First Results from the LUX-ZEPLIN (LZ) Experiment

Rencontres du Vietnam Flavour Physics Conference 2022 Quy Nhon, Vietnam

> Gregory Blockinger, SUNY at Albany On behalf of the LZ collaboration August 2022

LZ (LUX-ZEPLIN) Collaboration

35 institutions; 250 scientists, engineers, and technicians

https://lz.lbl.gov/

- Black Hills State University
- **Brandeis University**
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison

Thanks to our sponsors and participating institutions!

U.S. Department of Energy
Office of Science

LZ Collaboration Meeting - September 8-11, 2021

Science and Technology Facilities Council

UK

Portugal

Korea

 There is strong consensus regarding how much stuff there is in the universe

 By that same token, we only understand about 5% of it

COSMIC MICROWAVE BACKGROUND

LARGE SCALE STRUCTURE

GALAXY MERGERS

GALACTIC ROTATION CURVES

Gravitational interactions

Tien-Tien Yu - Hot Topics on the Cosmic Frontier Colloquium, June 10

- "Dark" does not interact with light or electromagnetism
- Interacts gravitationally
- Nearly collisionless
- Stable
- Slow 0.001c
- Local density 0.3 GeV/cc

Beyond the Standard Model!

- One of the best motivated candidates is a "WIMPy" thermal relic
 - MeV 100 TeV scale particle (cosmological bounds)
 - ♦ Weak scale interactions leads to correct density today
- Highly motivated (with important constraints from DM results)
- e.g. SUSY models, twin Higgs,
 Triplet Majorana, Hidden Sector
- Recent summary in Snowmass
 CF1-WP1 2203.08084
 - Many other references therein
- Now probing some of the most interesting models from 20 years ago

Detecting Dark Matter

Fill a detector with your favorite material and wait for WIMPs to scatter off it

Non-relativistic elastic scattering

$$\mu = \frac{m_{DM} m_N}{m_{DM} + m_N}$$

$$E_{rec} = \frac{\mu^2 v^2}{m_N} (1 - \cos\theta)$$

$$m_{DM} = 100 \text{ GeV/c}^2$$

 $m_N = 131 \text{ GeV/c}^2$
 $v = 220 \text{ km/s}$
 $E_{rec} = 3 \text{ keV}$

...but it needs to be someplace very "quiet"

LZ Detector Overview

LZ detector design: NIM A, 163047 (2019)

Nested titanium cryostats

Liquid Xenon (LXe) Time projection chamber (TPC)

LXe Skin (veto)

Outer detector, liquid scintillator

Outer detector **PMTs**

Water tank

Out to support systems

Dual-Phase Xenon TPC

- 1.5 m \varnothing x 1.5 m height
- 7 tonne active LXe (5.5 tonne fiducial)
- PTFE everywhere for efficient light collection
- 494x 3" PMTs in two arrays
- 4 wire mesh electrodes + Ti field cage for uniform electric fields
 - o Bottom, cathode, gate, anode

Incoming Particle

- Detection principle:
 - Interactions produce scintillation light (S1) and ionization electrons
 - Electrons drift to gas phase and produce electroluminescence (S2)

G. Blockinger

Background rate

Self-shielding (+xenon is dense!)

Dual-Phase Xenon TPC

- Excellent 3D position reconstruction
 - Single vs. multiple scatters
- Energy reconstruction

- Particle ID from S2/S1 ratio
 - Electrons and gammas interact with atomic electrons, producing electron recoils (ER)
 - WIMPs (and neutrons) interact with Xe nuclei, producing nuclear recoils (NR)

LXe Skin and Outer Detector - Vetoes

- WIMPs will only scatter once
 - Backgrounds can scatter multiple times can be vetoed!

