14-20 August 2022 - ICISE, Quy Nhon, Vietnam Rencontres du Vietnam, Flavour Physics Conference 2022

Heavy Flavour Physics at the LHC

Speaker: Vincenzo Mastrapasqua on behalf of the LHC Collaboration

Università degli Studi di Bari "Aldo Moro" Istituto Nazionale di Fisica Nucleare - Sez. Bari CMS Collaboration

Heavy Flavour Physics at the LHC

LHC provides high luminosity for heavy flavour physics processes

Heavy flavor production cross section several order of magnitudes greater than at e-e colliders,

but the hadron collisions environment is characterized by complex initial state and high background

67 new hadrons discovered at LHC since its start!

LHCb-FIGURE-2021-001, 2022 updated

LHCb proposes a **new naming scheme** to navigate through this growing particle zoo

arXiv:2206.15233

Selected recent results at LHC

A selection of recent results from the LHC Collaboration is here presented

• Heavy Flavour exotic spectroscopy:

- Observation of a di-charmonium resonance X(6900)
 - LHCb: Sci.Bull. 65 (2020), 23
 - CMS: <u>CMS-PAS-BPH-21-003</u>
 - ATLAS: <u>ATLAS-CONF-2022-040</u>
- $_{\odot}$ $T_{c\bar{s}0}^{a}(2900)^{++/0}$ in B ightharpoons $\overline{\mathsf{D}}\mathsf{D}_{\mathsf{S}}^{\phantom{\mathsf{D}}\dagger}$ decay
- ∘ X(3960) candidate in $B^+ \rightarrow D_s^+ D_s^- K^+$
- $J/\psi\Lambda$ resonance in $B^- \rightarrow J/\psi\Lambda \overline{p}$ decay

in preparation

LHCb-PAPER-2022-026 and LHCb-PAPER-2022-027

LHCb-PAPER-2022-018 and LHCb-PAPER-2022-019

LHCb-PAPER-2022-031

Heavy Flavour production and conventional spectroscopy:

O B_C → J/ψD_S^(*) decays ATLAS: JHEP 08 (2022) 087

χ_{c1}(3872) production in pp / pPb / PbPb
 LHCb: LHCb-CONF-2022-001
 CMS: PRL 128 (2022) 032001

O Simultaneous triple J/ψ production CMS: https://arxiv.org/abs/2111.05370 (submitted to Nature Physics)

Heavy Flavour exotic spectroscopy

X(6900) at LHCb in 2020

 $J/\psi J/\psi$ (→ 4μ) spectrum studied at LHCb using 9 fb⁻¹ of pp collisions at √s = 7, 8, 13 TeV

Sci.Bull. 65 (2020), 23

Two structures are reported:

- A narrow resonance, X(6900), renamed T_{illul} (6900)
- A broad structure near the di-J/ψ mass threshold

Background contribution for J/ψ pair production:

- Non-Resonant Single Parton Scattering (NRSPS)
- Non-Resonant Double Parton Scattering (DPS)

Two signal + background fit models are considered:

- Model 1 (top) poor description of the "dip" at 6.7 GeV
 - background
 - Breit-Wigner for X(6900)
 - o two auxiliary Breit-Wigner (near threshold)
- Model 2 (bottom)
 - o a "virtual" X(6700) to interfere with NRSPS is added

X(6900) at CMS in 2022

J/ψJ/ψ (→ 4μ) spectrum studied at CMS using 135 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV (2016-2018) CMS-PAS-BPH-21-003

Event selection and reconstruction:

- 3- μ trigger: $\mu^+\mu^-$ from J/ ψ + third muon (on muons from J/ ψ : $p_{\tau}(\mu^+\mu^-) > 3.5$ GeV in 2017-2018)
- blinded signal region $m(J/\psi J/\psi)$ in [6.2, 7.8] GeV (from preliminary investigation on 2011-2012 data)
- $p_T(\mu) > 2.0 \text{ GeV}$; $|\eta(\mu)| < 2.4$; loose muon identification
- $m(\mu^+\mu^-)$ in [2.95, 3.25] GeV; $p_T(\mu^+\mu^-) > 3.5$ GeV $P_{vtx}(\mu^+\mu^-) > 0.5\%$
- common vertex fit: $P_{vtx}(4\mu) > 0.5\%$
- Arbitration of multiple candidates:
 - Select best combination of same 4μ (from MC: 0.2%)
 - Keep all candidates arising from more than four muons (from MC: 0.2%)

Background model:

- NRSPS: threshold function * pol2 * exponential
- NRDPS: threshold function * pol2 * exponential
- **BW0**: Relativistic Breit-Wigner near J/ψJ/ψ threshold
 - o inadequacy of NRSPS near threshold
 - o feed-down of partially reconstructed higher mass states
 - possible coupled-channel interactions, pomeron-exchange processes, etc.

