BSM and dark sector: introduction

Stefania Gori UC Santa Cruz

Vietnam Flavour Physics Conference 2022

Quy Nhon

August 19, 2022

What's a dark sector?

The Standard Model (SM)

The dark sector

Particles neutral under the SM gauge symmetries

What's a dark sector?

The Standard Model (SM)

The dark sector

Particles neutral under the SM gauge symmetries

(*) It can be protected by an approximate symmetry

Why a dark sector?...

The Dark Matter scale

The dark matter scale is unknown.

Completely different search strategies depending on the mass of dark matter

The Dark Matter scale

The dark matter scale is **unknown**.

Completely <u>different search strategies</u> depending on the mass of dark matter

Today we will focus on dark matter with a mass in ~(MeV, GeV)

The WIMP miracle

(Weakly Interacting Massive Particles)

The WIMP miracle

(Weakly Interacting Massive Particles)

Generalization: freeze-out for DM particles with a mass below the few GeV scale.

$$ext{SM} ext{ if } ext{m}_{ ext{A}'} > 2 ext{m}_{ ext{DM}}$$

Probing DM at accelerators & at direct detection experiments

Sets the relic abundance

$$\sigma \propto rac{y}{m_{
m DM}^2},
onumber \ y \equiv \epsilon^2 lpha_D \left(rac{m_{
m DM}}{m_{A'}}
ight)^4$$

Probing DM at accelerators & at direct detection experiments

Sets the relic abundance

$$\sigma \propto rac{y}{m_{
m DM}^2},
onumber \ y \equiv \epsilon^2 lpha_D \left(rac{m_{
m DM}}{m_{A'}}
ight)^4$$

Direct detection (see G. Blockinger talk today)

Production at accelerators

Probing DM at accelerators & at direct detection experiments

Sets the relic abundance

 $\sigma \propto rac{y}{m_{
m DM}^2},$

Direct detection (see G. Blockinger talk today)

Production at accelerators

It is ~ unaffected by the nature of DM.

non-relativistic scattering

S.Gori

Battaglieri et al., 1707.04591

Dark sectors: a generic feature of New Physics models

Beyond the Dark Matter motivation, dark sectors arise in many theories beyond the Standard Model:

- * Theories motivated by the hierarchy problem:
 - Supersymmetric theories (Next-to-Minimal-Supersymmetric-Standard-Model)
 - Neutral Naturalness
 - Relaxion theories
- * Theories that explain the <u>baryon-antibaryon asymmetry</u>
- * Theories that address the strong CP problem
- ★ Theories for the generation of <u>neutrino masses</u>
- * Several anomalies in data can be addressed by dark sectors (eg. (g-2)_μ, B-physics anomalies, ...)

From a phenomenological point of view, the signatures to search for are often similar

Exploring the dark sector

Symmetries of Standard Model provide a framework for the systematic exploration of (weakly-coupled) dark sector physics

- SM gauge-invariant
- Dark sector gauge-invariant
- Lorentz invariant
- Lowest dimensional operator first
- Minimal number of particles first (*)
- Flavor invariant operators first (*)

simple set of requirements

(*) some studies go beyond this assumption

Exploring the dark sector

Symmetries of Standard Model provide a framework for the systematic exploration of (weakly-coupled) dark sector physics

- SM gauge-invariant
- Dark sector gauge-invariant
- Lorentz invariant
- Lowest dimensional operator first
- Minimal number of particles first (*)
- Flavor invariant operators first (*)

simple set of requirements

(*) some studies go beyond this assumption

Dark sector portals

* dark photon $\epsilon B^{\mu\nu} A'_{\mu\nu}$

* dark scalar $\kappa |H|^2 |S|^2$

sterile neutrino yHLN

st ALP $g_{a\gamma} {}^{a} ilde{F}_{\mu
u} F^{\mu
u}$

* Gauging an anomaly free SM symmetry: B-L, L_μ – L_τ, ...

A broad program of searches at accelerator experiments

Both visible and invisible searches

A broad program of searches at accelerator experiments

A large community effort

The worldwide search for Dark Sectors has involved hundreds of scientists, new models, many new analyses & experiments in last few years

Vibrant theory + experimental community

Cosmic Visions community workshop 2017.
Community report:
Battaglieri et al., 1707.04591

Dark Interactions Workshop, BNL, 2014

Dark sectors workshop, SLAC, 2016

International effort:

- * The Physics Beyond Colliders Study Group at CERN, https://pbc.web.cern.ch
- * In the US, Basic Research Needs (BRN) workshop 2018:

 DOE-charged panel with the goal of identifying priority science in Dark Matter scope, achievable with small US-based experiments. **DM Small projects New Initiatives (DMNI)**https://science.osti.gov/-/media/hep/pdf/Reports/Dark Matter New Initiatives rpt.pdf
- * In the US, Snowmass process 2020-2022.

