

SM Precision Measurements of Charm Decays at BESII Vietnam Flavour Physics Conference 2022

Christoph Herold (Suranaree University of Technology, Thailand), August 17, 2022

Beijing Electron-Positron Collider (BEPCII)

Beam energy: 1.0 - 2.3 (2.45) GeV

- 2004: Start of BEPCII upgrade, **BESIII** construction
- since 2009: BESIII physics run

➡1989 - 2004 (BEPC): $L_{\rm peak} = 1.0 \times 10^{31} / {\rm cm}^2 {\rm s}$ Since 2009 (BEPCII): $L_{\rm peak} = 1.0 \times 10^{33} / {\rm cm}^2 {\rm s}$

BESIII Detector

➡ 1.0 T magnetic field (superconducting solenoid) ➡ 93% geometrical acceptance of charged particles and photons

MDC:

- $\sigma_p / p = 0.5 \%$ @ 1.0 GeV
- dE/dx resolution 6% TOF:
- $\sigma_T = 68 \text{ ps (barrel)}$
- $\sigma_T = 60$ ps (end caps) EMC:
- $\Delta E/E = 2.5 \%$ @ 1.0 GeV (barrel)
- $\Delta E/E = 5.0\%$ @ 1.0 GeV (end caps)

D mesons

[Figures from Physics 2020; 49: 499–512]

Charmed Hadrons

 Λ baryon

Charmed Hadrons Near threshold production at BESIII

Advantages of operating near $\psi(3770)$, $\psi(4140)$, $\Lambda_c \overline{\Lambda}_c$ threshold:

- Relatively high cross section for charm production
- $D\bar{D}$, $\Lambda_c\bar{\Lambda}_c$ produced in exclusive two-body channels
- Double-tag technique [Mark III, PRL 56 (1986)]
- $D\overline{D}$, $\Lambda_c\overline{\Lambda}_c$ in quantum-entangled state (S=1, C=-1)

CKM Matrix Testing Ground of the Standard Model

[Figure from wikipedia.org]

- CKM matrix elements are
 - fundamental SM parameters
- Deviation from unitarity: New physics
- At BESIII:
 - Precision measurement of $|V_{cd}|$, $|V_{cs}|$

D-meson decays

Purely leptonic decay

$$\Gamma(D_q^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_q^+}^2}{8\pi} \mid V_{cq} \mid^2 m_{\ell}^2 m_{D_q^+} \left(1 - \frac{m_{\ell}^2}{m_{D_q^+}^2} \right)$$

Decay constant $f_{D_q^+}^2$

Test for lepton flavor universality

[Figures by Hao-Kai Sun, Institute of High Energy Physics, Chinese Academy of Sciences]

Decay channel $D^+_{(s)} \rightarrow \mu^+ \nu_{\mu}$

 $\mathscr{B}(D^+ \to \mu^+ \nu_{\mu}) = (3.71 \pm 0.19_{\text{stat}} \pm 0.06_{\text{sys}}) \times 10^{-4}$ $f_{D^+} |V_{cd}| = (45.75 \pm 1.20_{\text{stat}} \pm 0.39_{\text{sys}}) \text{ MeV}$

[Phys Rev D 89 (2014); 051104]

 $\mathscr{B}(D_s^+ \to \mu^+ \nu_{\mu}) = (5.49 \pm 0.16_{\text{stat}} \pm 0.15_{\text{svs}}) \times 10^{-3}$ $f_{D_s^+} |V_{cs}| = (246.2 \pm 3.6_{\text{stat}} \pm 3.5_{\text{sys}}) \text{ MeV}$

[PRL 122 (2019); 071802]

Decay channel $D^+ \rightarrow \tau^+ \nu_{\tau}$

$$\mathscr{B}(D^+ \to \tau^+ \nu_{\tau}) = (1.20 \pm 0.24)$$
$$R_{\tau/\mu}^{D^+} = \frac{\Gamma(D^+ \to \tau \nu_{\tau})}{\Gamma(D^+ \to \mu \nu_{\mu})} = 3.21 \pm 0.24$$

[PRL 123 (2019); 211802]

Purely leptonic decays of D_s^+

PRD 104 (2021); 052009, $D_s^+ \to \tau \nu_{\tau}, \tau \to \pi \nu$ PRD 104 (2021); 032001, $D_s^+ \to \tau \nu_{\tau}, \tau \to \rho \nu$ PRL 127 (2021); 171801, $D_s^+ \to \tau \nu_{\tau}, \tau \to e \nu \nu$

$$R_{\tau/\mu}^{D_s^+} = \frac{\Gamma(D_s^+ \to \tau \nu_{\tau})}{\Gamma(D_s^+ \to \mu \nu_{\mu})} = 9.67 \pm 0.34$$