The Skin

- 2 tonnes of LXe surrounding the TPC
- 1" and 2" PMTs at top and bottom of the skin region
- Lined with PTFE to maximize light collection
- Anti-coincidence detector for γ-rays

The Outer Detector (OD)

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe ~8 MeV of γ-rays from thermal neutron capture

- Neutrons particularly important Characterize BGs in situ

Veto enables discovery potential

Background Sources and Mitigation

Detector materials

Many sources of BG

Many methods for BG mitigation

- Nothing went into the detector without screening
- Radio-assay campaign with 13 HPGe detectors, ICPMS, neutron activation

analysis, and radon emanation

- For example, cryostat made of most radiopure titanium in the world (Astropart. Phys. 96, 1 2017)
- Rn daughters and dust on surfaces
 - TPC assembly in Rn-reduced cleanroom
 - Dust <500 ng/cm² on all LXe wetted surfaces
 - Rn-daughter plate-out on TPC walls < 0.5 mBq/m²
- Xenon contaminants
 - Charcoal chromatography at SLAC
 - Continuous purification underground

LZ Timeline

- Detector assembly began in earnest in Fall-2018 at surface lab at SURF
- TPC brought underground in October 2019
- Cryostat closed in March 2020, ahead of COVID-19 shutdowns
- OD complete and filled by July 2021
- Xenon offsite purification complete Aug. 2021 TPC Filled in Sept. 2021!

LZ Commissioning

- TPC detector filled and leveled from August through September
- Grids biassed: extraction & drift fields established in October and December
 - → First light (and charge) on October 6!
- ◆ Established drift field ~190 V/cm (32 kV on cathode)
- ◆ Established extraction field ~7.3 kV/cm gas (8 kV between gate and anode)

LZ's Science Run 1 (SR1)

Goal: (1) Demonstrate physics capability of the LZ detector, with (2) expectation of competitive sensitivity

- Data taken 23 Dec '21 to 12 May '22, with breaks for calibrations in middle and at end
- WIMP search live time of 60 days
- Electron drift lifetime of 5-8 ms during search
- Stable detector conditions:
 - PMTs: >97% operational throughout run
 - Liquid temperature: 174.1 K (0.02%)
 - Gas pressure: 1.791 bar(a) (0.2%)
 - Gas circulation: 3.3t/day
 - Drift field: 193 V/cm (32 kV cathode, uniform to 4% in fiducial volume)
 - Extraction field: 7.3 kV/cm in gas (8 kV gate-anode ΔV)

LZ Requirement ~1ms

Engineering run \rightarrow data not blinded or salted. Future science runs will be salted.

Calibrations

We utilize a variety of calibration sources in LZ. Our main ones include:

- DD neutron generator: 2.45 MeV neutrons, collimated
 - Used for: NR band, trigger efficiency, S1 cut acceptance
- Am-Li: continuum neutrons, isotropic
 - Used for: Outer Detector (OD), neutron-tagging efficiency,
 S2 cut acceptance
- CH₃T: continuum betas up to 18.6 keV———
 - Used for: ER band, fiducial volume, S1 cut acceptance
- 83mKr: monoenergetic ERs, 32.1 and 9.4 keV
 - Used for: energy scale, xy spatial corrections
- ^{131m}Xe: monoenergetic ER, 164 keV
 - Used for: energy scale, electron lifetime
- Additional background sources (e.g. alphas and cosmics)
 - Used for: energy scale, electron lifetime

Calibrations

- Normalize spatial variations in observed S1 and S2 (light collection efficiency, e-lifetime, etc)
- Tune XY position reconstruction algorithm
- Light gain **g1: 0.114** ± 0.002 phd/photon
- Charge gain g2: 47.1 ± 1.1 phd/electron
- Single electron size: 58.5 phd
- NEST(*)-based ER model tuned to tritium data, propagated to NR model, validated with DD data
 - NEST (Noble Element Simulation Technique) is an comprehensive, accurate, and precise simulation of the excitation, ionization, and corresponding scintillation and electroluminescence processes in liquid noble elements
- 99.9% rejection of ERs below the NR median

G. Blockinger 19

Backgrounds

There are many sources of background in our experiment, though not all contribute in the same way. Listed here are the major contributors to the WIMP search

- Dissolved beta emitters:
 - 214 Pb (222 Rn daughter), 212 Pb (220 Rn daughter), 85 Kr, 136 Xe (2 beta)
- Dissolved e-captures (monoenergetic x-ray/Auger cascades):
 - 127Xe, 124Xe (2 e-capture), 37Ar
- Gamma emitters in detector materials:
 - o ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co
- Solar neutrinos

 We had several robust simulation campaigns leading up to science data taking.