 Rare Frontier 6 topical group (SG, M. Williams, https://snowmass21.org/rare/dark)

Note on theory uncertainties

Several production and decay processes have large theoretical uncertainties

Note on theory uncertainties

Several production and decay processes have large theoretical uncertainties

A couple of examples:

 Bremsstrahlung production of a dark photon at fixed target experiments

Weizsaecker-Williams approximation

Berlin, SG, Schuster, Toro, 1804.00661

Note on theory uncertainties

Several production and decay processes have large theoretical uncertainties

A couple of examples:

 Bremsstrahlung production of a dark photon at fixed target experiments

Weizsaecker-Williams approximation

Berlin, SG, Schuster, Toro, 1804.00661

2. Dark scalar decays and life time

 $\kappa |H|^2 |S|^2$

for example, the width into pions:

$$S
ightarrow \mu^+\mu^-,\; \pi^+\pi^-, KK, ...$$

Dark sectors from colliding beam(s)

DM at fixed targets & B-factories

1. Present:

- e- beam for the NA64 experiment,
- Proposed:
- e- beam for the LDMX experiment,
- e+ beam for the **POKER** experiment,
- μ- beam for the **M**³ experiment
- 2. Neutrino experiments!

talk by A. de Roeck on Thursday

DM at fixed targets & B-factories

Dark photon mediated DM

DM at fixed targets & B-factories

Visible dark sectors at fixed-targets & B-factories

Low background experiments (depending on the size of the dump)

- p beam for the SeaQuest/DarkQuest experiment at Fermilab
- p beam for the NA62, KLEVER experiments at CERN
- p beam for the SHiP experiments at CERN
- e- beam for the HPS experiment at JLAB
- e- beam for the DarkLight experiment at TRIUMF
- e-/e+ beams for future e+e- colliders (ILC, CLIC, ...)

Running experiments

Future experiments

Initial studies

Visible dark sectors at fixed-targets

$$\epsilon B^{\mu
u} A'_{\mu
u}$$

$$A' \to \ell^+ \ell^-$$

Visible dark sectors at fixed-targets

Dark sectors from meson decays

Huge statistics of mesons at flavor factories

A big jump in luminosity is expected in the coming years

Past/Present

Future

Pionfactories PIENU experiment at TRIUMF: PIBETA experiment at PSI: ~10¹¹ pi⁺

PIONEER experiment at PSI (phase 1 approved. Data in ~2028(?)): ~10¹² pi⁺

Kaonfactories **E949** at BNL: ~10¹² K⁺ (decay at rest experiment);

E391 at KEK: ~10¹² K_L

NA62 at CERN: ~10¹³ K⁺ by the end of its run (decay in flight experiment);

KOTO at JPARC: ~10¹⁴ K_L by the end of its run

Charm- factories

CLEO at Cornell: ~10⁷ J/Psi

BESIII at BEPC II: ~10¹⁰ J/Psi talk by A. Pathak on Monday

Bfactories **LHCb:** more than ~ 10¹² b quarks produced so far; **Belle**: ~10⁹ BB-pairs were produced.

LHCb: ~40 times more b quarks will be produced by the end of the LHC; Belle-II: ~50 times more BB-pairs will be produced.

ALPs at pion experiments

Generically, ALP models predict the ALP mixing with the SM π^0

Recast previous pion experiments to probe the ALP parameter space:

Altmannshofer, SG, Robinson, 1909.00005

ALPs at pion experiments

Generically, ALP models predict the ALP mixing with the SM π^0

$$\pi^+ o a e^+
u$$

Recast previous pion experiments to probe the ALP parameter space:

Altmannshofer, SG, Robinson, 1909.00005

PIENU

Most accurate measurement of $\pi^+ \to e^+ \nu$

Measurement of the e⁺ spectrum. The spectrum is affected by the ALP:

PIBETA

Most accurate measurement of $\pi^+ o \pi^0 e^+
u$

Measurement of the photon spectrum. This spectrum is affected by the ALP

Constraining ALP parameter space

Possibility to go to lower masses at future experiments (data at smaller angles!)

Reach at PIONEER?

ALPs from FCNC processes

Izaguirre et al., 1611.09355

Goudzovski et al, 2201.07805

What about...

Belle II: $B \to K^{(*)}a, \ a \to \gamma\gamma,$

 $B \to K^{(*)}a, \ a \to \text{inv}$

KOTO: $K_L \to \pi^0 a, \ a \to \gamma \gamma$

Dark sectors from (secondary) muon beams

New Physics coupled mainly to muons?

