Lattice QCD for quark flavour physics @ Rencontres du Vietnam Flavour Physics Conference 2022

Shoji Hashimoto (KEK Theory Center/SOKENDAI)

2

Lattice seems like a competitive tool, now

Gavin Salam

Lattice QCD We believe it's the right way to go, because \cdots

- Firm theoretical framework = Quantum Field Theory
- Well-defined theory
 - QCD Lagrangian + path integral quantization
- Universality
 - Renormalizable, the unique continuum theory = QCD
 - Lattice is merely a regularization (irrelevant after taking $a \rightarrow 0$)

$$S = \int d^4x \left\{ \frac{1}{4} \operatorname{Tr} F_{\mu\nu}^2 + \sum_f \overline{\psi}_f (D + m_f) \right\}$$
$$Z = \int [dA_\mu] \prod_f [d\psi] [d\overline{\psi}] \exp[-S]$$

Lattice QCD Limitations need to be understood

- Systematic errors
 - some *easy* quantities.
- Intrinsic limitations
 - (exponentially growing) Noise.
 - severe limits on quantities that can be computed.

- Discretization, finite volume, etc. : main subject of research for

- Euclidean lattice: no on-shell particles, nor energy conservation. Put

This talk

not a comprehensive review

- Resources:
 - PDG review: SH and S. Sharpe (2022 edition)
 - FLAG (Flavour Lattice Averaging Group): http://flag.unibe.ch/2021/
 - World averages (quark masses, decay constants, form factors, etc.)
 - Quality control with well-defined criteria
 - Lattice review talks
 - Kaneko's @ Lattice 2022

5

This talk not a comprehensive review

- Snowmass reports:
 - "Lattice QCD and particle physics," arXiv:2207.07641
 - "A lattice QCD perspective on weak decays of b and c quarks," arXiv:2205.15373
 - "Hadron spectroscopy with lattice QCD," arXiv:2203.03230
 - "Lattice QCD calculations of parton physics," arXiv:2202.07193
 - "Lattice QCD and the computational frontier," arXiv:2204.00039

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Lattice QCD and Particle Physics

Andreas S. Kronfeld,^{1,*} Tanmoy Bhattacharya,^{2,†} Thomas Blum,^{3,4,†} Norman H. Christ,^{5,†} Carleton DeTar,⁶ William Detmold,^{7,*} Robert Edwards,^{8,*} Anna Hasenfratz,^{9,*} Huey-Wen Lin,^{10,†} Swagato Mukherjee,^{11,*} and Konstantinos Orginos^{12,†}

(USQCD Executive Committee)

Richard Brower,^{13,*} Vincenzo Cirigliano,^{14,*} Zohreh Davoudi,^{15,*} Bálint Jóo,^{16,*} Chulwoo Jung,^{11,*} Christoph Lehner,^{11,17,*} Stefan Meinel,^{18,*} Ethan T. Neil,^{9,*} Peter Petreczky,^{11,*} David G. Richards,^{8,*} Alexei Bazavov,^{10,19,†} Simon Catterall,^{20,†} Jozef J. Dudek,^{12,†} Aida X. El-Khadra,^{21,†} Michael Engelhardt,^{22,†} George Fleming,^{23,†} Joel Giedt,^{24,†} Rajan Gupta,^{2,†} Maxwell T. Hansen,^{25,†} Taku Izubuchi,^{11,†} Frithjof Karsch,^{11,26,†} Jack Laiho,^{20,†} Keh-Fei Liu,^{27,†} Aaron S. Meyer,^{28,†} Enrico Rinaldi,^{29,†} Martin Savage,^{30,†} David Schaich,^{31,†} Phiala E. Shanahan,^{7,†} Stephen R. Sharpe,^{30, †} Raza Sufian,^{8, †} Sergey Syritsyn,^{32, †} Ruth S. Van de Water,^{1, †} Michael L. Wagman,^{1,†} Evan Weinberg,^{33,†} Oliver Witzel,^{34,†} Christopher Aubin,³⁵ Shailesh Chandrasekharan,³⁶ Ian C. Cloët,³⁷ Martha Constantinou,³⁸ George T. Fleming,³⁹ Zoltan Fodor,^{40,41,42,43} Sam Foreman,^{44,45} Steven Gottlieb,⁴⁶ Daniel Hoying,¹⁹ William I. Jay,⁴⁷ Xiao-Yong Jin,^{44,45} Henry Lamm,¹ Meifeng Lin,⁴⁸ Yin Lin,⁴⁷ Andrew T. Lytle,²¹ Yannick Meurice,⁴⁹ Christopher Monahan,¹² Ethan T. Neil,⁹ Konstantinos Orginos,^{12,8} James C. Osborn,^{44,45} Sungwoo Park,⁸ James N. Simone,^{50,1} Walter Wilcox,⁵¹ Boram Yoon,⁵² and Yong Zhao³⁷