 $\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_m}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_m}\right)^2$

X(6900) at CMS in 2022

CMS signal + background model

Three Relativistic Breit-Wigner ($J^P = 0^+$) are considered

	Mass (MeV)	Width (MeV)	Local stat. signif.
BW1	6552 ± 10 ± 12	124 ± 29 ± 34	> 5.7σ
BW2	6927 ± 9 ± 5	122 ± 22 ± 19	> 9.4σ
BW3	7287 ± 19 ± 5	95 ± 46 ± 20	> 4.1σ

X(6900) confirmed at CMS Values consistent with LHCb

LHCb signal models + CMS background

Model 1:

- X(6900) parameters in agreement
- but dip at 6.7 not well described

Model 2:

- Larger X(6700) amplitude
- X(7300) region not well described

 χ^2 -Prob = 10⁻⁴ in [6.2, 7.8] GeV

X(6900) at ATLAS in 2022

J/ψJ/ψ and J/ψ+ψ(2S) in 4μ final state studied at ATLAS using 139 fb⁻¹ of pp at √s = 13 TeV ATLAS-CONF-2022-040

Prompt (SPS, DPS) and non-prompt ($b\bar{b} \to J/\psi J/\psi$) background contributions are considered

Event selection, reconstruction and definition of signal and control regions

 4μ mass data vs background predictions before fit for $J/\psi J/\psi$ and $J/\psi + \psi(2S)$

Feed-down from higher mass states not included

Signal model: interfering BWs ⊗ resolution

- J/ψJ/ψ: 2/3 interfering BW
- J/ψ+ψ(2S):
 - A: 3 interfering BW + 4th resonance
 - B: single resonance

Signal region	SPS/DPS control region	non-prompt region
D	bi-muon or tri-muon triggers,	
	I muons from the same J/ψ or $\psi(2S)$	
	$4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for	
	3.25} GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$	
Loose verte	x cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{\text{di-}\mu}/N < 100$	0,
Vertex	$\chi_{4\mu}^2/N < 3,$	1
$L_{xy}^{4\mu} < 0.2 \text{ mm}$	$ L_{xy}^{\text{di-}\mu} < 0.3 \text{ mm},$	Vertex $\chi^2_{4\mu}/N > 6$,
$m_{4\mu} < 7.5 \text{ GeV},$	$7.5 \text{ GeV} < m_{4\mu} < 12.0 \text{ GeV (SPS)}$	$ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$
AR < 0.25 between charmonia	14.0 GeV / m. / 25.0 GeV (DPS)	

X(6900) at ATLAS in 2022

$J/\psi J/\psi$: best fit obtained with 3 interfering BWs,

70% worse fit quality for 2-resonance fit

6.9 GeV resonance confirmed, consistent with LHCb

$$m = 6.87 \pm 0.03^{+0.06}_{-0.01} GeV \ \Gamma = 0.12 \pm 0.04^{+0.03}_{-0.01} GeV$$

Similar results using LHCb Model 1 as signal model, Model 2 disfavoured by fit quality

Fit on $J/\psi\psi(2S)$ mass spectrum, significance:

- Model A: 4.6σ
 - o X(7200): 3.2σ
- Model B: 4.3σ

Evidence for an enhancement at 6.9 GeV and 7.2 GeV, but other explanations are possible

fitted mass in SR, 3-resonance fit (2 out of 4 degenerate fit results)

fitted mass in SR, Model A (left) and Model B (right)

Observation of tetraquarks in $B o ar D D_s^+ \pi$

Two decay channels reconstructed at LHCb using 9 fb⁻¹ of pp collisions (Run 1 + Run 2)

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

- 3751 $B^+ \to D^- D_s^+ \pi^+$ cands (purity: 95.2%)
- 4008 $B^0 o \bar{D}^0 D_s^+ \pi^-$ cands (purity: 90.7%)

