

Flavor hierarchies and anomalies from a 5D perspective

Javier Fuentes-Martín

University of Granada

Vietnam Flavour Physics Conference 2022, Quy Nhon, Vietnam

19 August 2022

A 5D model that...

 \star Explains/Justifies the flavor hierarchies from a multi-scale origin

- \star Reduces to 4321 (U_1 UV completion) at low energies
- \star Stabilizes the Higgs hierarchy (Higgs as a pNGB)

[JFM, Isidori, Lizana, Selimović, Stefanek, 2203.01952]

A 5D model that...

 \star Explains/Justifies the flavor hierarchies from a multi-scale origin

[JFM, Isidori, Lizana, Selimović, Stefanek, 2203.01952]

Multi-scale solution of the flavor problem/puzzle

Multi-scale solution of the flavor problem/puzzle

Combined explanation of B anomalies

The only source of Lepton Flavor Universality Violation in the SM (Yukawas) follows a very similar trend: $y_e \ll y_\mu \ll y_\tau$

Combined explanation of B anomalies

The only source of Lepton Flavor Universality Violation in the SM (Yukawas) follows a very similar trend: $y_e \ll y_\mu \ll y_\tau$

Data consistent with TeV-scale NP with a Yukawa-like scaling with $|V_q|$, $|V_{\ell}| \sim 0.1$ [roughly the size inferred from the SM Yukawa $|V_q| \sim V_{cb} \approx 0.04$]

[JF, Isidori, Pagès, Yamamoto, 1909.02519]

Multi-scale solution of the flavor problem/puzzle

Flavor in Randall-Sundrum

Warped 5D geometry (RS): $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$

- Justification of the Yukawa hierarchies through exponentiation + flavor anarchy
- Analogous to partial compositeness in composite models

A 5D model that...

 \star Explains/Justifies the flavor hierarchies from a multi-scale origin

 \star Reduces to 4321 (U_1 UV completion) at low energies

[JFM, Isidori, Lizana, Selimović, Stefanek, 2203.01952]

Gauge UV completion for the U_1 leptoquark

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

✓ SU(4) is the smallest group containing the $U_1 \sim (3, 1, 2/3)$

✓ No proton decay (protected by symmetry)

- X Flavor-blind U_1 mediates $K_L → \mu e \Rightarrow m_{U_1} \gtrsim 100 \,\text{TeV}$
- \checkmark Extra fermions can make the U_1 non-universal, not the Z'
- \checkmark Strongly coupled, universal Z' would be excessively produced at the LHC

4321 model(s)

[Georgi and Y. Nakai, 1606.05865; Diaz, Schmaltz, Zhong, 1706.05033; Di Luzio, Greljo, Nardecchia, 1708.08450. See also Fornal, Gadam, Grinstein, 1812.01603]

We can "protect" the light families by de-correlating SU(4) from the SM color group $(g_4 \gg g_3)$

PS group: $\mathscr{G}_{PS} \supset SU(4) \times SU(2)_L \times U(1)_R$ [Flavor universal]

4321 group: $\mathcal{G}_{4321} \equiv SU(4)_h \times SU(3)_l \times SU(2)_L \times U(1)_{R+l}$ [Flavor non-universal]

Third-family quark-lepton unification at the TeV scale

- \star Direct new physics couplings to 3rd family only
- \star CKM mixing and NP couplings to light families via (small) mixing with vectorlike fermions χ

[JFM, Isidori, König, Selimovic, 1910.13474, 2006.16250, 2009.11296]

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$	
q_L^i	1	3	2	1/6	
u_R^i	1	3	1	2/3	1st & 2nd
d_R^i	1	3	1	-1/3	families
ℓ_L^i	1	1	2	-1/2	
e_R^i	1	1	1	-1	
ψ_L	4	1	2	0	3rd family
ψ^\pm_R	4	1	1	$\pm 1/2$	
χ^i_L	4	1	2	0	vectorlike
χ^i_R	4	1	2	0	fermions
Н	1	1	2	1/2	
Ω_1	$\overline{4}$	1	1	-1/2	4321
Ω_3	$\overline{4}$	3	1	1/6	breaking
Ω_{15}	15	1	1	0	scalars

