

Neutrino Physics Introduction

Mu-Chun Chen, University of California at Irvine

Neutrino Physics Post-1998

1998: evidence for neutrino mass from SuperK $(V_{\mu} \rightarrow V_{\tau})$

first solid evidence of beyond the Standard Model Physics

Massive Neutrinos

- 2002: evidence for neutrino mass from SNO ($V_e \rightarrow V_{\mu,\tau}$)
- 2003: KamLand confirmed Large Mixing Angle solution to solar V problem
- 2011: hints for non-zero θ_{13} from T2K, MINOS, and Double Chooz
- 2012: evidences of non-zero θ_{13} from Daya Bay and RENO

for some parameters: discovery phase into precision phase; and yet, many great discoveries to come

Neutrino Oscillation \Rightarrow Massive Neutrinos

- Neutrino Masses are non-degenerate (at least two are non-zero)
 - mass eigenstates ≠ weak eigenstates
- Accidental symmetries in SM
 - Broken lepton flavor numbers: L_e , L_μ , L_τ
 - Processes cross family lines in lepton sector now possible
 - As a result
 - neutrino oscillation
 - lepton flavor violation decays?

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be a mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: V_e , V_{μ} , V_{τ}

- mass eigenstates: V₁, V₂, V₃
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

Maki, Nakagawa, Sakata, 1962; Pontecorvo, 1967

$$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix}$$
 3 mixing angles
$$\boldsymbol{U}_{\text{pMNS}} = \boldsymbol{V}_{e,L}^{\dagger} \boldsymbol{V}_{\nu,L}$$
 3 mixing angles
$$\boldsymbol{U}_{\text{phase(s) for Dirac (Majorana)}}$$
 Dirac (Majorana)

$$U_{_{\mathsf{PMNS}}} = V_{e,L}^\dagger V_{
u,L}$$

Dirac (Majorana) neutrinos

Leptonic Mixing Matrix

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

$$U_{\text{PMNS}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{a} & s_{a} \\ 0 & -s_{a} & c_{a} \end{bmatrix} \begin{bmatrix} c_{\chi} & 0 & s_{\chi}e^{-i\delta} \\ o & 1 & 0 \\ -s_{\chi}e^{i\delta} & 0 & c_{\chi} \end{bmatrix} \begin{bmatrix} c_{S} & s_{S} & 0 \\ -s_{S} & c_{S} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & O & 0 \\ 0 & e^{i\left(\frac{1}{2}\phi_{12}\right)} & 0 \\ 0 & e^{i\left(\frac{1}{2}\phi_{13} + \delta\right)} \end{bmatrix}$$
atm
reactor
solar
Majorana phases

- three mixing angles: $c_a,\ c_s,\ c_x$
- three CP phases (if Majorana): δ , ϕ_{12} , ϕ_{13}
 - 1 CP phase (if Dirac): δ
- Oscillation experiments: sensitive only to δ

Neutrino Oscillation: Macroscopic Quantum Mechanics

- production: neutrinos of a definite flavor produced by weak interaction
- propagation: neutrinos evolve according to their masses
- detection: neutrinos of a different flavor composition detected

$$P[\nu_{\mu} \rightarrow \nu_{e}] = \sin^{2} 2\theta \sin^{2} \left[1.27 \Delta m_{32}^{2} \left(\frac{(\text{eV})^{2}}{c^{2}} \right) \frac{L(\text{km})}{E(\text{GeV})} \right]$$

Classes of Experiments

Oscillation Experiments:

Atmospheric, solar, reactor, accelerator neutrinos

- mass ordering, CP phases,
 precision measurements
- Searches for BSM physics

Weak Decay Kinematics:

- Absolute mass scale
- Precision cosmology

Neutrino cross sections, $CE\nu NS$:

- Interpretation of data
- BSM

Neutrinoless Double Beta Decay:

- Majorana vs Dirac

Astrophysical Neutrinos:

SN, GRBs, AGNs, mergers

Possible BSM physics

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205

e-Print: arXiv:1910.11878 [astro-ph.HE] I PDF

[Slide Curtesy: Kate Scholberg, Snowmass CSS 2022]

[Photo credit: Astroparticle Physics - DESY]

Neutrinos as messengers

IceCube: Talk by Juan Pablo Yanez

Where Do We Stand?

