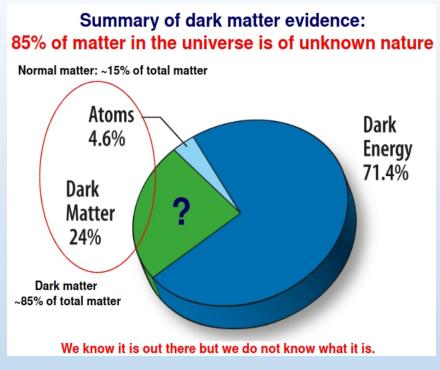
Invisible decays at **BESI**

Presented by

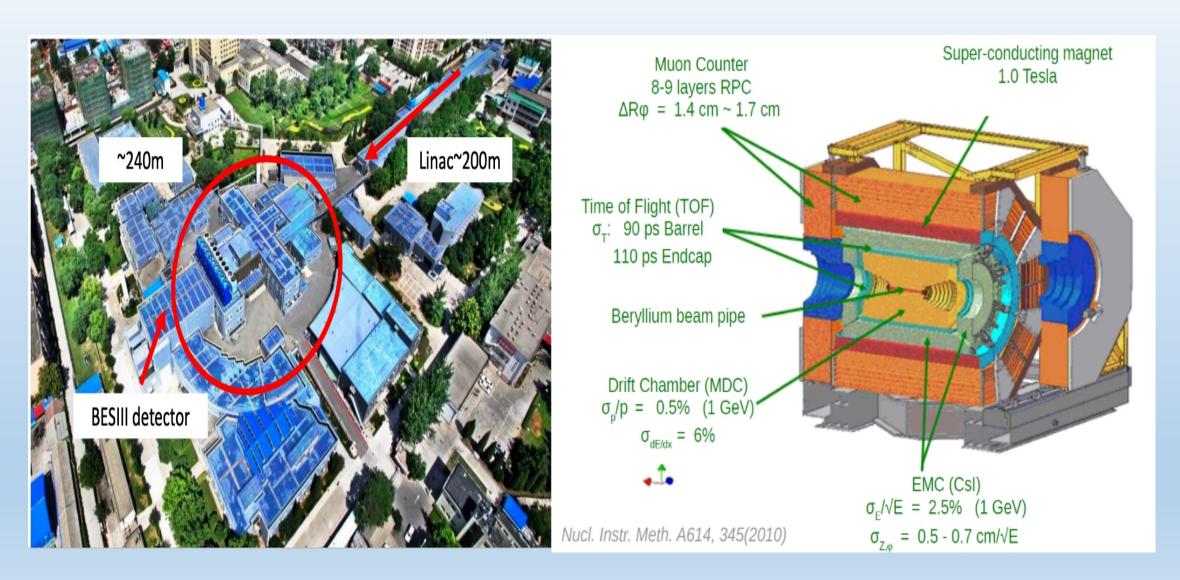
Amit Pathak

Institute of High Energy Physics Chinese Academy of Sciences on behalf of BESIII collaboration


XVIIIth Rencontres du Vietnam, Flavour Physics Conference ICISE, Quy Nhon, Vietnam 14-20 August 2022

Outline

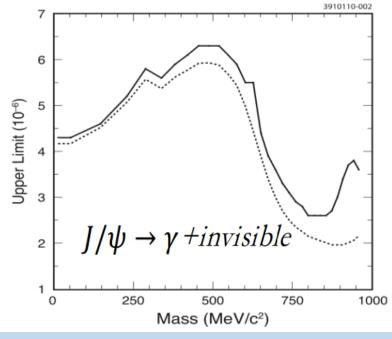
- Motivation
- BEPCII / BESIII detector
- Data Set and Analysis Techniques
- Recent Highlights
 - 1. Dark Matter Searches in J/ $\psi \rightarrow \gamma$ + Invisible, Phys. Rev. D 101, 112005 (2020)
 - 2. Search for Invisible decays of Λ baryon, Phys. Rev. D 105, L071101 (2022)


Motivation

- Standard Model (SM) describes successfully the matter constituents and their interactions. But some phenomenon still remains unexplained:
 - 1). Standrad Model doesn't describe the matterantimatter asymmetry.
 - 2). dark matter problem and
 - 3). many more.!

- The cosmological observations about DM could be explained by Physics beyond the SM.
- Dark Matter can also be searched by invisible decays.
- It might open a window for new physics which lie beyond the SM.
- DM can be searched in e^+e^- collider experiments like BESIII.
- These experiments have the clean environment and fixed CM energy.