Several anomalies in data can be addressed via New Physics coupled to muons:

proton

secondary

target

* Proton fixed-target experiments produce a large number of muons

(secondary muon beams)

- * Many muons at B-factories
- * Low energy muon beams (PSI, Fermilab, JPARC)

- Fermilab muon fixed target experiments
- high energy muon colliders

Addressing anomalies in data, $(g - 2)_{\mu}$

Only a very small set of dark sector models can address the $(g - 2)_{\mu}$ anomaly.

All models based on minimal portal interactions have been already fully probed in the last few years.

Can we fully probe a light explanation of $(g - 2)_{\mu}$? Flavor specific models

Example

$$g_{\mu}Sar{\mu}\mu + ext{h.c.}$$

Addressing anomalies in data, $(g - 2)_{\mu}$

Only a very small set of dark sector models can address the $(g - 2)_{\mu}$ anomaly.

All models based on minimal portal interactions have been already fully probed in the last few years.

S.Gori

Can we fully probe a light explanation of $(g - 2)_{\mu}$? Flavor specific models

RF6 Snowmass topical group, SG, M.Williams et al.

20

Take home messages

Dark sector particles in the MeV-GeV range naturally appear in DM models, as well as many well-motivated extensions of the Standard Model.

Unique role of high-intensity experiments

Complementarity of fixed target experiments and flavor factories (+ DM direct detection experiments).

Production of dark sector particles from

- colliding beam(s)
- meson decays

Opportunity of broadly probing thermal DM models and anomaly-motivated models in the coming years.

Flavor measurements can shed light on light New Physics (as well as New Physics above the TeV scale).

Backup

Trident production at neutrino experiments

Altmannshofer, SG, Martin-Albo, Sousa, Wallbank 1902.06765

S.Gori Backup

Milestones already achieved (in the last few years)

This DM framework is now fully probed

Krnjaic, 1512.04119

role

$K \rightarrow \pi X$, $X \rightarrow \gamma \gamma$ (neutral mode)

***** KTeV analysis for K_L → π⁰ γγ

SG, Perez, Tobioka, 2005.05170

- * Our new proposed search for KOTO: $K_L o \pi^0 X o 4\gamma$
 - Challenges of the search:
 - Challenges of the decay point is unknown
 - combinatorics of γγ pairs

Main ingredients:

1. We derive the K_L decay vertex location of the 6 possible di-photon pair combinations, assuming $m_{\gamma_i\gamma_j}^2=m_{\pi^0}^2$

2. Require $m_{4\gamma} \simeq m_{K_L}$ to find a correct pair

Importance of a good <u>vertex resolution!</u> (~5cm) and small <u>energy smearing</u> (~2%)

We simulate the main sources of background:

$$K_L
ightarrow \pi^0 \pi^0, \; K_L
ightarrow \pi^0 \gamma \gamma$$
 mainly for ma ~ m $_{ ext{pion}}$

DM in a strongly interacting dark sector

Dark Matter can be the lightest state of a dark QCD-like theory (e.g. a dark pion)

Novel process responsible of freeze-out:

 $3 \rightarrow 2$ annihilation

Motivation to consider

MeV-GeV DM!

The additional dark states will lead to a richer phenomenology

For example:

DM models with metastable particles

Inelastic Dark Matter

Tucker-Smith, Weiner, 0101138

$$\mathcal{L} \supset \frac{ie_D \ m_D}{\sqrt{m_D^2 + (\delta_{\xi} - \delta_{\eta})^2/4}} \ A'_{\mu} \ (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1)$$

* A non-minimal freeze-out mechanism:

$$X_1 X_2 \rightarrow SM$$

DM DM excited state

- Prompt visible decays
- Long lived particles
- Invisible component

Experiments/facilities

https://arxiv.org/abs/2206.04220

Final states to look for

a. Invisible, non-SM

Dark Matter production

Producing stable particles that could be (all or part of) Dark Matter

- Missing energy/ momentum
- 2. Scattering

b. Visible, SM

Production of portalmediators that decay to SM particles

Systematically exploring the portal coupling to SM particles

3. Visible decay products

- C. Mixed visible-invisible
 - Production of "rich" dark sectors

Testing the structure of the dark sector

- 1. Missing energy/
- 2. Scattering
- 3. Visible decay products Backup

Experimental techniques

1. Detect dark matter particle production

- (i) inferring missing energy, momentum, or mass;
- (ii) detecting re-scattering of DM particles in downstream detectors;
- (iii) observing semi-visible signatures of metastable dark sector particles.

dark states

2. Producing and detecting unstable dark particles: Minimal Portal Interactions

Detect visible decay products of the mediator (prompt or displaced decays). Mediator produced at (e+e-, pp) colliders, meson factories, fixed target experiments

3. Beyond minimal models

- (i) Detect visible decay products of the mediator in non-minimal models, e.g. flavor specific couplings (prompt or displaced decays);
- (ii) Detect visible or invisible signatures of other dark sector states, e.g. DM excited states

Variations of the invisible dark photon scenario

S.Gori Backup