• Latest 3 neutrino global analysis:

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT), 2111.03086

		Normal Ordering (Best Fit)		Inverted Ordering ($\Delta \chi^2 = 7.0$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.45^{+0.77}_{-0.75}$	$31.27 \rightarrow 35.87$	$33.45^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.450^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$
	$\theta_{23}/^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0_{-1.3}^{+0.9}$	$39.8 \rightarrow 51.6$
	$\sin^2 \theta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \rightarrow 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \rightarrow 0.02457$
	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61^{+0.14}_{-0.12}$	$8.24 \rightarrow 9.02$
	$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3}~\text{eV}^2}$	$+2.510^{+0.027}_{-0.027}000000000000000000000000000000000000$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$

- ⇒ hints of θ_{23} ≠ $\pi/4$
- ightharpoonup expectation of Dirac CP phase δ
- → slight preference for normal mass ordering

Neutrino Mass Measurements

- search for absolute mass scale:
 - ullet end point kinematic of tritium beta decays $\operatorname{Tritium} o He^3 + e^- + \overline{
 u}_e$

$$m_{\mathcal{V}_e} < 2.2 \text{ eV } (95\% \text{ CL})$$
 Mainz $m_{\mathcal{V}_{\mu}} < 170 \text{ keV}$ $m_{\mathcal{V}_{\tau}} < 15.5 \text{ MeV}$

KATRIN: current limit $\sim 0.8~\text{eV}$ Future sensitivity $\sim 0.2~\text{eV}$

Other ideas: Project 8, ECHO, Holmes

• neutrinoless double beta decay

current bound:
$$|\langle m \rangle| \equiv \left| \sum_{i=1,2,3} m_i U_{ie}^2 \right| <$$
 (0.061-0.165) eV (Kamland-Zen, 2016)

• Cosmology $\Sigma(m_{\nu_i}) < 0.12 \text{ eV}$

 N_{eff} = 2.99 \pm 0.17 [Planck 2018] \Rightarrow fully thermalized sterile neutrino disfavored

How are masses ordered?

The known knowns:

normal hierarchy:

inverted hierarchy:

The Known Knowns

NuFIT (2022)

 $[\Theta^{lep}_{23} \sim 42^{\circ}]$

 $[\Theta^{\text{lep}}_{12} \sim 33^{\circ}]$

 $[\Theta^{lep}_{13} \sim 9^{\circ}]$

Open Questions - Neutrino Properties

- © CP violation in lepton sector?
- $^{\odot}$ Mass ordering: sign of (Δm_{13}^2)?
- Precision: $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$?

CP Violation in Neutrino Oscillation

- With leptonic Dirac CP phase $\delta \neq 0 \Rightarrow$ leptonic CP violation
- Predict different transition probabilities for neutrinos and antineutrinos

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}})$$

 One of the major scientific goals at current and planned neutrino experiments

Hyper-Kamiokande

DUNE

Experimental Precision: Oscillation Parameters

NoVA: Talk by Ashley Back

T2K: Talk by Alexander Izmaylov

DUNE: Talk by Pip Hamilton

Hyper-K: Talk by Stephane Zsoldos

JUNO: Talk by Giuseppe Andronico

Neutrino Interactions

CC DIS

MicroBooNE: Talk by Melissa Uchida

@GeV: Needed to understand oscillation data

SND@CERN: Talk by Albert De Roeck

(TeV) Neutrinos at LHC

Some Anomalies are more anomalous than others.

Neutrino Anomalies

Neutrinos Travel Faster Than Light, According to One Experiment

Others doubt the mind-boggling claim, which would overturn Einstein's theory of special relativity

22 SEP 2011 · BY ADRIAN CHO (Science)

Common origin of superluminal neutrinos and DAMA annual modulation Multiple Lorentz Groups - A Toy Model for Superluminal Muon Neutrinos domain v Superluminal neutring ight, According Superluminal Neutrinos in the Minimal Standard Model Extension Experiment Cthers doubt the m awould overturn Einstein's theory of special relativ

Superluminal Neutrinos without Revolution Tachyonic neutrinos and the neutrino mas

Common origin

Multipl

Once Again, Physicists Debunk Faster-Than-Light **Neutrinos**

Five different groups agree that the elusive particles obey Einstein's speed limit after all

8 JUN 2012 · BY ADRIAN CHO (Science)

Superluminal Neutrinos in the Minimal Standard Model Extension Ctners doubt the m Einstein's theory of special