Amplitudes for intermediate resonances derived from helicity formalism

Approximate isospin symmetry → parameters shared between channels

Amplitude analysis - UML Fit:

Fit with only D** resonances does not describe well data, even if more D** are added

Contribution from $D_{\varsigma}\pi$ is added

Observation of tetraquarks in $B o DD_s^+\pi$

Fit with additional D $_{
m s}^{^+}\pi^{\pm}$ resonance, named $T_{car{s}0}^a(2900)^{++/0}$

 $M(D_s\pi)$ well described adding a $J^P = 0^+$ resonance in each channel (significance > 9σ)

 $J^P = 0^+$ favoured over other spin-parity assignment by over 7.5 σ

Resonances' parameters measured:

$$M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$$
 $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$

$$\Gamma$$
 = 0.136 ± 0.023 ± 0.011 GeV

First tetraquarks composed of $[c\bar{s}u\bar{d}], [c\bar{s}\bar{u}d]$: ongoing search for isospin partner $T^a_{c\bar{s}0}(2900)^+ o D^+_s\pi^0$

Observation of tetraquarks in $B^+ o D_s^+D_s^-K^+$

360 $B^+ \to D_s^+ D_s^- K^+$ cands reconstructed at LHCb using 9 fb⁻¹ of pp collisions (Run 1 + Run 2)

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

Near-threshold enhancement observed in m(D_c⁺D_c⁻)

Amplitudes derived from helicity formalism

UML fit on background-subtracted data

Baseline model well describes data:

- 0^{++} : X(3960), X₀(4140), non-resonant
- 1⁻⁻: ψ(4260), ψ(4660)

X(3960) describes near-threshold peak Interference with X_o(4140) accounts for the dip

Observation of tetraquarks in $B^+ o D_s^+ D_s^- K^+$

			-	-			-	-	-1
F	it	tr	ϵ	95	εL	ıl [.]	ts	5	

Component	J^{PC}	$M_0 [{ m MeV}]$	$\Gamma_0 \; [{ m MeV}]$	F [%]	$\mathcal{S}\left[\sigma ight]$
X(3960)	0++	$3955 \pm 6 \pm 12$	$48\pm17\pm10$	$24.2 \pm 7.6 \pm 7.9$	12.6 (14.3)
$X_0(4140)$	0^{++}	$4133 \pm 7 \pm 11$	$69\pm17\pm7$	$17.7 \pm 4.9 \pm 7.7$	3.7(3.9)
$\psi(4260)$	1	4230	55	$3.7\pm0.4\pm3.0$	3.1(3.3)
$\psi(4660)$	1	4633	64	$2.2\pm0.2\pm0.5$	2.9(3.2)
NR	S-wave	-	-	$46.6 \pm 13.3 \pm 11.3$	3.1(3.4)

First uncertainty is statistical, and second systematic

Assuming that X(3960) is that same particle as χ_0 (3930) (OK within 3 σ), the following ratio is evaluated:

$$rac{\Gamma(X o D^+ D^-)}{\Gamma(X o D_s^+ D_s^+)} = rac{\mathcal{B}(B^+ o D^+ D^- K^-) \, FF_{D^+ D^- K^+}^X}{\mathcal{B}(B^+ o D_s^+ D_s^- K^-) \, FF_{D^+ D^- K^+}^X} = 0.29 \pm 0.09 \, (stat) \pm 0.10 \, (syst) \pm 0.08 \, (ext)$$

Conventional charmonia prevalently decay into $D^{(*)} ar{D}^{(*)}$

Ratio smaller than 1 implies the exotic nature of the state

- Precision measurements on X(3960) and χ_0 (3930) needed to understand if they are the same particle
- $X(3960) / \chi_0(3930) / \chi_0(3915) \rightarrow J/\psi\omega$ decays could give further information on the exotic nature

Observation of J/ $\psi\Lambda$ resonance in $\,B^- o J/\psi\Lambdaar p\,$

Decay studied at CMS (19.8 fb⁻¹, 8 TeV): inconsistent with flat phase space JHEP 12 (2019) 100

Analysis on full LHCb dataset: 9 fb⁻¹ of pp collisions (Run 1 + Run 2)

LHCb-PAPER-2022-031

4600 B⁻ cands collected with a displaced J/ $\psi \rightarrow \mu\mu$ trigger (purity: 93%)

Narrow structure in J/ψΛ, activity in J/ψp̄

Full amplitude analysis (6D) to investigate possible reflections from $K^*_{2,3,4}$

