B-physics and CP-violation introductory talk

Roman Zwicky Edinburgh University

Rencontre de Vietnam, Flavour Conference

14-20 August 2022 — Quy Nhon

Overview

1. Introduction

Generalities, CKM fits, anomalies, anarchy vs flavour symmetry

- 2. **Dynamics**, $\Delta F = 1.2$ and topologies
- 3. Kinematics angular distributions
- 4. **Dynamics II**, IR-matrix elements
- 5. R_K-anomaly (testing LFU) ... caveats?
- Conclusions

B-physics (or flavour physics)

strengths

- 1. many channels \Rightarrow data driven approaches (longterm future? @ FCC, μ -collider Trifinopoulos's talk)
- 2 many **QFT-applications**: RGE & Wilson coeff. ⇒ SMEFT (MIsiak's talk) non-perturbative matrix elements, lattice..
- 3. many **experimental techniques** at B-factories (Belle ..), collider (LHCb ...) ⇒ Urquijo's talk Wednesday
- 4. **CP-violation**, unique in SM so far but not enough as we know (cf. also neutrinos ⇒ Chen's talk Thursday)
- no direct detection (unless low energy model)
 collider search program model-dependent
 Fuentes-Martin & Gori's talks Tuesday & Friiday

Weakness

^{*} matter also apply to K,D physics

persistent anomalies around since 2014 ... where?

big topic

..not in the CKM mechanism

Area triangle = strength CP-violation NB: ca 10³ below max.

Note: here CKM-fitter also U-fit group

..in partly (un)expected places

$$R_{D^{(*)}} = \frac{\mathcal{B}[B \to D^{(*)} \tau \nu]}{\mathcal{B}[B \to D^{(*)} \ell \nu]} \quad \ell = e, \mu$$

$$\ell = e, \mu$$

tree-level

$$|V_{
m ub}|_{
m excl}$$
 & global fit $|V_{
m ub}|_{
m incl}$

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)}$$

exclusive FCNC's
$$B \to K^{(*)}ee$$

Angular Observables (e.g. $A_{\rm FB}, P_5'$)

TD-CPV: $B_s \to \phi \gamma$

Lepton Flavour Universality Violation (LFUV) common theme

Fuentes-Martin's talk on Tuesday

New flavour physics and generic flavour structure?

- Anarchic flavour O(1) Wilson coefficients
 - \rightarrow most severe **constraints** from **mixing** i.e. $\Delta F=2$

hadron	discovery	dim-6 operator	bound	$\Lambda_{FV}/(10^3 \text{TeV})$]		
K_0	1964	$(\bar{s}d)_{V-A}(\bar{s}d)_{V-A}(\Lambda_{FV})$	$(-2)^{-2}$	1		
B_0	1999	$(\overline{b}d)_{V-A}(\overline{b}d)_{V-A}$		0.4		
B_s	2006	$(\bar{b}s)_{V-A}(\bar{b}s)_{V-A}$		0.07		
D_0	2007	$(\bar{c}u)_{V-A}(\bar{c}u)_{V-A}$		1		

⇒ new flavour better have a structure! (also more likely to explain old one)

• N.B. In Lepton sector larger $\Delta F=1$ even more constraining Λ_{FV} higher (since photon does not couple to v)

ABC of Symmetry: Flavour Universality (FU) & Flavour Conservation

- Yukawa = 0 global symmetry: $G_F = U(3)^5 = G_q \times G_l$, $G_q = U(3)_Q \times U(3)_{UR} \times U(3)_{DR}$ Yukawa $\neq 0$ breaking down: $G_q = U(3)_q^3 \rightarrow U(1)_{Baryon}$
 - SM: FU-broken: $m_u \neq m_c \neq m_t$ but not couplings $g_{weak} = g_u = g_c = g_t$

SM: Flavour Violation (FV) by misalignment of Yukawa matrices:

$$V_{CKM}=S_DS_U^{\dagger} \neq 1$$

- (i) charged FV @tree: b→W*c
- (ii) neutral FV @loop (FCNC) b→sγ

Flavour Universality is not a symmetry of the SM

Yet for leptons: control the breaking in terms of (mainly) kinematic factors.