[Bordone, Cornella, JFM, Isidori 1712.01368, 1805.09328; Greljo, Stefanek, 1802.04274; Cornella, JFM, Isidori 1903.11517]

Third-family quark-lepton unification at the TeV scale

In first approximation, third-family quark-lepton unification implies

$$[y_{\tau} = 0.8 y_b \text{ at 2 TeV}]$$

SU(2)

SU(2)

TeV-scale unification limits Majorana mass for ν_R to $m_{\nu_R} \lesssim {\rm TeV}$

Type-I see-saw:
$$m_{\nu} \approx \frac{m_D^2}{m_{\nu_R}} \sim 10 \text{ GeV}$$

 $m_D \equiv y_{\nu} v / \sqrt{2}$

Solution: Inverse seesaw via new fermion singlets S_L^i with hierarchical Majorana masses μ^i

[Greljo, Stefanek, <u>1802.04274</u> Fileviez, Wise, <u>1307.6213</u>]

 $\mu^i \sim (10^7, 10^{-1}, 10^{-9}) \text{ GeV}$

$$m_{\nu} \approx m_D \, m_R^{-1} \, \mu \, (m_R^{-1})^{\mathsf{T}} m_D^{\mathsf{T}}$$

 $m_D^i \approx m_u^i \sim (10^{-2}, 1, 10^2) \text{ GeV}$

PS multiplets

Third-family quark-lepton unification at the TeV scale

Model prediction: mixing between active neutrino and pseudo-Dirac heavy neutral leptons yields

PMNS unitarity violation

with the expected pattern:

$$\eta \equiv |1 - NN^{\dagger}| \sim \left| \frac{m_D^3}{m_R^3} \right|^2 \begin{pmatrix} \epsilon_L^4 & \epsilon_L^3 & \epsilon_L^2 \\ \epsilon_L^3 & \epsilon_L^2 & \epsilon_L \\ \epsilon_L^2 & \epsilon_L & 1 \end{pmatrix} \qquad \epsilon_L \approx 0.1$$

First sign of violation in 33 entry: η_{33}

33 entry:
$$\eta_{33} \approx \left| \frac{m_D^3}{m_R^3} \right|^2 \sim \left| \frac{100 \text{ GeV}}{2 \text{ TeV}} \right|^2 = 2.5 \times 10^{-3}$$

$$\eta_{33}^{\exp} < 5.3 \times 10^{-3}$$
 (90 % C.L.)

[Antusch, Fischer, 1407.6607]

A 5D model that...

 \star Explains/Justifies the flavor hierarchies from a multi-scale origin

- \star Reduces to 4321 (U_1 UV completion) at low energies
- \star Stabilizes the Higgs hierarchy (Higgs as a pNGB)

[JFM, Isidori, Lizana, Selimović, Stefanek, 2203.01952]

A 5D UV completion of 4321

[JF, Isidori, Pagès, Stefanek, <u>2012.10492</u> JF, Isidori, Lizana, Selimovic, Stefanek, <u>2203.01952</u>]

Attempt to construct a full theory of flavor by embedding the 4321 group in a compact warped extra dimension (AdS_5) with multiple four-dimensional branes

Flavor ←→ fermion (quasi-)localization in each of the branes [Dvali, Shifman, <u>'00;</u> Panico, Pomarol, <u>1603.06609</u>]

$$y_{ij} \approx y_t e^{-k(L-\ell_j)} e^{-k(c_i - 1/2)(y_i - \ell_j)}$$

k : Curvature of the AdS slice

Same dynamics that breaks 4321 also generates a pNGB Higgs \leftrightarrow stabilization of the EW hierarchy with an $\mathcal{O}(0.1\%)$ tuning (little hierarchy)

Anarchic neutrino masses via inverse see-saw mechanism

Gauge sector

Quark-lepton unification of light families

Fermion and scalar sector

[JFM, Isidori, Pages, Stefanek, 2012.10492]

Top Yukawa

Field	$SU(4)_h$	$SU(4)_l$	SO(5)	$\Psi^3 - \begin{bmatrix} q \\ t \end{bmatrix}$	$L SU(2)_L$	Top Yukawa from $\overline{\mathbf{W}}^3 \wedge \mathbf{W}^3$ coupling
Ψ^3	4	1	4		$\left\{ \begin{array}{c} R \\ \times \end{array} \right\} SU(2)_R$	in the bulk

$$y_t = \frac{g_*}{2\sqrt{2}} P(M_{\Psi^3})$$
 $(g_*^2 = g_5^2 k)$ For $y_t : g_* \ge 2.2$