(USQCD Collaboration)

This talk not a comprehensive review

- Nice reviews, averages may be found as above.
 - Look for your favorite quantities, or ask me (but for limited knowledge)
- Rather, my talk focuses on the *limitations*
 - How do we understand the systematic errors?
 - What can be easily computed? What is (much) more challenging? And, why?

Systematic errors

Discretization effects Fine if taking the continuum limit … trivial?

- Typical size of the discretization effect:
 (a Λ)², with Λ the QCD scale
 - $(a M)^2$, when heavy quark of mass M is involved
 - $(a p)^2$, when external momenta are injected.
- Typical lattice spacing of the present simulations
 - $a^{-1} \sim 2 \sim 4$ GeV; so a rough idea of the error \rightarrow extrapolation

Examples of the "continuum limit" : HVP (window) for muon g-2

Lattice simulations at several values of *a* ; then extrapolate.

ETMC, 2206.15084

B meson decay constant: Is the disc. effect with heavy quarks under control?

Fermilab/MILC, 1712.09262 the most precise f_B to date

Under good control with the help of heavy quark scaling.

Finite volume effects Simple for one particle in a box

Dominant contribution from the lightest particle, i.e. pion. It's loop effect can be estimated using chiral effective theory.

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + m^2} \rightarrow \sum_k \frac{1}{k^2 + m^2}$$

Effects of ~ $exp(-m_{\pi}L)$

BMW (2011)

Finite volume effects More involved with multiple particles

Lüscher's method: FVE behaves as 1/L³. Can be used to extract phase shift.

Phase shift due to interaction

Phase shift converted to the energy shift: a friend, rather than an enemy!

Shift the wavelength to satisfy the BC

interaction

Lüscher's method

Successfully applied for many twobody scatterings.

Extension to the (non-leptonic) decay, such as $K \rightarrow \pi\pi$ (Lellouch-Lüscher 2001)

See, heroic contributions by RBC-UKQCD over years (come back to this later)

Combined effect? So, sometimes tricky

thus induce finite volume effects.

With the staggered ferminon, disc effect distorts the pion spectrum, which may

Another important quantity for NP search Decay rate involving FCNC (B→KII)

HPQCD, 2207.12468

HPQCD, 2207.13371 $B \rightarrow Kll$ differential decay rate

Huge deviation. Clear sign of new physics?

More challenges ahead

Fundamental issue No such thing as energy conservation, on the lattice

We are working on the Euclidean lattice; no real particles exist.

Particle properties from the pole (position, residue, ...)

$$\frac{1}{-i\epsilon} \rightarrow \frac{1}{p^2 + m^2}$$

Use the exponential fall-off, instead

$$\sum_{n} A_n e^{-E_n t} \to A_0 e^{-E_0 t}$$

Only the lowest energy state can be extracted cleanly.

What to do then

Extraction of the non-ground states involves $A_0e^{-E_0t} + A_1e^{-E_1t} + A_2e^{-E_2t} + \cdots$

- Use some elaborate method, such as machine learning??
 - May work for a few lowest states, with very precise data.
 - Often, nearby states are mixed up, making a garbage can.
- Signal-to-noise kills you.
 - Long-distance correlators are exponentially noisy.
 - Good signal only for the single pion. (Even a single nucleon is

$$S_q \sim e^{-(m_\pi/2)|x|}$$

 $S_N \sim e^{-m_N|x|} \ll S_q^3$ A lot of can

challenging.) Multi-particle states are noisy. Finite mom is noisy...

cellations among various components.

$$A_0 e^{-E_0 t} + A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + \cdots$$

Malani-Testa no-go theorem i sea a se a se a se a

No-go theorem Ma Why relevant?