Superluminal Neutrinos Without Revolution Tachyonic neutrinos and the neutrino mas

Neutrino Anomalies

Measurements at < km disagree with state-of-the-art neutrino predictions

Neutrino Anomalies

reactor flux anomaly resolved with new input data to flux calculation

reactor spectra is there really an anomaly?

gallium anomaly unresolved, recently reinforced

unresolved

MiniBooNE unresolved

[Slide Curtesy: Joachim Kopp @ Neutrino 2022]

Are there sterile neutrinos?

reactor spectra

is there really an anomaly?

gallium anomaly unresolved, recently reinforced

LSND unresolved

[Slide Curtesy: Joachim Kopp @ Neutrino 20221

New neutrino mass states (eV)?

Sterile neutrinos

DANSS: Talk by Eduard Samigullin

MicroBooNE: Talk by Melissa Uchida

IceCube: Talk by Juan **Pablo Yanez**

(NoVA: Talk by Ashley Back)

Are Neutrinos their Own Antiparticles?

Two-neutrino double- β decay

Maria Goeppert-Mayer, 1935

LN conserved

$$(A,Z) \rightarrow (A,Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$$

First observed in 1987

Neutrinoless double- β decay

Wendell Furry, 1939

$$\Delta L = 2$$
 $(A, Z) \to (A, Z + 2) + e^{-} + e^{-}$

Required massive Majorana neutrinos;

Not yet observed

$|m_{etaeta}| = \left|\sum_{k=1}^4 U_{ek}^2 m_k ight|$

Neutrinoless Double Beta Decay

3ν : IO fully covered by 2035

4ν : NO can be probed

Open Questions - Neutrino Properties

- Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- $^{\odot}$ Mass ordering: sign of (Δm_{13}^2) ?
- Sterile neutrino(s)?
- Precision: $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$?
- Additional Neutrino Interactions?

a suite of current and upcoming experiments to address these puzzles To understand some of these properties

⇒ BSM Physics

Smallness of neutrino mass:

$$m_V \ll m_{e, u, d}$$

Flavor structure:

quark mixing

leptonic mixing

Flavor structure:

quark mixing

leptonic mixing

weak interaction eigenstates

mass eigenstates

Smallness of neutrino mass:

$$m_V \ll m_{e, u, d}$$

Fermion mass and hierarchy problem → Many free parameters in the Yukawa sector of SM

Flavor structure:

leptonic mixing

quark mixing

Why Should We Care?

- Understanding a wealth of data, fundamentally
- SM flavor sector: no understanding of significant fraction (22/28) of SM parameters; (c.f. SM gauge sector)
- Neutrinos as window into BSM physics
 - neutrino mass generation unknown (suppression mechanism, scale)
 - Uniqueness of neutrino masses → connections w/ NP frameworks
- Neutrinos affords opportunities for new explorations
 - New Tools
 - May address other puzzles in particle physics
 - Window into early Universe
 - UV connection e.g. modular symmetries: Talk by Michael Ratz

e.g. stability of Dark Matter: Talk by Ricardo Cepedello

Smallness of neutrino masses

What is the operator for neutrino mass generation?

- Majorana vs Dirac
- scale of the operator
- suppression mechanism

Neutrino Mass beyond the SM

• SM: effective low energy theory

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \boxed{rac{\mathcal{O}_{5D}}{M} + rac{\mathcal{O}_{6D}}{M^2} + ...}$$
 new physics effects

• only one dim-5 operator: most sensitive to high scale physics

$$rac{\lambda_{ij}}{M}HHL_iL_j \quad \Rightarrow \quad m_
u = \lambda_{ij}rac{v^2}{M}$$
 Weinberg, 1979

- m_v ~ $(\Delta m^2_{atm})^{1/2}$ ~ 0.1 eV with v ~ 100 GeV, λ ~ O(1) \Rightarrow M ~ 10¹⁴ GeV
- Lepton number violation $\Delta L = 2 \Rightarrow Majorana$ fermions

Neutrino Mass beyond the SM

3 possible portals

Type-I seesaw

 N_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;

Type-II seesaw

 Δ : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,2)

Lazarides, 1980; Mohapatra, Senjanovic, 1980

Type-III seesaw

$$\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$$

 Σ_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,0)

