B-physics and CP-violation introductory talk

Roman Zwicky
Edinburgh University

Rencontre de Vietnam, Flavour Conference
14-20 August 2022 - Quy Nhon

Overview

- 1. Introduction

Generalities, CKM fits, anomalies, anarchy vs flavour symmetry

- 2. Dynamics, $\Delta F=1,2$ and topologies
- 3. Kinematics angular distributions
- 4. Dynamics II, IR-matrix elements
- 5. R_{K}-anomaly (testing LFU) ... caveats?
- Conclusions

B-physics (or flavour physics)

strengths

1. many channels \Rightarrow data driven approaches
(longterm future? @ FCC, μ-collider Trifinopoulos's talk)
2 many QFT-applications: RGE \& Wilson coeff. \Rightarrow SMEFT (MIsiak's talk) non-perturbative matrix elements, lattice..
2. many experimental techniques at B-factories (Belle ..), collider (LHCb ...)
\Rightarrow Urquijo's talk Wednesday
3. CP-violation, unique in SM so far but not enough as we know (cf. also neutrinos \Rightarrow Chen's talk Thursday)

- no direct detection (unless low energy model) collider search program model-dependent

weakness

 Fuentes-Martin \& Gori's talks Tuesday \&Friiday[^0]persistent anomalies around since $2014 \ldots$ where?
big topic

..not in the CKM mechanism

Area triangle = strength CP-violation NB: ca 10^{3} below max.

15'
Note: here CKM-fitter also U-fit group

..in partly (un)expected places

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left[B \rightarrow D^{(*)} \tau \nu\right]}{\mathcal{B}\left[B \rightarrow D^{(*)} \ell \nu\right]}
$$

$$
\ell=e, \mu
$$

tree-level

exclusive FCNC's $B \rightarrow K^{(*)} \ell \ell$

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}
$$

Angular Observables (e.g. $A_{\mathrm{FB}}, P_{5}^{\prime}$)

TD-CPV: $B_{s} \rightarrow \phi \gamma$

Lepton Flavour Universality Violation (LFUV) common theme

Fuentes-Martin's talk on Tuesday

New flavour physics and generic flavour structure?

- Anarchic flavour O(1) Wilson coefficients \rightarrow most severe constraints from mixing i.e. $\Delta \mathrm{F}=2$

hadron	discovery	dim-6 operator	bound	$\left.\Lambda_{F V} /\left(10^{3} \mathrm{TeV}\right)\right]$
K_{0}	1964	$(\bar{s} d)_{\mathrm{V}-\mathrm{A}}(\bar{s} d)_{\mathrm{V}-\mathrm{A}}\left(\Lambda_{F V}\right)^{-2}$	1	
$\mathrm{~B}_{0}$	1999	$(\bar{b} d)_{\mathrm{V}-\mathrm{A}}(\bar{b} d)_{\mathrm{V}-\mathrm{A}}$	0.4	
$\mathrm{~B}_{\mathrm{s}}$	2006	$(\bar{b} s)_{\mathrm{V}-\mathrm{A}}(\bar{b} s)_{\mathrm{V}-\mathrm{A}}$	0.07	
D_{0}	2007	$(\bar{c} u)_{\mathrm{V}-\mathrm{A}}(\bar{c} u)_{\mathrm{V}-\mathrm{A}}$	1	

\Rightarrow new flavour better have a structure! (also more likely to explain old one)

- $\boldsymbol{N} . \boldsymbol{B}$. In Lepton sector larger $\Delta \mathrm{F}=1$ even more constraining $\Lambda_{F V}$ higher (since photon does not couple to v)

ABC of Symmetry:
 Flavour Universality (FU) \& Flavour Conservation

- Yukawa $=0$ global symmetry: $G_{F}=U(3)^{5}=G_{q} \times G_{l}, \quad G_{q}=U(3)_{Q} \times U(3) U R \times U(3)_{D R}$

Yukawa $\neq 0$ breaking down: $\quad \mathrm{G}_{\mathrm{q}}=\mathrm{U}(3)_{\mathrm{q}}{ }^{3} \rightarrow \mathrm{U}(1)_{\text {Baryon }}$

- SM: FU-broken : $m_{u} \neq m_{c} \neq m_{t}$ but not couplings $g_{\text {weak }}=g_{u}=g_{c}=g_{t}$

SM: Flavour Violation (FV) by misalignment of Yukawa matrices:

$$
V_{\text {CKM }}=S_{D} S_{U}{ }^{\dagger} \neq 1
$$

(i) charged FV @tree: $b \rightarrow W^{*} c$
(ii) neutral FV @loop (FCNC) $b \rightarrow s \gamma$

Flavour Universality is not a symmetry of the SM

- Yet for leptons: control the breaking in terms of (mainly) kinematic factors.