2.Dynamics I

effective Hamiltonian & topologies

ABC of Dynamics: Effective Hamiltonian

ABC of topologies: $\Delta F=1$

final topology type hadron **leptonic** semi**leptonic** radiative LD **FCNC** non-≥2 **leptonic**

theory methods

lattice decay constant f_B sum rules (SR)

form factors

lattice, slow π LCSR, fast π

duality form factors **QCDF** multiresonance **Breit-**

factorisation (fast pions)

QCDF: 1/

Wigner

 m_b

pb: FSI

size of Λ/m_b

ABC $\Delta F=2$ mixing

time-dependent CP-violation

- direct CP-violation ($\Delta F = 1,2$) is observable: $\mathcal{A} \propto |A_1| + |A_2| e^{i\phi_{weak}} e^{i\delta_{strong}}$
- K_0, D_0, B_q, B_s antiparticles mix ($\Delta F = 2$) time-dep. CP-violation (& CPT-tests)

$$i\frac{d}{dt} \begin{pmatrix} |D(t)\rangle \\ |\bar{D}(t)\rangle \end{pmatrix} = \left(M - i\frac{\Gamma}{2}\right) \begin{pmatrix} |D(t)\rangle \\ |\bar{D}(t)\rangle \end{pmatrix}$$

 $7 - \text{numbers} \stackrel{\text{CPT}}{\rightarrow} 5 - \text{numbers}$

$$M_{
m L}$$
 $\Delta M = M_H - M_L$ $\delta_{
m CP} = |p|^2 - |q|^2$ $\Gamma_{
m L}$ $\Delta \Gamma = \Gamma_H - \Gamma_L$

flavour to mass eigenstate: $|D_{H,L}\rangle=p|D^0\rangle\mp q|\bar{D}^0\rangle$

- **experiment:** asymmetric B-factories to detect B_0 -oscillation (1999) establishes $\Delta F = 2 \leftrightarrow (\Delta F = 1)^2$ (not superweak mechanism Wolfenstein...)
- theory: Operator product expansion, demands computing

$$\langle \bar{B} \, | \, Q_i \, | \, B \rangle = f_B^2 m_B^2 f(N_c) B_{Q_i}$$
 "bag"-parameterfor a set of QCD (or BSM) operators $B_Q \sim 1 + \dots$ Hatree-Fock app. (VFH)

$$Q_{1} = \bar{b}_{i}\gamma_{\mu}(1 - \gamma^{5})q_{i} \ \bar{b}_{j}\gamma^{\mu}(1 - \gamma^{5})q_{j},$$

$$Q_{2} = \bar{b}_{i}(1 - \gamma^{5})q_{i} \ \bar{b}_{j}(1 - \gamma^{5})q_{j}, \qquad Q_{3} = \bar{b}_{i}(1 - \gamma^{5})q_{j} \ \bar{b}_{j}(1 - \gamma^{5})q_{i},$$

$$Q_{4} = \bar{b}_{i}(1 - \gamma^{5})q_{i} \ \bar{b}_{j}(1 + \gamma^{5})q_{j}, \qquad Q_{5} = \bar{b}_{i}(1 - \gamma^{5})q_{j} \ \bar{b}_{j}(1 + \gamma^{5})q_{i}.$$

Main tool: lattice QCD as matrix element static quantity
However, QCD sum rules can also contribute Lenz et al'
(new master integrals, progress triggered by LHC-program)

3.Kinematics (general) angular distributions & partial waves

independent of independent of theory microscopic theory

ABC of Kinematics: Angular Distributions

• This talk mostly: $B \to V(\to S_1S_2)I_aI_b$ or $B \to SI_aI_b$ (semi-leptonic/radiative)

partial wave

|-(II-pair)

Heff of dim=6 with 10 operators

$$H^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{\text{ts}} V_{\text{tb}}^* \sum_{i=V,A,S,P,\mathcal{T}} (C_i O_i + C_i' O_i') .$$

$$O_{S(P)} = \bar{s}_L b \; \bar{\ell}(\gamma_5) \ell \;, \qquad O_{V(A)} = \bar{s}_L \gamma^{\mu} b \; \bar{\ell} \gamma_{\mu}(\gamma_5) \ell$$

$$O_{\mathcal{T}} = \bar{s}_L \sigma^{\mu\nu} b \; \bar{\ell} \sigma_{\mu\nu} \ell \; , \quad O' = O|_{s_L \to s_R}$$

S- and P-wave

$$\frac{d^4\Gamma}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_K \, d\phi} = \sum_{m,l_l=0..\mathbf{2},l_K=0..\mathbf{J_K}} \underbrace{G_m^{l_k,l_l}}_{|\mathcal{A}_{S,P}|^2} Y_{l_k}(\theta_K,\phi) Y_{l_l,m}(\theta_l,0)$$