Foot, Lew, He, Joshi, 1989; Ma, 1998

Why are neutrinos light? (Type-I) Seesaw Mechanism

Adding the right-handed neutrinos:

$$(v_L \quad v_R) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} v_L \\ v_R \end{pmatrix}$$

$$m_{m v} \sim m_{light} \sim rac{m_D^2}{M_R} << m_D$$
 $m_{heavy} \sim M_R$

For
$$m_{V_3} \sim \sqrt{\Delta m_{atm}^2}$$
If $m_D \sim m_t \sim 180 \; GeV$

Grand Unification Naturally Accommodates Seesaw

- $^{\odot}$ origin of the heavy scale \Rightarrow U(1)_{B-L}
- exotic mediators ⇒ predicted in many GUT theories, e.g. SO(10)

```
16 = (3, 2, 1/6) \sim \begin{cases} u & u & u \\ d & d & d \end{cases}
+ (3^*, 1, -2/3) \sim (u^c & u^c & u^c)
+ (3^*, 1, 1/3) \sim (d^c & d^c & d^c)
+ (1, 2, -1/2) \sim \begin{cases} v \\ e \end{cases}
+ (1, 1, 1) \sim e^c
+ (1, 1, 0) \sim v^c
```

GUT predicts proton decay

$$\Delta(B-L)=0$$

X: exotic heavy force carriers

$$au_p \propto M_X^4$$

SUSY GUTs: additional contributions mediated by superpartners

 $ilde{H}$: color-triplet Higgsinos

$$au_p \propto M_{ ilde{H}}^2$$

3σ discovery potential

 $p \rightarrow e^+ \pi^0$

[M. Miura @ ICISE 2021]

3σ discovery potential

$$p \rightarrow v K^+$$

[M. Miura @ ICISE 2021]

Neutrino Mass beyond the SM

3 possible portals

Type-I seesaw

 N_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;

Type-II seesaw

 Δ : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,2)

Lazarides, 1980; Mohapatra, Senjanovic, 1980

Type-III seesaw

$$\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$$

 Σ_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,0)

Foot, Lew, He, Joshi, 1989; Ma, 1998

Low Scale Seesaws

 $m_{v} \sim (\Delta m^{2}_{atm})^{1/2} \sim 0.1$ eV with $v \sim 100$ GeV, $\lambda \sim 10^{-6}$ $\Rightarrow M \sim 10^{2}$ GeV

New particles:

- · Type I seesaw: generally decouple from collider experiments
- Type II seesaw: $\Delta^{++}
 ightarrow e^+ e^+$, $\mu^+ \mu^+$, $au^+ au^+$
- Type III seesaw: observable displaced vertex, dark matter candidate
- · inverse seesaw: non-unitarity effects
- radiative mass generation: model dependent singly/doubly charged
 SU(2) singlet, even colored scalars in loops, dark matter candidate

New interactions:

- LR symmetric model: W_R
- R parity violation: $\tan^2 \theta_{\rm atm} \simeq \frac{BR(\tilde{\chi}_1^0 \to \mu^\pm W^\mp)}{BR(\tilde{\chi}_1^0 \to \tau^\pm W^\mp)}$

Cautions!!! Is it really the v_R in Type I seesaw?

RH neutrino production thru active-sterile mixing:

$$\propto V = \frac{m_D}{M_B} \sim \frac{10^{-4} \text{ GeV}}{100 \text{ GeV}} = 10^{-6}$$

RH neutrino relevant for v mass generation

$$|V_{\mu N}|^2 = 10^{-12}$$

unless extremely fine-tuned

Higher Dimensional Neutrino Masses

$$m_
u \propto \epsilon \cdot \left(rac{1}{16\pi^2}
ight)^n \cdot \left(rac{v}{\Lambda}
ight)^{d-5} \cdot rac{v^2}{\Lambda}$$

Babu, Leung (2001); de Gouvea, Jenkins (2007);

e.g. at dim-7, 1-loop

$$O_1' = LLHH(H^{\dagger}H)$$

For an excellent review on Radiative Neutrino Mass Generation: Cai, Herrero-García, Schmidt, Vincente, Volkas, 1706.08524

Anamiati, Castillo-Felisola, Fonseca, Helo, Hirsch (2019)

Higher Dimensional Neutrino Masses

$$m_
u \propto \epsilon \cdot \left(rac{1}{16\pi^2}
ight)^n \cdot \left(rac{v}{\Lambda}
ight)^{d-5} \cdot rac{v^2}{\Lambda}$$

Babu, Leung (2001); de Gouvea, Jenkins (2007);

e.g. at dim-7, 1-loop

$$O_1' = LLHH(H^{\dagger}H)$$

For an excellent review on Radiative Neutrino Mass Generation: Cai, Herrero-García, Schmidt, Vincente, Volkas, 1706.08524

Need a lot of work to have realistic mixing

What if neutrinos are Dirac?