2.Dynamics I

effective Hamiltonian \& topologies

ABC of Dynamics: Effective Hamiltonian

energy
 (MIsiak's talk)

IR physics (non-perturbative)
decays classified according to final state $X Y Z$

ABC of topologies: $\Delta \mathrm{F}=1$

final type topology
hadron
0 leptonic

1

radiative FCNC

≥ 2 nonleptonic

theory	methods
decay	lattice
constant f_{B}	sum rules (SR)
form	lattice, slow π
factors	LCSR, fast π

factorisation (fast pions)

QCDF: 1/
m_{b} pb: FSI size of Λ / m_{b}

$\mathrm{ABC} \triangle \mathrm{F}=2$ mixing

time-dependent CP-violation

- direct CP-violation $(\Delta F=1,2)$ is observable: $\mathscr{A} \propto\left|A_{1}\right|+\left|A_{2}\right| e^{i \phi_{\text {waek }} e^{i \delta_{\text {strong }}}}$
- $\mathrm{K}_{0}, \mathrm{D}_{0}, \mathrm{~B}_{\mathrm{q}}, \mathrm{B}_{\mathrm{s}}$ antiparticles mix $(\Delta F=2)$ time-dep. CP-violation (\& CPT-tests)

$$
i \frac{d}{d t}\binom{|\bar{D}(t)\rangle}{|\bar{D}(t)\rangle}=\left(M-i \frac{\Gamma}{2}\right)\binom{|\bar{D}(t)\rangle}{|\bar{D}(t)\rangle}
$$

7 - numbers $\xrightarrow{\text { CPT }} 5$ - numbers

$$
\begin{array}{rlr}
M_{\mathrm{L}} & \Delta M & =M_{H}-M_{L} \quad \delta_{\mathrm{CP}}=|p|^{2}-|q|^{2} \\
\Gamma_{\mathrm{L}} & \Delta \Gamma & =\Gamma_{H}-\Gamma_{L}
\end{array}
$$

flavour to mass eigenstate: $\left|D_{H, L}\right\rangle=p\left|D^{0}\right\rangle \mp q\left|\bar{D}^{0}\right\rangle$

- experiment: asymmetric B-factories to detect B_{0}-oscillation (1999) establishes $\Delta F=2 \leftrightarrow(\Delta F=1)^{2}$ (not superweak mechanism Wolfenstein...)
- theory: Operator product expansion, demands computing
$\langle\bar{B}| Q_{i}|B\rangle=f_{B}^{2} m_{B}^{2} f\left(N_{c}\right) B_{Q_{i}}$
"bag"-parameter
....for a set of QCD (or BSM) operators

Hatree-Fock app. (VFH)

$$
\begin{array}{ll}
Q_{1}=\bar{b}_{i} \gamma_{\mu}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}, & \\
Q_{2}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{j}, & Q_{3}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1-\gamma^{5}\right) q_{i}, \\
Q_{4}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{i} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{j}, & Q_{5}=\bar{b}_{i}\left(1-\gamma^{5}\right) q_{j} \bar{b}_{j}\left(1+\gamma^{5}\right) q_{i} .
\end{array}
$$

- Main tool: lattice QCD as matrix element static quantity However, QCD sum rules can also contribute Lenz et al' (new master integrals, progress triggered by LHC-program)

3.Kinematics (general)

angular distributions \& partial waves

microscopic theory

ABC of Kinematics: Angular Distributions

- This talk mostly: $\mathrm{B} \rightarrow \mathrm{V}\left(\rightarrow \mathrm{S}_{1} \mathrm{~S}_{2}\right)$ la lb or $\mathrm{B} \rightarrow \mathrm{Sl}_{\mathrm{a}} \mathrm{lb}_{b}$ (semi-leptonic/radiative)

partial wave
||-(II-pair)

Heff of dim =6 with 10 operators $\quad H^{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{\mathrm{ts}} V_{\substack{* \mathrm{~b} \\ i=V, A, S, P, \mathcal{T}}}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)$.

$$
\left.\begin{array}{ll}
O_{S(P)}=\bar{s}_{L} b \bar{\ell}\left(\gamma_{5}\right) \ell, & O_{V(A)}
\end{array}=\bar{s}_{L} \gamma^{\mu} b \ell \gamma_{\mu}\left(\gamma_{5}\right) \ell\right)
$$

S- and P-wave

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\sum_{m, l_{l}=0 . .2, l_{K}=0 \ldots J_{K}} \underbrace{G_{m}^{l_{k}, l_{l}}}_{\left|\mathcal{A}_{S, P}\right|^{2}} Y_{l_{k}}\left(\theta_{K}, \phi\right) Y_{l_{l}, m}\left(\theta_{l}, 0\right) \underbrace{\substack{\text { som en }}}_{\substack{\text { 12-terms } \\ \text { known for } \\ \text { some time }}}
$$

