

Jacopo Pinzino

Vietnam Flavour Physics 2022 16/08/22

G.A. 754496

The NA62 Experiment

- NA62: High precision fixed-target Kaon experiment at CERN SPS
- Main goal: measurement of BR($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$)
- Broader physics program: LFV / LNV in K⁺ decays, hidden sector particles searches.

▶ p (proton) → ion → neutrons → p̄ (antiproton) → → → → proton/antiproton conversion → neutrinos → electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNC5 Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice

NA62 Timeline

- 2008: NA62 Approval
- 2014: NA62 Pilot Run (partial layout)
- 2015: Commissioning run
- Full detector installation completed in September 2016
- 2016 -2018 : First NA62-RUN
- data-taking was resumed in 2021 with improvements
- Continuous data-taking until LS3

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC

JACOPO PINZINO

The $K \to \pi \upsilon \overline{\upsilon}$ decay

- High sensitivity to New Physics
- FCNC process forbidden at tree level
- Highly CKM suppressed (BR ~ $|V_{ts}xV_{td}|^2$)

- Very clean theoretically: Short distance contribution
- hadronic matrix element extracted from precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ v$)
- Precise SM predictions: [Buras et al. JHEP 1511 (2015) 33] $BR(K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}) = (8.4 \pm 1.0) \times 10^{-11}$ $BR(K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}) = (3.4 \pm 0.6) \times 10^{-11}$
- Previous Experimental Result:

 $BR(K^{+} \rightarrow \pi^{+} \upsilon \overline{\upsilon})(E787/E949) = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ [Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)]}$ $BR(K_{L} \rightarrow \pi^{0} \upsilon \overline{\upsilon})(E391a) < 2.6 \times 10^{-8} (90\% \text{ C.L}) \text{ [Phys. Rev. D 81, 072004 (2010)]}$

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV) [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

- Littlest Higgs with T-parity
 [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

Leptoquarks

[S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure (Models with MFV) [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Custodial Randall-Sundrum

[Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]

• Simplified Z, Z' models

[Buras, Buttazzo, Knegjens, JHEP11(2015)166]

- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models

Leptoquarks

[Isidori et al., Eur. Phys. J. C (2017) 77: 618]

[S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]

$K \to \pi \upsilon \overline{\upsilon}$ and the LFU violation

The Measurement of $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ together with $B^+ \rightarrow K^{*+} \upsilon \overline{\upsilon}$ can can probe the Lepton-Flavour Universality

- An interactions responsible for LFU violations can couple mainly to the third generation of lefthanded fermions;
- $K \rightarrow \pi \upsilon \overline{\upsilon}$ is the only kaon decays with thirdgeneration leptons (the τ neutrinos) in the final state;
- A deviations from the Standard Model predictions in $K \to \pi \upsilon \overline{\upsilon}$ branching ratios should be closely correlated to similar effects in $B \to K^{(*)} \upsilon \overline{\upsilon}$.

EPJ C (2017) 77: 618

JACOPO PINZINO

Signal region

JACOPO PINZINO

Result of 2016 and 2017 data taking

2018 data after signal selection

Single Event Sensitivity (SES)

	Subset S1	Subset S2	
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6	
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18	
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64	
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05	
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01	
$SES imes 10^{10}$	0.54 ± 0.04	0.14 ± 0.01	
$N_{\pi\nu\bar{\nu}}^{\exp}$	$1.56 \pm 0.10 \pm 0.19_{\rm ext}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$	

- $K^+ \rightarrow \pi^+ \pi^0$ decay used for normalization
- Cancellation of systematic effects (PID, Detector efficiencies, kaon ID and beam related acceptance loss)

 $SES_{Run1} = (0.839 \pm 0.054) \cdot 10^{-11}$

Background from Kaon Decay Estimation

Upstream background

- Pions produced upstream the fiducial volume
 - Early K⁺ decay
 - Interaction of beam particles with the beam spectrometer material
- Pions can be associated to an accidental particle of the beam line
- Dangerous if coupled with pion scattering in the first spectrometer chamber
- Kaon-pion association and geometrical cuts effective
- The geometrical origin of those events allow to define samples for backgrounds validation
- Data driven background estimation

Background summary

- In 2018 collimator was replaced to reduce the upstream background
- data are split in 2 subsets: S1/S2 (20%/80% of 2018 data).
- It allows to relax some cuts for S2 to improve signal acceptance while keeping the S/B ratio same as for S1.

