

Ashley Back on behalf of the NOvA Collaboration

810 km (503 miles) baseline

- **Near detector** (ND) ~100 m underground, at Fermilab.
- High target mass far detector (FD) on surface in northern Minnesota.
- Both positioned **off-axis** (from the beam center), giving a narrow energy spectrum peaked at ~2GeV.

The NOvA experiment

Key questions for NOvA

• Do v_{μ} and v_{τ} contribute equally to the mass states? Is θ_{23} maximal?

• Is is electron flavor associated most with heavy or light mass states?

- Is there **CP violation** in the lepton sector? What is the value of δ_{CP} ?
- Is there physics beyond the **standard model/PMNS** matrix? Is the 3-flavor model complete?

Key questions for NOvA

This talk

• Do v_{μ} and v_{τ} contribute equally to the mass states? Is θ_{23} maximal?

Is is electron flavor associated most with heavy or light mass states?

- Is there **CP violation** in the lepton sector? What is the value of δ_{CP} ?
- Is there physics beyond the **standard model/PMNS** matrix? Is the 3-flavor model complete?

v_{μ} disappearance

The PMNS matrix gives a survival probability for v_{μ} as:

$$P(
u_{\mu}
ightarrow
u_{\mu})pprox 1-\sin^2(2 heta_{23})\sin^2\left(rac{1.27\Delta m_{32}^2L}{E}
ight)$$

Sensitivity to: $\sin^2\!\!\left(2\theta_{23}\right)$ and Δm_{23}^2

Electron neutrino appearance

$$\begin{split} P\left(\nu_{\mu} \rightarrow \nu_{e}\right) &\approx \left|\sqrt{P_{\rm atm}}e^{-i(\Delta_{32}+\delta_{CP})} + \sqrt{P_{\rm sol}}\right|^{2} \\ &\approx P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}P_{\rm sol}\left(\cos\Delta_{32}\cos\delta_{CP}\mp\sin\Delta_{32}\sin\delta_{CP}\right) \\ P_{atm} &= \sin^{2}(\theta_{23})\sin^{2}(2\theta_{13})\frac{\sin^{2}(\Delta_{31}-aL)}{(\Delta_{31}-aL)^{2}}(\Delta_{31})^{2} \\ &\Delta_{ij} = (1.27\Delta m_{ij}^{2}L)/E \end{split}$$

Gives us access to every oscillation parameter

 $P_{sol} = \cos^2(heta_{23}) \sin^2(2 heta_{12}) rac{\sin^2(-aL)}{(-aL)^2} (\Delta_{21})^2$

Density of the Earth yields different effects for neutrinos and antineutrinos.

 $a=G_FN_e/\sqrt{2}$

 $N_e = \text{Earth's electron density}$

Neutrinos vs antineutrinos: v_e appearance

- Inverted Ordering gives a slight suppression in both beam modes.
- CP violation causes opposite
 effects in each ordering tracing
 out ellipses.
- 3. Matter effects also produce **opposite effects** in neutrinos and antineutrinos.
- 4. The octant of θ_{23} causes either a **suppression** or **enhancement** in both beam modes.

The NuMI beam

NuMI running at 700 kW design power since January 2017 and recently achieved a 1-hour average power record of **895 kW**!

- Charge select pions to get 96% (83%) pure neutrino (antineutrino) beam.
- Analysis based on 13.6×10²⁰ protons on target (POT) in neutrino beam mode...

The NuMI beam

NuMI running at 700 kW design power since January 2017 and recently achieved a 1-hour average power record of **895 kW**!

- Charge select pions to get 96% (83%) pure neutrino (antineutrino) beam.
- Analysis based on 13.6×10²⁰ protons on target (POT) in neutrino beam mode...
 and 12.5×10²⁰ POT in antineutrino mode.
- Both just under half the final exposure we expect.
 - Close to doubling neutrino beam exposure already!

For scale, me standing in front of the Far Detector during our recent Collaboration Meeting visit.

NOvA detectors

- Highly granular tracking calorimeters, constructed with orthogonal layers PVC cells filled with liquid scintillator.
- Need a large target mass 14 kton FD only detects ~100 neutrinos per year.
- Readout via wavelength-shifting fiber loop to avalanche photodiodes (APDs).

Event selection

- NOvA uses a convolutional neural network (CNN) to classify events
 - a deep-learning technique inspired by image recognition.
- We also use basic quality and containment, precise beam timing and a cosmic rejection boosted decision tree to select neutrino candidates.