K*-only model cannot describe data (χ^2 /ndf = 123/33)

Observation of J/ $\psi\Lambda$ resonance in $\,B^- o J/\psi\Lambdaar p\,$

Goodness-of-fit test: χ^2_{max} of 1D projections

- Baseline model:
 - \circ NR($\overline{p}\Lambda$) + NR($\overline{p}J/\psi$)
 - \circ $\chi^2/ndf = 121/39$
- Model with J/ψΛ:
 - $\circ \qquad \mathsf{NR}(\overline{\mathsf{p}}\Lambda) + \mathsf{NR}(\overline{\mathsf{p}}\mathsf{J}/\psi) + \mathsf{P}^{\Lambda}_{\mathsf{us}}(\mathsf{J}/\psi\Lambda)$

Fit results:

- $m(P_{Us}^{\Lambda}) = 4338.2 \pm 0.7 \text{ MeV}$
- $\Gamma(P_{\text{us}}^{\Lambda}) = 7.0 \pm 1.2 \text{ MeV}$
- $f(P_{\psi s}^{\Lambda}) = 12.5 \pm 0.7 \%$
- Favoured spin $J = \frac{1}{2}$
- Parity P = -1 favoured
- $J^P = \frac{1}{2}$ rejected at 90% CL
- significance > 10σ (from Wilks' theorem)

Heavy Flavour production and non-exotic spectroscopy

Study of B_c \rightarrow J/ ψ D_s^(*) decays

The B_c decays are reconstructed at ATLAS using 139 fb⁻¹ of pp collisions (Run 2) JHEP 08 (2022) 087

Pseudoscalar meson decaying into two vector states described with **three helicity amplitudes**: \mathbf{A}_{++} , \mathbf{A}_{-} (transverse polarizations), and \mathbf{A}_{00} (longitudinal polarization)

$$\circ$$
 J/ $\psi \rightarrow \mu^{+}\mu^{-}$

$$\circ \quad D_s^+ \rightarrow \phi(\rightarrow K^+K^-) \pi^+$$

○ $D_s^* \rightarrow D_s \pi^0 / \gamma$ (soft, not reco'd)

• Fiducial region:

Reference decay:

Signal yield for reference decay:

$$N(B_c^+ o J/\psi\pi^+)=8440^{+550}_{-470}$$

Study of B_c \rightarrow J/ ψ D_s^(*) decays

ATLAS

√s= 13 TeV, 139 fb⁻¹

Dataset 1

 $|\cos\theta'(\mu^+)|$

2D UML fit in $m(J/\psi D_s)$ and J/ψ helicity angle $cos(\theta'(\mu^+))$

- $N(B_c \rightarrow J/\psi D_s^+) = 241 \pm 28 \text{ (stat.)}$
- $N(B_c \rightarrow J/\psi D_s^*) = 424 \pm 46$ (stat.)

From fit: ratios of branching fractions $R(D_s^{*+}/\pi)$, $R(D_s^+/\pi)$, $R(D_s^{*+}/D_s^+)$ and the transverse polarization fraction Γ_{++}/Γ_{00}

Measurements in agreement with previous ones, with improved precision

 $R(D_s^{*+}/\pi)$ well described by predictions

Other predictions consistently deviate from data

 Γ_{++}/Γ_{00} in agreement with naive $\frac{2}{3}$ spin counting

X(3872) production in different collision systems

X(3872) [aka χ_{c1} (3872)] does not fit $c\bar{c}$ spectrum: narrow state above $D\bar{D}$ threshold

LHCb: first measurement of χ_{c1} (3872) in pPb

 χ_{c1} (3872) and ψ(2S) - as reference - reconstructed in J/ψ ($\rightarrow \mu^+\mu^-$) $\pi^+\pi^-$ final state

Pseudo decay-time to select prompt component:

$$t_z = (z_{decay} - z_{PV}) M / p_z$$

System	Rapidity	Energy	Luminosity
pp	2 < y < 4.5	8 TeV	$2{\rm fb}^{-1}$
pPb	$1.5 < y_{\rm cm} < 4$	8.16 TeV	$12.5\mathrm{nb}^{-1}$
Pbp	$-5 < y_{\rm cm} < -2.5$	$8.16\mathrm{TeV}$	$19.3{\rm nb}^{-1}$

Initial state-effect are largely cancelled in the ratio

The ratio increases with the system size, different from the decreasing trend as multiplicity observed in pp [PRL 126 (2021) 092001]

Hint that coalescence effect dominates $\chi_{c1}(3872)$ production in pPb?