Small Masses - Dirac Neutrinos

Randall-Sundrum warped extra dimensions

$$\psi_{(0)} \sim e^{(1/2-c)ky}$$

SM (us)

Grossman, Neubert (2000); Huber, Shafi (2001)

Radiative Mass Generation

Cheng, Li (1978);

Figure from Babu, He (1988);

For clarifications of radiative Dirac neutrino mass generation: see e.g. Farzan, Pascoli, Schmidt (2012)

Clockwork Seesaw Mechanism

S.C. Park, C.S. Shin (2017); Hong, Kurup, Perelstein (2019); Babu, Saad (2020) ...

Figure from Babu, Saad (2020)

SUSY Breaking

Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (2001)

$$Y_{\nu} \sim \frac{m_{3/2}}{M_{\rm P}} \sim \frac{\mu}{M_{\rm P}}$$

Flavor structure anarchy symmetry VS

- there are no parametrically small
 numbers
 Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003);
- large mixing angle, near mass degeneracy statistically preferred
- UV theory prediction can resemble anarchy
 - · warped extra dimensions
 - heterotic string models: O(100) RH
 neutrinos
 Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez, Ratz (2007)

 statistical expectations with large N (= # of RH neutrinos)

Feldstein, Klemm (2012)

 m_{ν} ~

Flavor Structure from Symmetries

Grand Unified Theories: GUT symmetry

Quarks → Leptons

Family Symmetry:

[Figure Credit: arXiv:1301.1340]

e-family → muon-family → tau-family

Symmetry Relations

Symmetry ⇒ relations among parameters

⇒ reduction in number of fundamental parameters

Symmetry Relations

Symmetry ⇒ relations among parameters

⇒ reduction in number of fundamental parameters

Symmetry ⇒ experimentally testable correlations among physical observables

Testing Symmetry Relations ⇒ Precision

Symmetry ⇒ experimentally testable correlations among physical observables

Testing correlations ⇒ Precision

Non-Abelian Discrete Flavor Symmetries

- Large neutrino mixing motivates discrete flavor symmetries
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - ∆27
 - Q₆
 - •

[Eligio Lisi for NOW2008]

Tri-bimaximal Neutrino Mixing

Latest Global Fit (3σ)

$$\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626)$$

$$\sin^2 \theta_{12} = 0.308 \ (0.259 - 0.359)$$

$$\sin^2 \theta_{13} = 0.0234 \ (0.0176 - 0.0295)$$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

$$[\Theta^{lep}_{23} \sim 49.2^{\circ}]$$

$$[\Theta^{lep}_{12} \sim 33.4^{\circ}]$$

$$[\Theta^{lep}_{13} \sim 8.57^{\circ}]$$

Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix} \qquad \sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3 \\ \sin \theta_{13, \text{TBM}} = 0.$$

$$\sin^2 \theta_{\text{atm, TBM}} = 1/2$$
 $\sin^2 \theta_{\odot, \text{TBM}} = 1/3$ $\sin \theta_{13, \text{TBM}} = 0$.

Neutrino Mass Matrix from A4

Imposing A4 flavor symmetry on the Lagrangian

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); Altarelli, Feruglio (2005)

A4 spontaneously broken by flavon fields

$$M_{
u} = rac{\lambda v^2}{M_x} \left(egin{array}{cccc} 2\xi_0 + u & -\xi_0 & -\xi_0 \ -\xi_0 & 2\xi_0 & u - \xi_0 \ -\xi_0 & u - \xi_0 & 2\xi_0 \end{array}
ight) \hspace{1cm} ext{relative strengths} \
ightarrow ext{CG's}$$

2 free parameters

 always diagonalized by TBM matrix, independent of the two free parameters

$$U_{
m TBM} = \left(egin{array}{cccc} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{array}
ight)$$
 Angl