Lattice data (imaginary time)

 $C(t_f, t_i) = \langle \mathcal{O}_{\pi\pi}(t_f) H_W(0) \mathcal{O}_K(t_i) \rangle$

 $\langle \pi(\boldsymbol{p})\pi(-\boldsymbol{p})|H_W|K(\boldsymbol{0})\rangle$

can't be simply obtained. Rather, you get

 $C(t_1, t_2) \overline{\mathbf{0}} \langle \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0}}) \mathcal{T}(\mathbf{\bar{0}}) \rangle \mathcal{T}(\mathbf{\bar{0})) \rangle \mathcal{T}(\mathbf{\bar{0})} \rangle \rangle \mathcal{T}(\mathbf{\bar{0}}) \rangle \rangle \mathcal{$

 $\xrightarrow{?} \langle K | \mathcal{O}_{\text{weak}} | \pi(\mathbf{\hat{p}}) \pi(-\mathbf{\hat{p}}) \rangle + \xrightarrow{?} \langle K | \mathcal{O}_{\text{weak}} | \pi(\mathbf{\hat{p}}) \pi(-\mathbf{\hat{p}}) \rangle + \dots$

Maiani-Testa (1984)

Have to tune the final state energy by

- tuning the lattice volume
- designing (special) boundary conditions,
 so that no 0-momentum state exists

$$A(K^{0} \to \pi^{+}\pi^{-}) = \sqrt{\frac{2}{3}}A_{0}e^{i\delta_{0}} + \sqrt{\frac{1}{3}}A_{2}e^{i\delta_{2}} ,$$

$$K_{A(K^{0}} = \sqrt{\frac{2}{3}}A_{0}e^{i\delta_{0}} - 2\sqrt{\frac{1}{3}}A_{2}e^{i\delta_{2}} . \text{ Ollab. (2004.0944)}$$

0)

quark-line diagrams:

Large noise for I=0

inconsistent with exp't of scattering phase shift Better id of state by adding more Ops

Matrix elements $\langle \pi(\boldsymbol{p})\pi(-\boldsymbol{p})|H_W|K(\boldsymbol{0})\rangle$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$$
$$= 0.00217(26)(62)(50)$$

 $\operatorname{Re}(\epsilon'/\epsilon)_{\mathrm{expt}} = 0.00166(23)$

Back to B→KI What is the problem?

Other than potential systematic errors

- Charm loop is missing
 - Intrinsically (or virtually) multi-body hadronic state, even though the final state is not.
 - Need to select the state of a specified energy at $J_{em}{}^{\mu}$
 - NoGo: Many (lower) energy states exist: B $\rightarrow \psi(\sim 0) \operatorname{K}(\sim 0) \rightarrow \operatorname{ll}(-p) \operatorname{K}(p)$
- An example of larger class of problems that need to disentangle full spectrum of states

Ill-posed problem We want spectral functions

 $A_0 e^{-E_0 t} + A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + \cdots$

No way to extract the rich structure, without infinitely precise data.

Make it more feasible = smeared spectrum

Hansen, Lupo, Tantalo (2019); Bailas, SH, Ishikawa (2020)

Lattice correlator

 $C(t) = \int_{0}^{\infty}$

Spectral function

 $\rho(\omega) \propto \sum \delta(\omega)$

Smeared spectrum

$$^{\infty} d\omega \,\rho(\omega) e^{-\omega t} \qquad \sim \langle 0|J \, e^{-\hat{H}t} \, J|0\rangle$$

$$(\omega - E_X)|\langle X|J|0\rangle|^2 \sim \langle 0|J\delta(\omega - \hat{H})J|0\rangle$$

 $\bar{\rho}_{\Delta}(\omega) = \int_{0}^{\infty} d\omega' S_{\Delta}(\omega, \omega') \rho(\omega) \qquad \sim \langle 0|J S_{\Delta}(\omega, \hat{H}) J|0\rangle$

Approx: $S_{\Delta}(\omega,\hat{H})$ by $e^{-\hat{H}t}$?

Inclusive processes from lattice?