BEPCII and BESIII Detector


• Motivation: the supersymmetric Standard Models, including Next-to-Minimal Supersymmetric Models (NMSSM), predict a CP-odd pseudoscalar Higgs A^0 . The A^0 can be produced in quarkonium radiative decay;

$$\frac{\mathcal{B}(V \to \gamma A^0)}{\mathcal{B}(V \to \mu^+ \mu^-)} = \frac{G_F m_q^2 g_q^2 C_{\rm QCD}}{\sqrt{2} \pi \alpha} \left(1 - \frac{m_{A^0}^2}{m_V^2} \right),$$

• where m_{A^0} , m_V and m_q are the masses of the A^0 , the quarkonium state, and the corresponding quark, respectively.

 $g_c = \cos \theta_A / \tan \beta$ and $g_b = \cos \theta_A$. $\tan \beta$;

• Yukawa coupling of the A^0 field to the quark-pair:



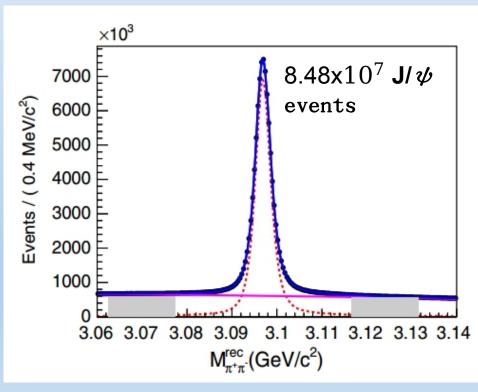
Phys. Rev. D 81, 091101

- The A^0 can decay to two neutralinos which is assumed to be DM candidates.
- Search for the J/ ψ radiative decay into a weakly interacting neutral particle in this process.

- Data Samples: 448.1 x $10^6 \psi$ (3686);
- Analysis Stratetegy:
 - 1). Search for $J/\psi \rightarrow \gamma$ + Invisible with J/ψ from the decay mode ψ (3686) $\rightarrow \pi^+\pi^ J/\psi$;
 - 2). first tag J/ ψ events by selecting two oppositely charged pions, and then to search for the decay J/ $\psi \rightarrow \gamma$ + Invisible within the tagged J/ ψ sample.
 - 3). The branching fraction of the decay $J/\psi \rightarrow \gamma +$ Invisible is calculated using:

$$\mathcal{B} = rac{N_{\mathrm{sig}} \cdot \epsilon_{J/\psi}}{N_{J/\psi} \cdot \epsilon_{\mathrm{sig}}},$$

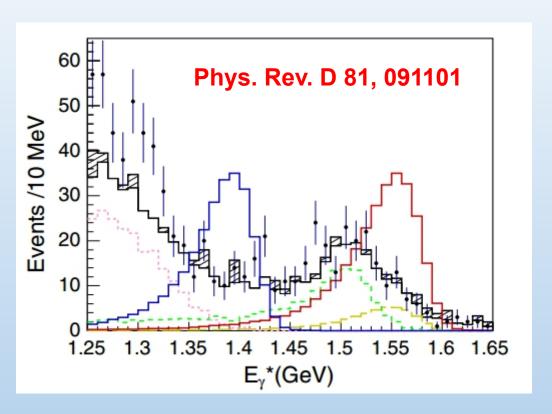
4). A semiblind analyses is performed to avoid possible bias.

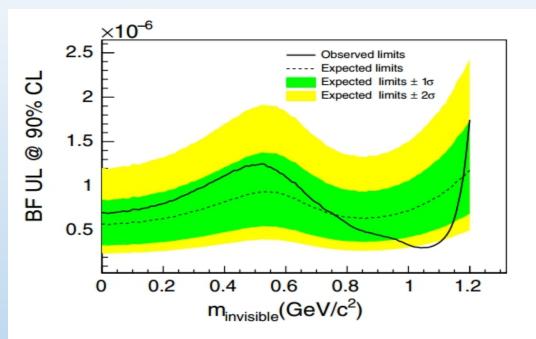

Selections:

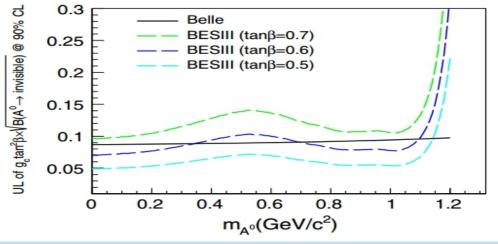
only $\pi^+\pi^-$ and one good shower is required; Signal shower and recoiled invisible mass must direct to the barrel region (| $cos \theta$ | < 0.8);