Constraints using ND data

- We scale simulation to ND data to constrain signal and background rates in the FD prediction, with bin-by-bin corrections.
 - We adjust the v_{μ} CC, v_{e} CC and NC components separately in the ND v_{e} data.
- The v_{μ} ND data constrains the FD **signal** while ND v_{e} data constrains the prediction for beam **backgrounds**.

- Observed 211 events on a background prediction of 8.2
 - Integral of total best-fit prediction is 222.3 events.

Selected ν_{μ} CC candidates

- Observed **105** events on a background prediction of **2.1**
 - Integral of total best-fit prediction is 105.4 events.

- Observed 82 events on a background prediction of 26.8
 - Integral of total best-fit prediction is 85.8 events.

Selected v_e CC candidates

- Observed 33 events on a background prediction of 14.0
 - Integral of total best-fit prediction is 33.2 events.

 $>4\sigma$ evidence of electron antineutrino appearance

Fit to oscillation parameters

Most probable

Bayesian interpretation has similar conclusions to our frequentist results.

- Rule out IO, $\delta = \pi/2$ region at >3 σ .
- Weak preference for Normal Ordering, Upper Octant of θ_{23} .

Posterior probability density, marginalized over both mass orderings, showing 1, 2, and 3σ credible regions.

Excluded

Asymmetry

$$P(\, \nu) - P(\, \bar{\nu})$$

$$P(\, \nu) + P(\, \bar{\nu})$$
Reconstructed neutrino energy (GeV)

Energy / Distance (10⁻³ GeV/km)

Plotting number of candidates in neutrino vs antineutrino beam mode, puts observed result in the highly degenerate central region.

We see **no strong asymmetry** in the appearance rates → consistent with both slightly negative and slightly positive asymmetries, but disfavoring more extreme asymmetries.

Measurement of θ_{13}

- The results so far all use a constraint on θ_{13} from reactor experiments.
- The Bayesian interpretation of our data allows us to drop this constraint and make a NOvA measurement of θ_{13} .

$$\sin^2(2 heta_{13}) = 0.085^{+0.020}_{-0.016}$$

- Consistent with the measurements from reactor experiments.
- Good test of PMNS consistency → NOvA measurement uses a very different strategy to reactor experiments.

Comparison with T2K

- Frequestist contours.
- Some tension between preferred regions for the Normal Ordering.
 - Agree on the preferred region in the Inverted Ordering.
- A joint fit of the data from the two experiments is needed to properly quantify consistency.
 - Significant progress made on a joint-fit → coming this year!

NOvA Preliminary

Future of NOvA

NOvA will continue taking data until 2026.

- equal exposure in both beam modes.
- >2x current POT.

Sensitivity to mass ordering depends on the value of $\delta_{\it CP}$.

- NOvA best-fit (δ_{CP} =0.82 π) has ~2.5% chance of 3 σ .
- Most favourable parameters/T2K best-fit (δ_{CP} =1.37 π) have ~50% chance of 4 σ .

NOvA's successful Test Beam program will help reduce detector systematics.

Outlook

NOvA is well suited to investigating key questions in Neutrino Physics.

With our latest 3-flavor oscillation analysis, NOvA sees:

- $>4\sigma$ evidence of electron antineutrino appearance.
- No strong asymmetry in v_e appearance rates between beam modes.
- First comprehensive NOvA measurement of $\theta_{13'}$ consistent with measurements from reactor experiments.

Thank you!

http://novaexperiment.fnal.gov

Extra slides

Neutrino interaction model

Slide from A Himmel, Neutrino 2020.

- Constantly evolving understanding of v interactions.
- Upgrade to GENIE 3.0.6 → freedom to choose models
- Chose the most "theory-driven" set of models plus GENIE's re-tune of some parameters*.
- · Some custom tuning is still required.
 - Substantially less than was needed with GENIE 2.12.2, which required tweaks to most models.

Process	Model	Reference	
Quasielastic	Valencia 1p1h	J. Nieves, J. E. Amaro, M. Valverde, Phys. Rev. C 70 (2004) 055503	
Form Factor	Z-expansion	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys. Rev. D 93 (2016)	
Multi-nucleon	Valencia 2p2h	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas, Phys. Rev. D 88 (2013)	
Resonance	Berger-Sehgal	Ch. Berger, L. M. Sehgal, Phys. Rev. D 76 (2007)	
DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA (2003)	
Final State Int.	hN semi-classical cascade	S. Dytman, Acta Physica Polonica B 40 (2009)	

^{*} We call our tune N1810j_0211a, and it is built by starting with G1810b_0211a and substituting the Z-expansion form factor for the dipole one. This combination was not available in the 3.0.6 release, but it may be available in future versions.