X(3872) production in different collision systems

First evidence using 1.7 nb⁻¹ of PbPb collisions data (2018) at CMS at $\sqrt{s_{NN}} = 5.02$ TeV per nucleon pair PRL 128 (2022) 032001

UML fit to extract signal yields for $\psi(2S)$ and X(3872)

Final state: $J/\psi(\rightarrow \mu^{+}\mu^{-}) \pi^{+}\pi^{-}$

Significance for inclusive X(3872): 4.20

Prompt fraction estimated with MC studies Yields corrected by acceptance and overall efficiency

Ratio of corrected yields for prompt production in PbPb collisions ϱ^{pp} :

- **compatible with 1** (within 1 σ)
- compatible with $\varrho^{pp} = 0.1$ (within 2σ)

Much larger data sample expected in Run-3 at LHC in order to improve the measurement and understand the internal structure of X(3872) and the differences of its production mechanism w.r.t. $\psi(2S)$

 $m_{\mu\mu\pi\pi}$ (GeV/c²)

Simultaneous production of three J/ψ mesons

N-parton scattering: simultaneous hard interaction of N partons

Triple J/ψ production is a probe for Triple Parton Scattering (TPS)

Simplest theoretical approach: uncorrelated partons

$$\sigma_{\mathrm{DPS}}^{\mathrm{pp} \to \psi_1 \, \psi_2 + \mathrm{X}} = \left(\frac{\mathfrak{m}}{2}\right) \frac{\sigma_{\mathrm{SPS}}^{\mathrm{pp} \to \psi_1 + \mathrm{X}} \, \sigma_{\mathrm{SPS}}^{\mathrm{pp} \to \psi_2 + \mathrm{X}}}{\sigma_{\mathrm{eff} \, \mathrm{DPS}}} \begin{array}{c} \psi_1 \neq \psi_2; & \mathrm{m} = 2 \\ \psi_1 = \psi_2; & \mathrm{m} = 2 \end{array}$$

$$\sigma_{\text{TPS}}^{\text{pp}\to\psi_1\psi_2\psi_3+X} = \left(\frac{\mathfrak{m}}{3!}\right) \frac{\sigma_{\text{SPS}}^{\text{pp}\to\psi_1+X} \sigma_{\text{SPS}}^{\text{pp}\to\psi_2+X} \sigma_{\text{SPS}}^{\text{pp}\to\psi_3+X}}{\sigma_{\text{eff,TPS}}^2}$$

$$\sigma_{eff,TPS} = \kappa\,\sigma_{eff,DPS}$$

$$\kappa = 0.82 \pm 0.11$$

from PRL 118 (2017) 122001

$3-J/\psi$ Production via both prompt and non-prompt contributions

Effective xsec $\sigma_{\text{eff,DPS}}$: pp transverse overlap From simulation it is expected $\sigma_{\text{eff,DPS}} \approx 20\text{-}30 \text{ mb}$

Previous measurements:

- ≈ 3-10 mb from di-quarkonia final states
- ≈ 10-20 mb from jets, photons, EW bosons

Disagreement due to parton correlation, different contribution from quarks/gluons, poor control of SPS contribution

Simultaneous triple-J/ ψ production at CMS

First observation at CMS using 133 fb⁻¹ of pp collisions at 13 TeV

https://arxiv.org/abs/2111.05370

Event selection:

- J/ψ+μ trigger
- PV chosen as highest $\sum p_T^2$
- event with six muons (3 OS pairs)
- three μ-pairs with
 - opposite sign
 - \circ m($\mu^{+}\mu^{-}$) in [2.9, 3.3] GeV
 - good common vertex
 - o compatible with PV (can be non-prompt)

Very clean signature - Six 3-J/ ψ events passing selection

Signal yield extraction \rightarrow N = 5.0 ± 2.0 dimuon BR = (5.961 ± 0.033)% (PDG)

Trigger eff.: 0.84 ± 0.034 (MC) ID*reco eff. 0.78 ± 0.01 (data driven)

$$\sigma(pp o 3J/\psi) = rac{N}{arepsilon_{trig}\,arepsilon_{id}\,arepsilon_{reco}\,\mathcal{L}\,[\mathcal{B}(J/\psi o\mu\mu)]^3}$$
 =