- Fit to the recoil mass RM($\pi^+\pi^-$), There are 8.848×10⁷ J/ ψ events;
- Huge backgrounds from J/ $\psi \to n \bar{n}$, $\gamma n \bar{n}$, $\gamma K_L K_L$: Using shower shape in EMC to identify γ from n , \bar{n} , K_L ;

The EMC shapes are studied using control samples;


$$m{\gamma}: \ J/\psi
ightarrow
ho \ \pi^0 \ (\pi^0
ightarrow \gamma \gamma) \ n/ar{n}: \ J/\psi
ightarrow
ho \ \pi \ n \ K_L: \ J/\psi
ightarrow K \ \pi \ K_L \ and \ J/\psi
ightarrow \pi \ \pi \ \phi \ (\phi
ightarrow K_S \ K_L);$$


1. Signal extraction: The signal are searched on the ${E_\gamma}^*$ range from 1.25 to 1.65 GeV, corresponding to a mass from 0 to 1.2 GeV/ c^2 for the invisible particle;

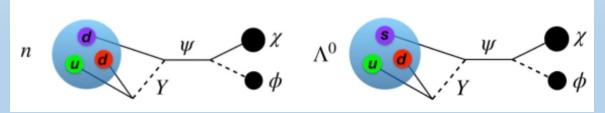

2. Fit method:

- For signal: Signal MC shape;
- For peaking background from $J/\psi \to \gamma \ \pi^0/\eta$: fixed;
- For non-peak: exponential function;
- 3. No significant signal, max significance is 1.2σ ;

- Upper limits: Use the modified frequentist method to calculate upper limits of branching fraction $\mathcal{B}(J/\psi \to \gamma + invisible)$.
- For the zero mass assumption of the invisible particle , the upper limit is 7.0×10^{-7} at 90% C.L., which is improved by a factor 6.2 compared to the previous CLEO result.
- The upper limits of $g_c \times tan^2 \beta \times \sqrt{\mathcal{B}(J/\psi \to \gamma + invisible)}$ for $tan \beta = 0.5$, 0.6 and 0.7 are also reported. We obtain better sensitivity in the range $tan \beta < 0.6$ compared to the Belle result.

Motivation:

The baryon matter density and the dark matter density are similar, which may hint at a common origin of these two unsolved questions.


Dark matter may be represented by baryon matter with invisible final state.

Many potential theories suggest a correlation between baryon asymmetry and dark sector. Phys. Rev. D 105, 115005

These models usually contain a neutron portal operator.

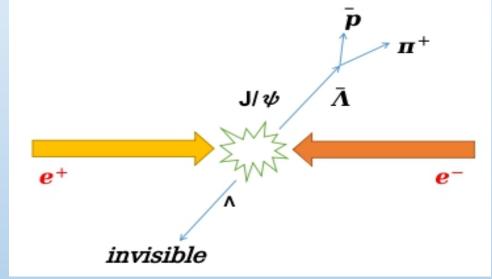
Such operators can generally introduce B violation to the Standard Model sector.

Discrepancy of neutron lifetime in beam method and the storage methods (4.1σ) ; can be explained by 1% of the neutron decay into dark matter.

Phys. Rev. D 99, 035031

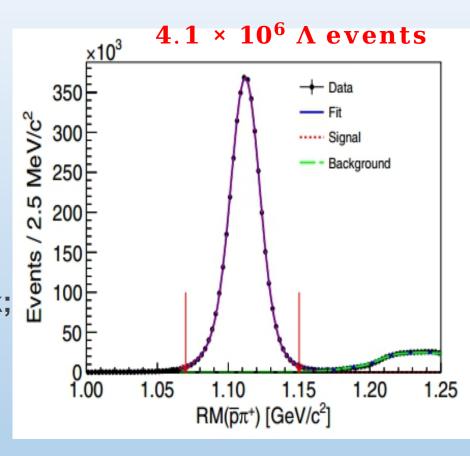
This is the first study of invisible baryon decays.