Fig: Teppei Katori, "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators" AIP Conf.Proc. 1663 (2015) 030001

Neutrino interaction model

- 2p2h or Meson Exchange Current or Multi-nucleon Interactions:
 - Disagreement of models with multiple experiments well-known
 - Tuned to **NOvA ND data** with two 2D gaussians in q_0 - $|\vec{q}|$ space.
 - Generous systematics covering normalization and kinematic shape
- Final State Interactions
 - Used external π -scattering data primarily to set uncertainties
 - Required adjusting central value, change in overall xsec was small.

67. Cross section adjustments for 2p2h

- Maria Martinez Casales

352. Central value tuning and uncertainties for the hN FSI model in GENIE 3

- Michael Dolce, Jeremy Wolcott, Hugh Gallagher

Slide from A Himmel, Neutrino 2020.

Building a far detector prediction

- GEANT 4 simulation of neutrino flux, re-weighted using external NuMI beam measurements.
- 2. Interactions simulated using GENIE 3.0.6 with custom configuration, tuned on external and NOvA ND data \rightarrow updated for this analysis.
- 3. Simulation of final state particles propagated through light readout and front-end electronics using GEANT 4 \rightarrow also updated for this analysis.

To evaluate the effect of a systematic shifts on our FD prediction, we propagate our nominal MC and each shift through the extrapolation procedure using our corrected ND MC.

• Selected u_{μ} ND events (**4 quartiles**) ightarrow FD u_{μ} signal prediction.

To evaluate the effect of a systematic shifts on our FD prediction, we propagate our nominal MC and each shift through the extrapolation procedure using our corrected ND MC.

- Selected u_{μ} ND events (**4 quartiles**) ightarrow FD u_{μ} signal prediction.
- Selected u_{μ} ND events \rightarrow FD u_{e} signal prediction.
- Selected $u_e/
 u_\mu/\text{NC}$ ND events o FD u_e background prediction.

28

Enhancing sensitivity: ν_e

Sensitivity comes mainly from signal and background separation.

We split into three samples:

- High and low purity core samples.
- Peripheral sample.
 - Captures highly v_e -like events (high PID score) that fail initial containment and cosmic rejection cuts.
 - No energy binning.

Basic Quality cuts

Core Preselection

 ν_e selection

Nue selection: cut-flow

Numu selection: cut-flow

Enhancing sensitivity: ν_{μ}

Sensitivity comes mainly from the shape of the energy spectrum - particularly in the dip region.

We split into four samples by energy resolution \rightarrow binning by fraction of hadronic energy.

Resolution varies from ~6 % in Quartile 1 to ~12 % in Quartile 4.

Enhancing sensitivity: ν_{μ}

Containment in ND limits range of lepton angles more than in FD.

Mitigate by splitting ND data into 3 samples of transverse lepton momentum and extrapolate to FD.

Increases robustness and reduces cross-section systematics by \sim 30 % (overall reduction in systematics (5-10 %).

33

Key systematic uncertainties

- Measurements are still statistics limited.
- Key systematic uncertainties from detector calibration, neutrino cross-sections and neutrons.

Total observed	82
Integral at best fit	85.8
Electron antineutrino	1.0
Total beam background	22.7
Cosmic background	3.1

Total observed	33
Integral at best fit	33.2
Electron neutrino	2.3
Total beam background	10.2
Cosmic background	1.6

 $>4\sigma$ evidence of electron antineutrino appearance

Selected v_e CC candidates

Fit to oscillation parameters

Best fit:

$$\Delta m_{23}^2 = (2.41 \pm 0.07) \times 10^{-3} eV^2$$

$$\sin^2(2\theta_{23}) = 0.57^{+0.04}_{-0.03}$$

1.1σ preference for non-maximal mixing

Fit to oscillation parameters - Frequentist

Fit to oscillation parameters - Frequentist

Exclude IH δ = $\pi/2$ at >3 σ Disfavor NH δ = $3\pi/2$ at ~2 σ

Prefer:

Normal Hierarchy at 1.0σ Upper Octant at 1.2σ

NOvA & T2K bi-event plots