Differential decay rate: $d\Gamma \sim |V_{cb}|^2 l^{\mu\nu} W_{\mu\nu}$

Structure function (or hadronic tensor):

$$W_{\mu\nu} = \sum_{X} (2\pi)^2 \delta^4 (p_B - q - p_X) \frac{1}{2M_B} \langle B(p_B) | J^{\dagger}_{\mu}(0) | X \rangle \langle X | J_{\nu}(0) | B(p_B) \rangle$$

Total decay rate:

$$\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max}^{2}} d\boldsymbol{q} \int_{\sqrt{m_{D}^{2} + \boldsymbol{q}^{2}}}^{m_{B} - \sqrt{\boldsymbol{q}^{2}}} d\omega K(\omega; \boldsymbol{q}^{2}) \langle B(\boldsymbol{0}) | \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega - \hat{H}) \tilde{J}(\boldsymbol{q}) | B(\boldsymbol{0}) \rangle$$

kinematical (phase-space) factor

Gambino, SH (2020)

 $\langle B(\mathbf{0}) | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q};t) \, \delta(\omega - \hat{H}) \, \tilde{J}_{\nu}(\boldsymbol{q};0) | B(\mathbf{0}) \rangle$

Energy integral to be evaluated:

$$\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max}^{2}} d\boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d\omega K(\omega; \boldsymbol{q}^{2})$$

Compton amplitude obtained on the lattice:

$\langle B(\mathbf{0})|\tilde{J}^{\dagger}(-\boldsymbol{q})\delta(\omega-\hat{H})\tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle$

$= \langle B(\mathbf{0}) | \tilde{J}^{\dagger}(-\boldsymbol{q}) K(\hat{H}; \boldsymbol{q}^2) \tilde{J}(\boldsymbol{q}) | B(\mathbf{0}) \rangle$ smeared spectrum!

Approx :

 $K(\hat{H}) = k_0 + k_1 e^{-\hat{H}} + k_2 e^{-2\hat{H}} + \dots + k_N e^{-k_N \hat{H}}$

Inclusive decay rate

- Prototype lattice calculation
 - $B_s \rightarrow Xc$
 - unphysical, i.e. the b quark is lighter than physical.
- Decay rate in each channel
 - VV and AA
 - parallel or perpendicular to the recoil momentum
 - compared to "exclusive"
 - $VV_{||}$ is dominated by $B \rightarrow D$
 - Others are by $B \rightarrow D^*$
- Compared with OPE
 - With inputs from exp't analysis

Gambino et al., 2203.11762

 $X_{VV\parallel}$ differential rate / |**q**| $X_{VV\perp}$ $AA \perp$ $X_{AA\perp}$ $X_{AA\parallel}$ $ar{X}$ [GeV²] $AA \mid$ 0.21.20.6 0.40.81.00.0 \mathbf{q}^2 [GeV²] $\left[\mathrm{GeV}^2\right]$ band from OPE - V-A JLQCD $24\pi^3/\left(|_{\cdot}\right)$ - V-A OPE 0.2 0.6 0.8 0.4 1.0 1.2 0.0 31 $oldsymbol{q}^2 \left[ext{GeV}^2
ight]$

Challenges ahead many interesting processes

- Relevant problems include
 - K $\rightarrow \pi\pi$ (without BC), ... even (too much) harder for B $\rightarrow \pi\pi$
 - Set the energy of ll in $B \rightarrow Kll$
 - D⁰-D⁰bar mixing
 - vN inelastic (or inclusive) scattering cross section

• Only some "smeared" spectrum is accessible (like inclusive). The limit of zero smearing feasible? Detailed studies needed. (e.g. Bulava et al., 2111.12774)

See, Fukaya et al., arXiv:2010.01253

The other flavour physics Neutrino

Immediate contribution: QE nucleon axial form factor

From Meyer, Walker-Loud, Wilkinson, 2201.01839

erratum	

1.00

Inelastic: more challenging:

- Resonance (Δ , etc) contrib.
- $N\pi$ final states
- inclusive

Nuclear effect:

- will need a new framework (in collaboration with NP)

To summarize ···

Lattice QCD for flavour physics matured and infant

- Precision frontier!
 - masses, decay constants, form factors, ... [see FLAG] + g-2
- Under development:
 - Many other interesting quantities. Extracting (or avoiding) a given energy state would be a key.
- Not mentioned:
 - Quantities that need light-cone separation, e.g. PDF or light-cone distribution amplitude. A lot of recent works for PDF (Ji's proposal to approach from space-like); very challenging to achieve precise results.