[PoS EPS-HEP2021 (2022) 543]

Purely leptonic decays of D_s^+

ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1)	PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat]	247.2±4.1 249.9±0.4 249.9±0.5	F•I •
HFLAV18 CLEO CLEO CLEO BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	EPJC81(2021)226 PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004, $\tau_\rho v$ PRD79(2009)052001, $\tau_\pi v$ PRD82(2010)091103, $\tau_{e,\mu} v$ JHEP09(2013)139, $\tau_{e,\mu,\pi} v$ PRD94(2016)072004, μv PRD79(2009)052001, μv PRD79(2009)052001, μv PRD82(2010)091103, μv JHEP09(2013)139, μv PRD82(2010)091103, μv PRD82(2010)091103, μv PRD104(2021); 052009 PRD 104(2021); 052009 PRD 104(2021); 032001 PRL 127(2021); 171801	254.5 ± 3.2 $251.8\pm11.2\pm5.3$ $257.0\pm13.3\pm5.0$ $277.1\pm17.5\pm4.0$ $244.6\pm8.6\pm12.0$ $261.1\pm4.8\pm7.2$ $245.5\pm17.8\pm5.1$ $256.7\pm10.2\pm4.0$ $264.9\pm8.4\pm7.6$ $248.8\pm6.6\pm4.8$ $253.0\pm3.7\pm3.6$ $249.8\pm3.0\pm3.8$ $249.7\pm6.0\pm4.2$ $251.6\pm5.9\pm4.9$ $251.1\pm2.4\pm3.0$	
0	100 f _{Ds} + [MeV	200 /]	

Purely leptonic decays of D_s^+

· · · · · ·				
CKMFitter	PTEP2020(2020)083C01	0.97320±0.00011		
HFLAV18	EPJC81(2021)226	0.969±0.010		
CLEO	PRD79(2009)052002, $\tau_e v$	$0.981 \pm 0.044 \pm 0.021$	H	
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	$1.001 \pm 0.052 \pm 0.019$	•	÷
CLEO	PRD79(2009)052001, $\tau_{\pi}v$	1.079±0.068±0.016		⊷
BaBar	PRD82(2010)091103, $\tau_{e,\mu}^{}\nu$	$0.953 \pm 0.033 \pm 0.047$	H•	н
Belle	JHEP09(2013)139, $\tau_{e,\mu,\pi}^{\nu}$	$1.017 \pm 0.019 \pm 0.028$		Hell
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020	н	-
CLEO	PRD79(2009)052001, μν	$1.000 \pm 0.040 \pm 0.016$		
BaBar	PRD82(2010)091103, μν	$1.032 \pm 0.033 \pm 0.029$		н
Belle	JHEP09(2013)139, μν	0.969±0.026±0.019	H	н
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	$0.985 \pm 0.014 \pm 0.014$		4
BESIII 6.32 fb⁻¹	PRD 104 (2021); 052009	0.973±0.012±0.015		•
BESIII 6.32 fb⁻¹	PRD 104 (2021); 052009	0.972±0.023±0.016		4
BESIII 6.32 fb⁻¹	PRD 104 (2021); 032001	0.980±0.023±0.019	-	4
BESIII 6.32 fb⁻¹	PRL 127 (2021); 171801	0.978±0.009±0.012		4
	1	1		1

-1

IV_cs

 \mathbf{h}

U

-

CKM matrix element $|V_{cs}|$ From LQCD: $f_{D_s^+} = 249.9 \pm 0.5 \text{ MeV}$

[Eur. Phys. J. C 80, 113 (2020)]

Our combined result: $|V_{cs}| = 0.979 \pm 0.007_{stat} \pm 0.008_{svs}$

[PoS EPS-HEP2021 (2022) 543]

Semi-leptonic decays Recent highlights

• $D^0 \rightarrow \rho^- \mu^+ \nu_\mu$, first measurement [Phys. Rev. D 104 (2021), 091103] • $\frac{\mathscr{B}(D^0 \to \rho^- \mu^+ \nu_\mu)}{\mathscr{B}(D^0 \to \rho^- e^+ \nu_e)} = 0.90 \pm 0.11 \text{ [Phys.Rev.Lett. 122 (2019) 6, 062001]}$