Neutrino Mixing Angles from Group Theory

Modular Flavor Symmetries

- Extra dimensional origin of non-Abelian discrete symmetries
- Modular symmetries Altarelli, Feruglio (2005); Feruglio (2017),
 - Inspired by string theories
 - ullet Imposing modular invariance Y=Y(au)
 - Highly predictive models

A Toy Modular A₄ Model

Feruglio (2017)

• Weinberg Operator
$$\mathscr{W}_{v} = \frac{1}{\Lambda} [(H_{u} \cdot L) \ Y \ (H_{u} \cdot L)]_{1}$$

- Traditional A4 Flavor Symmetry
 - Yukawa Coupling Y → Flavon VEVs (A₄ triplet, 6 real parameters)

$$Y \to \langle \phi \rangle = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \implies m_v = \frac{v_u^2}{\Lambda} \begin{pmatrix} 2a & -c & -b \\ -c & 2b & -a \\ -b & -a & 2c \end{pmatrix}$$

- Modular A4 Flavor Symmetry
 - Yukawa Coupling Y → Modular Forms (A4 triplet, 2 real parameters)

$$Y \to \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} \implies m_v = \frac{v_u^2}{\Lambda} \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

A Toy Modular A₄ Model

Feruglio (2017)

• Input Parameters:

$$\tau = 0.0111 + 0.9946i$$

$$v_u^2/\Lambda$$

Predictions:

$$\begin{split} \frac{\Delta m_{sol}^2}{|\Delta m_{atm}^2|} &= 0.0292 \\ \sin^2\theta_{12} &= 0.295 & \sin^2\theta_{13} = 0.0447 & \sin^2\theta_{23} = 0.651 \\ \frac{\delta_{CP}}{\pi} &= 1.55 & \frac{\alpha_{21}}{\pi} = 0.22 & \frac{\alpha_{31}}{\pi} = 1.80 \quad . \end{split}$$

$$m_1 = 4.998 \times 10^{-2} \ eV$$
 $m_2 = 5.071 \times 10^{-2} \ eV$ $m_3 = 7.338 \times 10^{-4} \ eV$

$$m_2 = 5.071 \times 10^{-2} \ eV$$

$$m_3 = 7.338 \times 10^{-4} \ eV$$

Modular Invariance Beyond Neutrino Flavor

Precision

Experimental Precision

Precision of Theory Predictions

Are precision in model predictions compatible with experimental precision?

Talk by Michael Ratz

Figure from Song, Li, Argüelles, Bustamante, Vincent (2020)

CP Violation

Origin of CP Violation

CP violation
 ⇔ complex mass matrices

$$\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y

- Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients

CG coefficients in non-Abelian discrete symmetries

⇒ relative strengths and phases in entries of Yukawa matrices

⇒ mixing angles and phases (and mass hierarchy)

Group Theoretical Origin of CP Violation

Basic idea

Discrete symmetry **G**

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

- if Z_3 symmetric $\Rightarrow \langle \Delta_1 \rangle = \langle \Delta_2 \rangle = \langle \Delta_3 \rangle \equiv \langle \Delta \rangle$ real
- Complex effective mass matrix: phases determined by group theory

C_{ij}^k: complex CG coefficients of **G**

$$M = \begin{pmatrix} C_{11^2} & C_{21^1} \\ C_{12^1} & C_{22^3} \end{pmatrix} Y \langle \Delta \rangle$$

Group Theoretical Origin of CP Violation

L(x)canonical CP automorphism L' (Px) transformation U

M-CC, Mahanthappa (2009); M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs \Rightarrow G and physical CP transformations do not always commute

Outlook

History of the Universe

physics for v mass generation unknown

unique
window into
GUT scale
physics

Outlook

- Fundamental origin of fermion mass & mixing patterns still unknown
 - It took decades to understand the gauge sector of SM
- Uniqueness of Neutrino masses offers exciting opportunities to explore BSM Physics
 - Many NP frameworks; addressing other puzzles
 - Early Universe (baryogengesis thru leptogenesis, non-thermal relic neutrinos)
- New Tools/insights:
 - Non-Abelian Discrete Flavor Symmetries ⇒ origin of CP
 - Deep connection between outer automorphisms and CP
 - Modular Flavor Symmetries
 - Enhanced predictivity of flavor models
 - Possible connection to more fundamental physics