"Jacob-Wick formalism" for effective theories

... connection to dynamics

$$
\begin{aligned}
& \frac{32 \pi}{3} \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\operatorname{Re}\left[G_{0}^{0,0}\left(q^{2}\right) \Omega_{0}^{0,0}+G_{0}^{0,1}\left(q^{2}\right) \Omega_{0}^{0,1}+G_{0}^{0,2}\left(q^{2}\right) \Omega_{0}^{0,2}+\right. \\
& G_{0}^{2,0}\left(q^{2}\right) \Omega_{0}^{2,0}+G_{0}^{2,1}\left(q^{2}\right) \Omega_{0}^{2,1}+G_{1}^{2,1}\left(q^{2}\right) \Omega_{1}^{2,1}+ \\
& \left.G_{0}^{2,2}\left(q^{2}\right) \Omega_{0}^{2,2}+G_{1}^{2,2}\left(q^{2}\right) \Omega_{2}^{2,2}+G_{2}^{2,2}\left(q^{2}\right) \Omega_{2}^{2,2}\right], \\
& G_{(2}^{2,2} \sim\left(H_{+}^{V} \bar{H}_{-}^{V}+H_{+}^{A} \bar{H}_{-}^{A}-2\left(H_{+}^{T} \bar{H}_{-}^{T}+2 H_{+}^{T_{t}} \bar{H}_{-}^{T_{t}}\right)\right) \\
& \text { Hadronic helicity amplitudes e.g. } \quad H_{\lambda}^{V[A]}=\left\langle\bar{K}^{*}(\lambda)\right| \bar{s} \gamma^{\mu}\left[\gamma_{5}\right] b|\bar{B}\rangle \epsilon^{*}(\lambda)_{\mu}
\end{aligned}
$$

- Pause! Goal find info on microscopic theory

Tools: (1) angular analysis (moments) extract G's
(2) q^{2}-dependence - disentangle short from long-distance physics

4. Dynamics II (IR)-matrix elements

${ }^{-} B_{d} \rightarrow K^{(*)} \ell^{+} \ell^{-} \quad$ as an example

$$
\text { 2-quark: } \bar{s} \Gamma_{1} b \bar{e} \Gamma_{2} \ell \quad \text { 4-quark: } \quad \bar{s} \Gamma_{1} b \bar{c} \Gamma_{2} c
$$

form factor
long distance

- related by $S U(3)_{F}$ to semileptonic $B_{s} \rightarrow \bar{K}^{\left.+{ }^{*}\right)} l^{+} \bar{\nu}$ form factor as no long-distance in semileptonic, can measure ff.

$B \rightarrow K^{*}$ form factors as an example

$q^{2}=$ momentum transfer

- form factor local m-elements (no long distance \Rightarrow nф strong phases)
- number of form factors related group theory

$$
\begin{aligned}
& \left\langle K^{*}(p, \eta)\right| \bar{s} i q_{\nu} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} T_{1}\left(q^{2}\right) \pm P_{2}^{\mu} T_{2}\left(q^{2}\right) \pm P_{3}^{\mu} T_{3}\left(q^{2}\right) \\
& \left\langle K^{*}(p, \eta)\right| \bar{s} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{V}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{V}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{V}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{V}_{P}\left(q^{2}\right)
\end{aligned}
$$

Methods

- low \mathbf{q}^{2} (large recoil) Light-cone sum rules
K^{*}-DA: Bharucha, Straub, RZ '15 (use of eoms - backup) B-DA: Offen, Khodjamirian, Mannel '06
- high \mathbf{q}^{2} (low recoil) lattice Horgan, Meinel, Wingate, Liu'13
- interpolated by z-expansion

Long distance $=$ strong phases

- lattice QCD impossible for B-physics (low energy booming field Hansen,Dudek,.. cf.also Hashimoto's talk)
- perturbative methods such as QCD sum rules can deal with multiparticle production (local duality assumption.. some insight)
- resonance region only dispersion theory can and does work to the extent that parameters are known or can be fitted. K fast: - light-cone methods LCSR, QCDF/SCET

K slow:

- high-q2 "OPE" -endpoint relations
diagnostic shape for charm
"data driven approach"

long-distance brief overview status

skip as no kime

QCDF

1) depends B-meson DA
2) at $1 / \mathrm{mb}_{\mathrm{b}}$ breakdown fac endpoint divergences

$$
\begin{gathered}
1 / \mathrm{m}_{\mathrm{b}} \text { suppressed } \mathrm{O}\left(\mathrm{a}_{\mathrm{s}}\right) \\
\text { accidental? }
\end{gathered}
$$