12-terms known for some time

"Jacob-Wick formalism" for effective theories

Sinha et al '99 Gratrex. Hopfer, RZ'15

... connection to dynamics

$$\frac{32\pi}{3} \frac{d^4\Gamma}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_K \, d\phi} = \text{Re} \Big[G_0^{0,0}(q^2)\Omega_0^{0,0} + G_0^{0,1}(q^2)\Omega_0^{0,1} + G_0^{0,2}(q^2)\Omega_0^{0,2} + G_0^{2,0}(q^2)\Omega_0^{2,0} + G_0^{2,1}(q^2)\Omega_0^{2,1} + G_1^{2,1}(q^2)\Omega_1^{2,1} + G_0^{2,2}(q^2)\Omega_0^{2,2} + G_1^{2,2}(q^2)\Omega_1^{2,2} + G_2^{2,2}(q^2)\Omega_2^{2,2} \Big] ,$$

$$G_2^{2,2} \sim \left(H_+^V \bar{H}_-^V + H_+^A \bar{H}_-^A - 2\left(H_+^T \bar{H}_-^T + 2H_+^{T_t} \bar{H}_-^{T_t}\right)\right)$$

Hadronic helicity amplitudes e.g. $H_{\lambda}^{V[A]} = \langle \bar{K}^*(\lambda) | \bar{s} \gamma^{\mu} [\gamma_5] b | \bar{B} \rangle \hat{\epsilon^*}(\lambda)_{\mu}$

- Pause! Goal find info on microscopic theory
 - Tools: (1) angular analysis (moments) extract G's
 - (2) q²-dependence disentangle short from long-distance physics

4. Dynamics II (IR)-matrix elements

• $B_d \to K^{(*)} \ell^+ \ell^-$ as an example

2-quark:
$$\bar{s}\Gamma_1 b\bar{\ell}\Gamma_2 \ell$$

4-quark:

$$\bar{s}\Gamma_1 b\bar{c}\Gamma_2 c$$

form factor

long distance

• related by $SU(3)_F$ to semileptonic $B_s \to \bar{K}^{+(*)} l^+ \bar{\nu}$ form factor as no long-distance in semileptonic, can measure ff.

$B \to K^*$ form factors as an example

 q^2 = momentum transfer

- form factor local m-elements (no long distance ⇒ no strong phases)
- number of form factors related group theory

$$\langle K^*(p,\eta)|\bar{s}iq_{\nu}\sigma^{\mu\nu}(1\pm\gamma_5)b|\bar{B}(p_B)\rangle = P_1^{\mu}T_1(q^2)\pm P_2^{\mu}T_2(q^2)\pm P_3^{\mu}T_3(q^2)$$
$$\langle K^*(p,\eta)|\bar{s}\gamma^{\mu}(1\mp\gamma_5)b|\bar{B}(p_B)\rangle = P_1^{\mu}\mathcal{V}_1(q^2)\pm P_2^{\mu}\mathcal{V}_2(q^2)\pm P_3^{\mu}\mathcal{V}_3(q^2)\pm P_P^{\mu}\mathcal{V}_P(q^2)$$

Methods

low q² (large recoil) Light-cone sum rules

K*-DA: Bharucha, Straub, RZ '15 (use of eoms - backup)

B-DA: Offen, Khodjamirian, Mannel '06

- high q² (low recoil) lattice Horgan, Meinel, Wingate, Liu'13
- interpolated by z-expansion

Long distance = strong phases

- lattice QCD impossible for B-physics
 (low energy booming field Hansen, Dudek,... cf. also Hashimoto's talk)
- perturbative methods such as QCD sum rules can deal with multiparticle production (local duality assumption.. some insight)
- resonance region only dispersion theory can and does work to the extent that parameters are known or can be fitted.

long-distance brief overview status

QCDF

- 1) depends B-meson DA
- 2) at 1/m_b breakdown fac endpoint divergences

LCSR

- 1) depend on spurious momentum and analytic continuation thereof
- 2) includes photon DA

photon DA sizeable

Khodjamirian et al'95 Ali Braun'95 Lyon, RZ'13

1/m_b suppressed O(a_s) accidental?

the 1/m_b endpoint divergent

Dimou, Lyon, RZ'12

idem

not done (some work)

non-factorisable

various bits done

Ball, Jones, RZ'06, Khodjamirian et al'10, ..later

Bosch, Buchalla'01 Beneke, Feldman, Seidel'01

comments:

5. R_K theoretically clean - so it seems

R_K -anomaly ..testing LFU

simple idea: hadronic effects are universal, ought to cancel in ratios such as:

$$R_{H} = \frac{\int \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int \frac{d\Gamma(B \to He^{+}e^{-})}{dq^{2}} dq^{2}}$$

Hiller Kruger'03

$$R_K \left[1.1 \text{GeV}^2, 6 \text{GeV}^2 \right] = 0.846^{+0.042+0.013}_{-0.039-0.012}$$
 LHCb (2103.11769)

• $R_K = 1 + \Delta_{OED}$ as QED does not respect LFU

What could go wrong?