- Data sample: 10B J/ ψ events;
- Analysis strategy:


 $J/\psi \to \Lambda \bar{\Lambda}$ provide a clean environment for Λ

invisible decay;

Double tag method is used:


- ullet Tag side: $ar{m{\Lambda}}$ is tagged by $ar{m{\Lambda}}
 ightarrow ar{m{p}} m{\pi}^+;$
- Signal side: Λ decays invisibly;

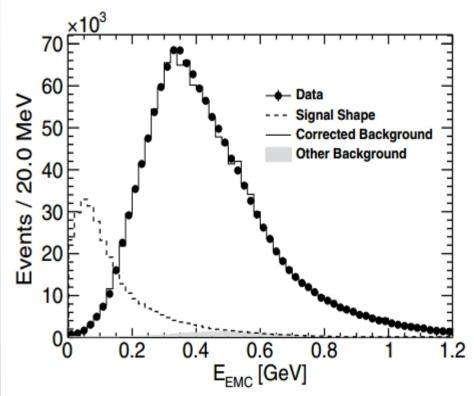
$$\mathcal{B}(\Lambda \to \text{invisible}) = \frac{N_{\text{sig}}}{N_{\text{tag}} \cdot (\varepsilon_{\text{sig}}/\varepsilon_{\text{tag}})}.$$

• The $ar{\Lambda}$ invisible decay has not been carried out, because the dominant background from $ar{\Lambda} o ar{n} \pi^0$ is hard to estimate and simulate too;

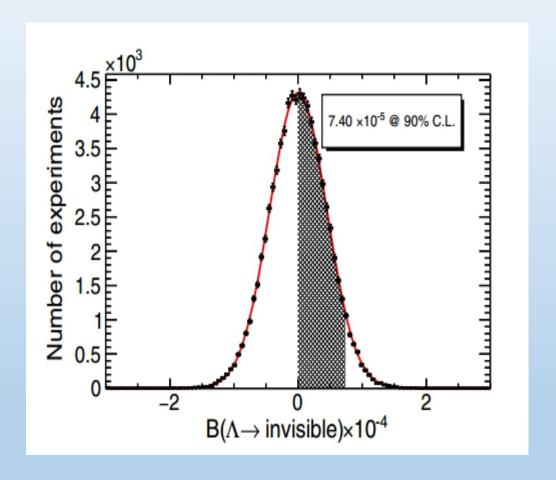
- Tag side selections:
 - Reconstruct \bar{p} , π^+ , $|\cos(\theta_{\bar{\Lambda}})| < 0.7$;
 - One of tracks is required TOF hit for good resolution of the event start time;
 - Fit on RM($ar{p}\pi^+$) to obtain the $ar{\Lambda}$ signal yield;
- Signal side selections: No additional charged track;

- Signal extraction: Search for signal on total energy in EMC (not charged tracks);
 - Dominate background: $\Lambda \to n \pi^0$;

$$E_{\rm EMC} = E_{\rm EMC}^{\pi^0} + E_{\rm EMC}^n + E_{\rm EMC}^{\rm noise},$$


- $E^{\pi^0}_{EMC}$: Based on the MC simulations;
- E^{η}_{EMC} + E^{noise}_{EMC} : retained bases on control sample.

$$J/\psi \rightarrow \Lambda (n \pi^0) \bar{\Lambda} (\bar{p} \pi^+)$$


• The corrected E_{EMC} for $\Lambda \to n \; \pi^0$ is derived by combining $E^{\pi^0}{}_{EMC}$ with a random

value of the sum of $E^{\eta}_{EMC} + E^{noise}_{EMC}$;

No obvious signals are observed.

- 1. Upper limit: A modified frequentist approach is adopted to estimate the UL of $\mathcal{B}(\Lambda \to invisible)$;
- 2. The upper limit is $\mathscr{B}(\Lambda \to invisible)$ < 7.4 × 10⁻⁵ at 90% C.L.;
- 3. The UL is consistent with the prediction of 4.4 \times 10^{-7} from the mirror model.
- 4. This result sheds light on the neutron lifetime measurement puzzle and helps to constrain dark sector models related to the baryon asymmetry.

Summary

- Searching for descrepancies with the SM is the first priority of the current eperimental investigations.
- The search for invisible decays is one of the important ways to search for physics beyond SM.
- We have reported in this talk:

 $J/\psi \rightarrow \gamma + invisible$: We have searched using 448.1 x $10^6 \psi$ (3686) data sample, no obvious signal is observed. The upper limits @ 90% C.L. mass (invisible) in [0,1.2] GeV/ c^2 are measured, which is 6.2 times improvement compared to the previous result.

 $\Lambda \rightarrow invisible$: With 10 B J/ ψ data sample, first search for

 $\Lambda \to invisible$ decay and no obvious signals are observed. The upper limit is \mathscr{B} ($\Lambda \to invisible$) < 7.4 × 10^{-5} at 90% C.L. The result helps to constrain dark sector models related to the baryon asymmetry.

• With the world's largest e^+e^- annihilation, more exciting results is ongoing and will come soon.

Thank You for listening...