LCSR

1) depend on spurious momentum and analytic continuation thereof 2) includes photon DA photon DA sizeable Khodjamirian et al'95 Ali Braun'95 Lyon, RZ'13
the $1 / m_{b}$ endpoint divergent

Dimou, Lyon, RZ'12

idem

not done (some work)
various bits done
Ball, Jones, RZ'06,
Khodjamirian et al'10, ..later

Bosch, Buchalla'01
Beneke, Feldman, Seidel'01

5. R_{K} theoretically clean - so it seems

R_{K}-anomaly ..testing LFU

simple idea: hadronic effects are universal, ought to cancel in ratios such as:

$$
R_{H}=\frac{\int \frac{d \Gamma\left(B \rightarrow H \mu^{+} \mu^{-}\right)}{d q^{2}} d q^{2}}{\int \frac{d \Gamma\left(B \rightarrow H e^{+} e^{-}\right)}{d q^{2}} d q^{2}}
$$

Hiller Kruger'03

$$
R_{K}\left[1.1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right]=0.846_{-0.039-0.012}^{+0.042+0.013} \quad \begin{aligned}
& 2-3 \sigma
\end{aligned}
$$

- $R_{K}=1+\Delta_{Q E D}$ as QED does not respect LFU

What could go wrong?

- QED-effects due to (soft)-hard collinear logs $O(\alpha) \ln m_{e} / m_{b} 10[20] \%$ at $q^{2}=0\left[\max q^{2}\right]$ in the point-like approx.
- 1. Structure-dependent effects new hard-collinear logs
- 2. PHOTOS (QED Monte-Carlo) not in harmony with point-like approx.
- 3. Resonances impact on [1.1,6]GeV ${ }^{2}$-bin
- Summary (more detail my talk on Tuesday) .. all positive answers
- For 1 proof using gauge inv. Isidori, Nabeebaccus, RZ 2009.00929
- For 2,3* checked in Isidori, Lancierini, Nabeebaccus, RZ 2205.08635

[^1]
Conclusions \& Summary

- B-physics: well \& alive in long term complementary results from Belle valuable
- Lepton Flavour Universality:

1) QED-safe theory viewpoint
2) experiment? LHCb challenging, but many crosschecks Belle cleaner, hence very valuable
3) further testing with moments interesting as ∞-partial wave... sthg looking into ...

- Far future of B-physics

1) theory: progress possible but takes effort .. "individuality"
2) data-driven approaches are clearly an opportunity especially for FCC or μ-collider

The end as time is up!

Backup

CKM-elements

exclusive

VS inclusive

optical thm \& OPE
$\left|V_{\mathrm{ub}}\right|$
$\left|V_{\mathrm{cb}}\right|$
non-perturbative Input
$B \rightarrow \pi \ell \nu$
$B \rightarrow D \ell \nu$
$\Gamma\left[\left|V\left(q^{2}\right)\right|^{2}, m_{\ell}^{2}\left|S\left(q^{2}\right)\right|^{2}\right]$
$B \rightarrow \rho \ell \nu$
$B \rightarrow D^{*} \ell \nu$ $\Gamma\left[\left|V_{ \pm, 0}\left(q^{2}\right)\right|^{2}, m_{\ell}^{2}\left|S\left(q^{2}\right)\right|^{2}\right]$
$\Lambda_{b} \rightarrow \Lambda \ell \nu$
$b \rightarrow X_{u} \ell \nu \quad b \rightarrow X_{c} \ell \nu$
universal m-elements shape function (model, fit)

- Does (naive) factorisation describe $\mathrm{B} \rightarrow \mathrm{KII}$ data? Answer: no ly

- vac. pol. $\left.\mathbf{h (q ^ { 2 }}\right)$ (for $\left.\mathrm{B}->\mathrm{KII}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow}$ hadrons as for ($\mathrm{g}-\mathrm{C}$

Disc ~ Im[h]; BESII-data'PLB08

our $\chi^{2 / d o f}=1.015$

Beyond naive factorisation

- Can were understand data? Answer: yes
- first principles: Breit-Wigner residues related to amplitudes

$$
\left.\mathcal{A}(B \rightarrow K \ell \ell)\right|_{q^{2} \simeq m_{\Psi}^{2}}=\frac{\mathcal{A}(B \rightarrow \Psi K) \mathcal{A}^{*}(\Psi \rightarrow \ell \ell)}{q^{2}-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}}+. .
$$

Lyon, RZ '14 fit to LHCb data broad charmonium resonances

[^0]: * matter also apply to K,D physics

[^1]: * for 2,3 partial answers (as approximations) in Bordone, Pattori, Isidori'16