- **QED-effects** due to (soft)-hard collinear logs $O(\alpha) \ln m_e/m_b$ 10 [20]% at $q^2 = 0$ [max q^2] in the point-like approx.
 - 1. Structure-dependent effects new hard-collinear logs
 - 2. PHOTOS (QED Monte-Carlo) not in harmony with point-like approx.
 - 3. **Resonances** impact on $[1.1,6]GeV^2$ -bin
- Summary (more detail my talk on Tuesday) .. all positive answers
 - For 1 proof using gauge inv. Isidori, Nabeebaccus, RZ <u>2009.00929</u>
 - For 2,3* checked in Isidori, Lancierini, Nabeebaccus, RZ 2205.08635

^{*} for 2,3 partial answers (as approximations) in Bordone, Pattori, Isidori'16

Conclusions & Summary

- B-physics: well & alive in long term complementary results from Belle valuable
- Lepton Flavour Universality:
 - 1) QED-safe theory viewpoint
 - 2) experiment? LHCb challenging, but many crosschecks Belle cleaner, hence very valuable
 - 3) further testing with moments interesting as ∞-partial wave... sthg looking into ...
- Far future of B-physics
 - 1) theory: progress possible but takes effort .. "individuality"
 - 2) data-driven approaches are clearly an opportunity especially for FCC or μ -collider

The end as time is up!

Backup

CKM-elements

exclusive

VS

inclusive

$$|z|^2 = 2 \text{Im}$$

optical thm & OPE

 $|V_{\rm ub}|$

 $|V_{\rm cb}|$

non-perturbative Input

$$B \to \pi \ell \nu$$

$$B \to D\ell\nu$$

$$\Gamma[|V(q^2)|^2, m_\ell^2 |S(q^2)|^2]$$

$$B \to \rho \ell \nu$$

$$B \to D^* \ell \nu$$

$$\Gamma[|V_{\pm,0}(q^2)|^2, m_\ell^2 |S(q^2)|^2]$$

$$\Lambda_b \to \Lambda \ell \nu$$

$$b \to X_u \ell \nu$$

$$b \to X_c \ell \nu$$

universal m-elements shape function (model, fit)

Yet charm is virulent

Lyon RZ'14

Does (naive) factorisation describe B→KII data? Answer: no ly

vac. pol. h(q²) (for B->KII) from e+e-→hadrons as for (g-2

Disc ~ Im[h]; BESII-data'PLB08

K

B

our $\chi^2/dof = 1.015$

Beyond naive factorisation

- Can were understand data? Answer: yes
- first principles: Breit-Wigner residues related to amplitudes

$$\mathcal{A}(B \to K\ell\ell)|_{q^2 \simeq m_{\Psi}^2} = \frac{\mathcal{A}(B \to \Psi K)\mathcal{A}^*(\Psi \to \ell\ell)}{q^2 - m_{\Psi}^2 + im_{\Psi}\Gamma_{\Psi}} + \dots$$

Lyon, RZ '14 fit to LHCb data broad charmonium resonances

results:

 fit for residues large and opposite in ple to what people used to use for estimates (pQCD or e+e--> hadrons)

Fit-values:

Fit	$\eta_{\mathcal{B}}$	η_c	$ ho_{\Psi(2S)}$	$ ho_{\Psi(3370)}$	$ ho_{\Psi(4040)}$	$ ho_{\Psi(4160)}$	$ ho_{\Psi(4415)}$	χ^2 /d.o.f.	d.o.f.	pts	<i>p</i> -value
\overline{a}	0.98	≡ 1	≡ 1	≡ 1	≡ 1	≡ 1	≡ 1	3.59	99	117	$\simeq 10^{-30}$
<u>b)</u>	1.08	-2.55	≡ 1	≡ 1	≡1	≡ 1	≡ 1	1.334	98	117	1.5%
\overline{c}	0.81	≡ 1	-1.3	-7.2	-1.9	-4.6	-3.0	1.169	94	117	12%
\overline{d}	1.06	≡ 1	3.8-5.1 <i>i</i>	-0.1-2.3 <i>i</i>	-0.5-1.2 <i>i</i>	-3.0-3.1 <i>i</i>	-4.5+2.3 <i>i</i>	1.124	89	117	20%
			$6.4e^{-i53.3^{\circ}}$	$2.0e^{-i92^{\circ}}$	$1.3e^{-i111^{\circ}}$	$4.3e^{-i135^{\circ}}$	$5.1e^{i153^{\circ}}$				