Simultaneous triple-J/ψ production at CMS

23

Theoretical total 3-J/ ψ cross section expressed as sum of contributions from SPS, DPS and TPS

Each process has contribution from both prompt and non-prompt production

DPS and TPS contributions as product of SPS terms

Using SPS cross-sections from generators:

$$\sigma_{eff,DPS} = 2.7^{+1.4}_{-1.0} (exp)^{+1.5}_{-1.0} (theo) \, mb$$

SPS, DPS and TPS contributions:

$$f_{SPS} = 6\%$$
 $f_{DPS} = 74\%$ $f_{TPS} = 20\%$

 $\sigma_{\text{eff,DPS}}$ value consistent with other measurement from di-quarkonium production, but not with extractions from processes with jets, photons and W bosons (probably because of contributions from EW sector)

$$\begin{split} \sigma_{\text{tot}}^{3\text{J}/\psi} &= \sigma_{\text{SPS}}^{3\text{J}/\psi} + \sigma_{\text{DPS}}^{3\text{J}/\psi} + \sigma_{\text{TPS}}^{3\text{J}/\psi} \\ &= \left(\sigma_{\text{SPS}}^{3\text{p}} + \sigma_{\text{SPS}}^{2\text{p1np}} + \sigma_{\text{SPS}}^{1\text{p2np}} + \sigma_{\text{SPS}}^{3\text{np}}\right) \\ &+ \left(\sigma_{\text{DPS}}^{3\text{p}} + \sigma_{\text{DPS}}^{2\text{p1np}} + \sigma_{\text{DPS}}^{1\text{p2np}} + \sigma_{\text{DPS}}^{3\text{np}}\right) + \left(\sigma_{\text{TPS}}^{3\text{p}} + \sigma_{\text{TPS}}^{2\text{p1np}} + \sigma_{\text{TPS}}^{3\text{np}} + \sigma_{\text{TPS}}^{3\text{np}}\right) \end{split}$$

$$\begin{split} \sigma_{\mathrm{DPS}}^{3J/\psi} &= \frac{\mathfrak{m}_{1} \, \left(\sigma_{\mathrm{SPS}}^{2p} \sigma_{\mathrm{SPS}}^{1p} + \sigma_{\mathrm{SPS}}^{2p} \sigma_{\mathrm{SPS}}^{1np} + \sigma_{\mathrm{SPS}}^{1p} \sigma_{\mathrm{SPS}}^{1p1np} + \sigma_{\mathrm{SPS}}^{1p1np} \sigma_{\mathrm{SPS}}^{1np} + \sigma_{\mathrm{SPS}}^{1p} \sigma_{\mathrm{SPS}}^{2np} + \sigma_{\mathrm{SPS}}^{2np} \sigma_{\mathrm{SPS}}^{2np} + \sigma_{\mathrm{SPS}}^{2np} \sigma_{\mathrm{SPS}}^{1np} \right)}{\sigma_{\mathrm{eff,DPS}}}, \\ \sigma_{\mathrm{TPS}}^{3J/\psi} &= \frac{\mathfrak{m}_{3} \left(\left(\sigma_{\mathrm{SPS}}^{1p}\right)^{3} + \left(\sigma_{\mathrm{SPS}}^{1np}\right)^{3} \right) + \mathfrak{m}_{2} \left(\left(\sigma_{\mathrm{SPS}}^{1p}\right)^{2} \sigma_{\mathrm{SPS}}^{1np} + \sigma_{\mathrm{SPS}}^{1p} \left(\sigma_{\mathrm{SPS}}^{1np}\right)^{2} \right)}{\sigma_{\mathrm{eff,TPS}}^{2}}, \end{split}$$

Conclusions

- unan hairann deann shearn shea
- A selection of recent results in B-Physics production and spectroscopy from the LHC Collaboration is presented
- 67 new hadrons have been discovered at LHC since its start and the particle zoo is constantly growing
- Different experiments at the LHC observe independently new particles and can confirm each others' results
- Further understanding of QCD is possible thanks to precise measurement of physics parameters in different collisions environments

THANKS FOR YOUR ATTENTION

contacts:

vincenzo.mastrapasqua@ba.infn.it vincenzo.mastrapasqua@cern.ch