.1184(7) 0.1179(9) arXiv:2203.08271, Eq.(9.2)

fBs
[GeV] 0.2277(45) 0.2303(13) FLAG, arXiv:2111.09849

fBd
[GeV] 0.1905(42) 0.1900(13) FLAG, arXiv:2111.09849

|Vcb| × 103 42.40(90) 42.16(50) inclusive, arXiv:2107.00604

|V ∗
tbVts|/|Vcb| 0.9800(10) 0.9819(5) derived from CKMfitter 2019, http://ckmfitter.in2p3.fr

|V ∗
tbVtd| × 104 88(3) 87.1+0.86

−2.46 CKMfitter 2019, http://ckmfitter.in2p3.fr

τ s
H [ps] 1.615(21) 1.616(10) HFLAV 2022, https://hflav.web.cern.ch

τ d
H [ps] 1.519(7) 1.519(4) HFLAV 2022, https://hflav.web.cern.ch

Bsµ × 109 3.65(23) 3.66(12)

Bdµ × 1010 1.06(9) 1.02+0.03
−0.06

Sources of
uncertainties

fBq
CKM τ q

H Mt αs other non-
∑

parametric parametric

Bsℓ 1.1% 2.4% 0.6% 0.5% 0.2% < 0.1% 1.5% 3.2%

Bdℓ 1.4%
(

+2.0
−5.6

)

% 0.3% 0.5% 0.2% < 0.1% 1.5%
(

+3.1
−6.2

)

%
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Summary

• Uncertainties in the SM predictions for Bqℓ are dominated by the

parametric ones, mainly due to the decay constants and CKM factors.

• In the Bsℓ case, resolving the inclusive-exclusive tension in |Vcb|
would help a lot.

• The central values of the SM predictions for Bsµ and Bdµ are in good

agreement with the data from LHCb, CMS and ATLAS.

• Some of the QED corrections involve non-perturbative physics beyond
what is contained in the decay constants. Despite the powerlike
enhancement factors in such corrections, the non-parametric

uncertainty can be retained at the ±1.5% level.
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