• $\mathscr{B}(D_s^+ \to (f_0(980) \to \pi^0 \pi^0) e^+ \nu_e) = (7.9 \pm 1.4_{\text{stat}} \pm 0.4_{\text{sys}}) \times 10^{-4}$

- $\mathscr{B}(D_s^+ \to (\sigma \to \pi^0 \pi^0) e^+ \nu_{\rho}) < 7.3 \times 10^{-4} \text{ at 90\% C.L.}$
- $\mathscr{B}(D_s^+ \to K_s K_s e^+ \nu_{\rho}) < 7.3 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$

[Phys. Rev. D 105 (2022), L03110]

SM: 0.93 - 0.96

Transition Form Factors

$D^{0} \rightarrow K^{-}l^{+}\nu_{l}, \pi^{-}l^{+}\nu_{l}$ $D^{+} \rightarrow K^{0}l^{+}\nu_{l}, \pi^{0}l^{+}\nu_{l}$

[Phys Rev D 2015; 92: 072012, Phys Rev D 2017; 96: 012002]

Observable	Measurement
$ \frac{\mathcal{B}(D^0 \to K^- e^+ \nu_e)}{ V_{cs} f_+^K(0)} $ $ f_+^K(0) $	$\begin{array}{l}(3.505\pm0.014_{stat}\pm0.033_{syst})\%[30]\\0.7172\pm0.0025_{stat}\pm0.0035_{syst}[30]\\0.7368\pm0.0026_{stat}\pm0.0036_{syst}[30]\end{array}$
$\begin{aligned} \mathcal{B}(D^0 &\to \pi^- e^+ \nu_e) \\ V_{cd} f^{\pi}_+(0) \\ f^{\pi}_+(0) \end{aligned}$	$\begin{array}{l}(0.295\pm0.004_{stat}\pm0.003_{syst})\%[30]\\0.1435\pm0.0018_{stat}\pm0.0009_{syst}[30]\\0.6372\pm0.0080_{stat}\pm0.0044_{syst}[30]\end{array}$
$ \mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e) f_+^K(0) $	$\begin{array}{l}(8.60\pm0.06_{stat}\pm0.15_{syst})\%[\textbf{31}]\\0.725\pm0.004_{stat}\pm0.012_{syst}[\textbf{31}]\end{array}$
$ \mathcal{B}(D^+ \to \pi^0 e^+ \nu_e) $ $ f^{\pi}_+(0) $	$\begin{array}{l}(0.363\pm0.008_{stat}\pm0.005_{syst})\%[\textbf{31}]\\0.622\pm0.012_{stat}\pm0.003_{syst}[\textbf{31}]\end{array}$
$f_{+}^{\pi}(0)/f_{+}^{K}(0)$	0.865 ± 0.013 [31]
$\begin{aligned} \mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) \\ \mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) \\ \mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) / \mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) \end{aligned}$	$\begin{array}{l} (3.63 \pm 0.38_{stat} \pm 0.20_{syst})\% \begin{bmatrix} 33 \\ 349 \pm 0.46_{stat} \pm 0.27_{syst})\% \begin{bmatrix} 34 \\ 34 \end{bmatrix} \\ 0.96 \pm 0.16_{stat} \pm 0.04_{syst} \begin{bmatrix} 34 \end{bmatrix} \end{array}$

$\frac{f_0^{\pi}}{f_0^K} = 0.865 \pm 0.013$, compatible with LQCD

[Eur Phys J C 2020; 80: 113]

```
Prediction/fit
0.747 \pm 0.011 \pm 0.015 [28]
 0.66 \pm 0.02 \pm 0.02 [28]
0.747 \pm 0.011 \pm 0.015 [28]
 0.66 \pm 0.02 \pm 0.02 [28]
     0.84 \pm 0.04 [32]
            \approx 1.0
```

[28] Eur Phys J C 2020; 80: 113
[30] Phys Rev D 2015; 92: 072012
[31] Phys Rev D 2017; 96: 012002
[32] Phys Lett B 2006; 641: 50–6
[33] Phys Rev Lett 2015; 115: 221805
[34] Phys Lett B 2017; 767: 42–7

Λ_c^+ decay First direct measurement of muonic decay

Events/0.010 GeV

Decay
$$\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}$$

 $\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.49 \pm 0.46_{\text{stat}} \pm 0.27_{\text{sys}}) \times$
 $\frac{\mathscr{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu})}{\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)} = 0.96 \pm 0.16_{\text{stat}} \pm 0.04_{\text{sys}}$

Consistent with lepton flavor universality

[Physics Letters B 767 (2017); 42-47]