Light-heavy mixing

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^3, \Psi^3_d, \mathcal{X}^{(\prime)}$	4	1	4
$\Psi^j, \Psi^j_{u,d}$	1	4	4

Mass mixing of light families with VLF and light-3rd family Yukawas from masses in the IR brane

$$y_{f_1 f_2} = \frac{g_*}{2\sqrt{2}} (\tilde{M}^L - \tilde{M}^R) \times \text{(profile suppression)}$$

Light Yukawas

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
$\Psi^j, \Psi^j_{u,d}$	1	4	4
\sum	1	1	5

 $\Sigma^T \sim (H' \phi)$ takes a VEV along the singlet direction and propagates the breaking of SO(5) into the bulk

Extension to Planck and Cosmological Signatures

[Greljo, Opferkuch, Stefanek, 1910.02014; JFM, Isidori, Lizana, Selimovic, Stefanek, 2203.01952]]

Conclusions

The flavor puzzle and the hierarchy problem, when considered together, point to a multi-scale picture with the first NP threshold around the TeV

A flavor non-universal 4321 gauge theory provides a consistent framework for third-family quarklepton unification at the TeV scale. This model can explain the B-anomalies, while retaining a flavor structure consistent with the Yukawas and the multi-scale picture

This UV solution can be justified from a multi-brane extra-dimensional construction where the Higgs emerges as a pNGB from the same strong dynamics that breaks 4321

Inverse see-saw and third-family PS unification

 μ generated dynamically by singlet scalar Φ_i breaking spontaneously $U(1)_F \leftarrow$ fermion number

The 5D model

[JFM, Isidori, Lizana, Selimovic, Stefanek, 2203.01952]

Higgs Potential

$$V(h) = \sum_{r} \frac{N_r}{16\pi^2} \int_0^\infty dp \, p^3 \log\left[\rho_r(-p^2)\right]$$

Field	$SU(4)_h$	$SU(4)_l$	SO(5)
Ψ^3	4	1	4
Σ	1	1	5
Ω	1	4	4

$$V(h) \approx \alpha(h) \cos\left(\frac{h}{f}\right) - \beta(h) \sin^2\left(\frac{h}{f}\right)$$

$$\underbrace{\text{VEV}:}_{\Omega} \approx (\tilde{M}_{\Omega}^{R} - \tilde{M}_{\Omega}^{L}) \Lambda_{\text{IR}}^{2} \langle \Omega_{\text{IR}} \rangle^{2} \qquad \qquad \beta_{\Sigma} \approx \frac{1}{2} (\tilde{M}_{H'} - \tilde{M}_{S}) \frac{\Lambda_{\text{IR}}^{2}}{(kL)^{2}} \langle \Sigma_{\text{IR}} \rangle^{2} \\
 \alpha_{\Psi^{3}}(h) \approx \frac{3N_{c}f^{4}}{32\pi^{2}} \zeta(3) y_{t}^{2} g_{*}^{2} - 2\beta_{\Psi^{3}}(h) \qquad \qquad \beta_{\Psi^{3}}(h) \approx \frac{N_{c}f^{4}}{16\pi^{2}} y_{t}^{4} \left[\gamma + \log \frac{\Lambda_{\text{IR}}^{2}}{m_{t}^{2}(h)} \right] \\
 \cos(\langle h \rangle / f) = -\frac{\alpha}{2\beta} \qquad \qquad \beta_{\text{EW}} \approx -\frac{9f^{4}}{512\pi^{2}} g_{*}^{2} \zeta(3) \left(3g_{L}^{2} + g_{Y}^{2} \right)$$

[JF, Isidori, Lizana, Selimovic, Stefanek, 2203.01952]

Low-energy phenomenology

- Below KK scale, same phenomenology as 4321 (B-anomalies)
- Main experimental limit coming from coloron direct searches:

[JF, Isidori, Lizana, Selimovic, Stefanek, 2203.01952]