Background	Subset S1	Subset S2	
$\mu^+\nu$	0.23 ± 0.02	0.52 ± 0.05	
$\pi^+\pi^0$	0.19 ± 0.06	0.45 ± 0.06	
$\pi^+\pi^-e^+v$	0.10 ± 0.03	0.41 ± 0.10	
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08	
$\pi^+\gamma\gamma$	< 0.01	< 0.01	
$\pi^0\ell^+ u$	< 0.001	< 0.001	
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90\\-0.70}$	
Total	$1.11\substack{+0.40\\-0.22}$	$4.31^{+0.91}_{-0.72}$	

Background expectations validated in control regions using a blind procedure

Control regions: main decays

Result 2018

5.3 background + 7.6 SM signal events expected, 17 events observed

JACOPO PINZINO

RUN1 resume

	2016 data	2017 data	2018 S1 data	2018 S2 data
$SES imes 10^{10}$	3.15 ± 0.24	0.39 ± 0.02	0.54 ± 0.04	0.14 ± 0.01
$A_{\pi v v} imes 10^2$	4 ± 0.4	3 ± 0.3	4 ± 0.4	6.4 ± 0.6
Expected SM signal	0.27 ± 0.04	2.16 ± 0.13	1.56 ± 0.10	6.02 ± 0.39
Expected background	0.15 ± 0.090	1.46 ± 0.30	$1.11\substack{+0.40\\-0.22}$	$4.31^{+0.91}_{-0.72}$ -
Observed events	1	2	2	15
	[PLB 791	[JHEP 11	[JHEP 06 (2021) 093]	
	(2019) 156-166]	(2020) 042]		

V

V

$K \to \pi \upsilon \overline{\upsilon}$ Result and historical context

JACOPO PINZINO

NA62: Broader physics program

- Rare kaon decays
- LNV/LFV in kaon decays
- Exotic searches:
 - O HNL searches [PLB 807 (2020) 135599]
 - O Dark Photon [10.1007/JHEP05(2019)182]
 - \circ Axion-like particle

LFV & LNV in Kaon Decays

Violation of LN and LF conservation laws predicted in BSM models (for example via Majorana neutrinos or leptoquark)

Previous experimental results:

- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 6.4 × 10⁻¹⁰ @ 90% CL [BNL E865 : PRL 85 2877 (2000)]
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 8.6 \times 10^{-11}$ @ 90% CL [CERN NA48/2 : PL B769 67 (2017)]

LNV/LFV searches in NA62:

- 2017 + 2018 data
- Blind analysis
- Normalization to SM decays ($K^+ \rightarrow \pi^+ l^+ l^-$ and $K^+ \rightarrow \pi^+ \pi^- \pi^-$)
- Acceptance:
 - \circ ~5% for K⁺→π⁻e⁺e⁺ and K⁺→πeµ
 - \circ 10% for K⁺→π⁻μ⁺μ⁺
- Main background is due to pion mis-identification and pion decays in flight

$K^+ \rightarrow \pi^- e^+ e^+$

- Full RUN1 data set
- Expected background in the blinded region: 0.43 ± 0.09
- No candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 5.3 $\cdot 10^{-11}$ @ 90% CL

LFV & LNV results

Search for Heavy Neutral Leptons

- Full RUN1 data set for $|U_{e4}|^2$ and $|U_{\mu4}|^2$.
- Improvement over earlier production searches by up to two orders of magnitude in terms of |U_{ℓ4}|².
- For |U_{e4}|², the BBN-allowed range is excluded up to 340 MeV.

[PLB 807 (2020) 135599]

For |U_{µ4}|², the sensitivity approaches the E949 one; the search extends to 383 MeV.

Rare Kaon Decay example: $(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$

FCNC decay described in the scope of ChPT, mediated by one photon exchange $K^+ \rightarrow \pi^+ \Upsilon^*$

[Nucl. Phys. B291 (1987) 692–719], [Phys. Part. Nucl. Lett. 5 (2008) 76–84]

Together with $K^+ \rightarrow \pi^+ e^+ e^-$ allow to Test the Lepton Flavour Universality. A precise measurement of these decays could provide an evidence complementary to the B anomaly seen by LHCb.