Λ_c^+ hadronic decays

		Previous world		
Decay channel	BESIII (%)	averages (%) [78]		
Two-body CF				
pK_S^0	$1.52 \pm 0.08 \pm 0.03$ [76]	1.15 ± 0.30		
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$ [76]	1.07 ± 0.28	[76] Phys Rev Lett 2016; 116: 05200	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$ [76]	1.05 ± 0.28		
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$ [76]	1.00 ± 0.34	[01] Dbug Latt D 0010, 700, 000 C	
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$ [76]	2.7 ± 1.0	[81] Phys Lett B 2018; 783: 200–6	
$\Xi^0 K^+$	$0.590 \pm 0.086 \pm 0.039$ [81]	0.50 ± 0.12		
$\Xi(1530)^{0}K^{+}$	$0.502 \pm 0.099 \pm 0.031 [\textcolor{red}{81}]$	0.4 ± 0.1	[82] Chin Phys C 2019; 43: 083002	
$\Sigma^+\eta$	$0.41 \pm 0.19 \pm 0.05$ [82]	0.70 ± 0.23		
$\Sigma^+\eta^\prime$	$1.34 \pm 0.53 \pm 0.19$ [82]	First evidence	[83] Phys Rev D 2019: 99: 032010	
$\Sigma(1385)^+\eta$	$0.91 \pm 0.18 \pm 0.09$ [83]	1.22 ± 0.37		
Neutron-involved			[84] Phys Rev Lett 2017: 118: 112001	
$nK_S^0\pi^+$	$1.82 \pm 0.23 \pm 0.11$ [84]	First observation		
$\Sigma^-\pi^+\pi^+$	$1.81 \pm 0.17 \pm 0.09 [85]$	2.1 ± 0.4	[25] Dhua Latt D 2017, 770, 200 02	
$\Sigma^-\pi^+\pi^+\pi^0$	$2.11 \pm 0.33 \pm 0.14$ [85]	First observation	[05] FIIYS LELL D 2017, 772. 500-55	
SCS			[86] Phys Rev I ett 2016: 117: 232002	
$p\phi$	$0.106 \pm 0.019 \pm 0.014$ [86]	0.082 ± 0.027		
$p\eta$	$0.124 \pm 0.028 \pm 0.010 [\frac{87}{2}]$	First evidence	[87] Phys Rev D 2017; 95: 111102	
$p\pi^0$	<0.027at90%~C.L. [87]	First measurement		
$p\pi^+\pi^-$	$0.391 \pm 0.028 \pm 0.039 [\frac{86}{3}]$	0.35 ± 0.2		
pK^+K^- (non- ϕ)	$0.0547 \pm 0.0130 \pm 0.0074$ [86]	0.035 ± 0.017		

Λ_c^+ decay Singly Cabibbo Suppressed Decay to $n\pi^+$

Decay $\Lambda_c^+ \to n\pi^+$ $\mathscr{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{sys}}) \times 10^{-4}$

$$\frac{\mathscr{B}(\Lambda_c^+ \to n\pi^+)}{\mathscr{B}(\Lambda_c^+ \to p\pi^0)} > 7.2 \text{ at } 90\% \text{ C.L.}$$

$$p\pi^0 \text{ from Belle [PRD 103, 072004 (2021)]}$$

Inconsistent with phenomenological models

[Phys Rev Lett 128 (2022); 142001]

CKM Matrix Elements

- Constraints expected from future data taking plan
 [Chin Phys C 2020; 44: 040001]
- Indirect constraints (from B decays) related to $\mid V_{cd} \mid$, $\mid V_{cs} \mid$ by unitarity
- Direct constraints combine purely leptonic and semi-leptonic $D_{\!(s)}$ decays from BESIII experiment
- Circled region of the global combination corresponds to 68% confidence level

Strong Phase Difference between D_0 , \bar{D}_0

[Chin Phys C 2020; 44: 040001]

- Strong phase differences between CF and DCS
- Input for CP violation phase angle (phase of $V_{\it ub}$)
- Test physics beyond SM

$$\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

- Recent results:
- PHYS. REV. D 101, 112002 (2020): $\bar{D}_0 \to K^0_{S,L} \pi^+ \pi^-$
- PHYS. REV. D 102, 052008 (2020): $\bar{D}_0 \to K^0_{S,L} K^+ K^-$
- JHEP 2021, Article number: 164 (2021):
 - $D \to K^{-}\pi^{+}\pi^{0}, D \to K^{-}\pi^{+}\pi^{+}\pi^{-},$

THANK YOU!