> [Phys. Rev. Lett. 122, 191801 (2019)] [JHEP 02, 049 (2019)]

Preliminary result $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

- $N_{\kappa} \approx 6.76 \cdot 10^{12}$ using the 2017+2018 data sample
- Preliminary $K_{\pi\mu\mu}$ result consistent with $K_{\pi ee}$ FF parameters \rightarrow no tension in LFU observed
- Paper in prepatation

E865, Kee: [Phys. Rev. Lett. 83 (1999) 4482-4485] NA48/2, Kee: [Phys. Lett. B 677 (2009) 246-254] NA48/2, K: [Phys. Lett. B 697 (2011) 107-115]

$$Br(K^+ \rightarrow \pi^+ \mu^+ \mu) = (9.27 \pm 0.11) \cdot 10^{-8}$$

NA62 Run 2: 2021–LS3

- The technique was firmly established during RUN1.
- Run 2: $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ measurement in a low-background and high-acceptance regime (O(10%) precision).
- Modifications of the setup for background reduction:
 - o fourth kaon beam tracker (GTK) station added and rearrangement of beamline elements around the GTK;
 - new veto hodoscopes upstream of the decay volume;
 - o an **additional veto counter** around downstream beam pipe.
- Improved TDAQ: **beam intensity increased by** \sim **30**% wrt Run 1.
- It is foreseen a beam dump mode to collect 10¹⁸ pot in up to 90 days.

JACOPO PINZINO

Fixed target program at CERN SPS

- SPS fixed target operation foreseen until at least 2038.
- **HIKE** ("High-Intensity Kaon experiment"): a long-term programme at the SPS proposed to search for new physics in kaon decays.
- Measurements of rare K^+ and K_L kaon decay modes: a clear insight into the flavour structure of new physics.
- Details in a Snowmass white paper: arXiv:2204.13394

0.0

Conclusion

$K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$:

- Result from the complete Run 1(2016 + 2017 + 2018) compatible with the SM prediction within one standard deviation
- Br(K⁺ $\rightarrow \pi^+ v \bar{v}) = (10.6^{+4.0}_{-3.5 \text{ stat}} \pm 0.9_{\text{syst}}) \cdot 10^{-11} (3.4 \sigma \text{ significance})$
- The most precise measurement of the BR obtained so far
- Upper limit improved for LFV and LNV channels ($K^+ \rightarrow \pi^- l^+ l^+$, $K^+ \rightarrow \pi e \mu$, etc)
- $|U_{\mu4}|^2$ and $|U_{e4}|^2$ limit improved for the HNL
- Preliminary $K_{\pi\mu\mu}$ result consistent with $K_{\pi ee}$ FF parameters

A long-term K^+ and K_L programme ("HIKE") is taking shape at CERN.

$K^+ \rightarrow \pi^- \mu^+ \mu^+$

- Expected background in the blinded region: 0.91 ± 0.41
- One candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.2 \cdot 10^{-11} @ 90\% CL$

 $K^+ \rightarrow \pi^- \mu^+ e^+$ and $K^+ \rightarrow \pi^+ \mu^- e^+$

Data Sample

- Number of K⁺ in fiducial volume:
 - \circ (3.52 ± 0.02) · 10¹² positron case
 - \circ (1.14 \pm 0.02) \cdot 10¹⁰ muon case
- A spike in the continuous m_{miss} spectrum is a HNL production signal

00

Long-term plan for the $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$

- An in-flight $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$ experiment, up to ×6 the NA62 beam intensity, aiming at ~5% precision.
- Challenge: **20 ps** time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

New pixel beam tracker (GTK):

- time resolution: **<50** ps per plane;
- pixel size: **<300×300** μm²;
- efficiency: >99% per plane (incl.fill factor);
- material budget : **0.3–0.5% X0**;
- beam intensity: >3 GHz on 30×60 mm²;
- peak intensity: >8.0 MHz/mm².

New STRAW spectrometer:

- operation in vacuum;
- straw diameter/length: 5 mm/2.2 m;
- trailing time resolution: ~6 ns per straw;
- maximum drift time: ~80 ns;
- layout: ~21000 straws (4 chambers);
- total material budget: **1.4% X**₀.

Long-term plan for the $K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$

- **KLEVER**: a high-energy experiment (**10**¹⁹ pot/year) complementary to KOTO.
- Photons from K_L decays boosted forward: veto coverage only up to **100 mrad**.
- Vacuum tank layout and fiducial volume similar to NA62.
- A longer beamline is needed for $\Lambda \to n\pi^0$ background suppression
- 60 SM $K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$ events with S/B ~ 1 and ~20% precision in 5 years of operation;

ain detecto	r/veto systems:
UV/AFC	Upstream veto/Active final collimato
LAV1-25	Large-angle vetoes (25 stations)
MEC	Main electromagnetic calorimeter

- SAC Small-angle vetoes
- CPV Charged particle veto
- PSD Pre-shower detector