³⁷Ar

- Electron capture, $t_{1/2} = 35 d$, monoenergetic 2.8 keV ER deposition
- Occurs naturally in atmosphere via e.g. 40 Ca(n, α) 37 Ar (*), but suppressed during Xe purification by charcoal chromatography
- Also produced by cosmic spallation of natural xenon
- Constrained ³⁷Ar activity based on Xe delivery schedule to SURF (**)
- Expect ~100 decays of ³⁷Ar in first science run, with a large uncertainty

(*) R.A. Riedmann, R. Purtschert, Environ. Sci. Technol. (2011) 45(20), 8656-8664 (**) LZ Collaboration, Phys. Rev. D 105, 082004 (2022), <u>2201.02858</u>

Data Quality

Instrumental effects give rise to many spurious signals

- High rate of single photons and electrons after large S2s
- Interactions in charge- or light-insensitive regions
- Interactions in the liquid and gas above the gate grid

Address with two suites of cuts:

- 1. Time-based cuts
- 2. Pulse-based cuts

Fiducial Volume and OD/Skin Tags

 Inner 5.5 tonne fiducial volume (FV) is lowest background and uniform.

- Vetoes:
 - Removes gammas
 - Skin reduces bare L,M-shell ¹²⁷Xe background 5x
 - 1200 μs capture window, ~200 keV threshold
 - Tag neutron capture
 - Provides in situ constraint on neutron BG:
 O+0.2 neutron events in first science run

- Events surviving all selections
- × Skin-prompt-tagged events
- OD-prompt-tagged events

Result

- Region-of-interest:
 - 3 phd < S1c < 80 phd
 Also require S1 coincidence ≥3
 - \circ S2 > 600 phd (10e⁻)
 - \circ S2*c* < 10⁵ phd
- 335 events in final dataset
- 60 ± 1 live days
- $5.5 \pm 0.2 \text{ tonne FV}$

Result - Fit

Best fit with zero WIMP events at all masses

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$\nu \; \mathrm{ER}$	27.3 ± 1.6	27.3 ± 1.6
$^{127}\mathrm{Xe}$	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
$^8{ m B}~{ m CE} u { m NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
$^{37}\mathrm{Ar}$	[0, 291]	$52.1_{-8.9}^{+9.6}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30\mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total	i—i	333 ± 17

Result

Curves:

- Solid black: observed limit
- Dashed-black: median expected sensitivity
- No evidence of WIMPs at any mass
- Minimum exclusion on WIMP-nucleon cross section (SI) of 6x10⁻⁴⁸ cm² at 30 GeV
- Comparing to existing strongest upper limit:
 - x6.7 improvement at 30 GeV
 - x1.7 improvement above 1 TeV

G. Blockinger

Result - New

Uncertainty band represents theoretical uncertainty on nuclear form factor for Xe (*)

"Brazil" band elided for clarity

Next Steps for LZ

- LZ plans to take 1000 live days of data (x17 more exposure)
 - Lots of science to do in addition to primary DM search!
 - Effective field theory couplings for dark matter
 - Solar axions, ALPs, neutrino magnetic moment
 - Low mass dark matter searches (S2 only, Migdal effect)
 - Leptophilic dark matter
 - Mirror dark matter
 - Neutrinoless double beta decay
 - Rare decays of other xenon isotopes
 - And more!

Phys. Rev. C 102, 014602 (2020) Phys. Rev. D 104, 092009 (2021) Phys. Rev. C 104, 065501 (2021)

XLZD Consortium

Leading Xenon Researchers unite to build next-generation Dark Matter Detector

SURF is distributing this press release on behalf of the DARWIN and LZ collaborations

Successful joint XLZD meeting June 27-29 at KIT

https://xlzd.org/

White paper (2203.02309)

July 20, 2021

Summary

- LZ is online and taking high quality physics data
 - All detectors performing well
- Backgrounds within expectation
- After 60 live days, LZ is the most sensitive dark matter detector in the world above 9 GeV
 - Paper: arXiv:2207.03764, submitted to PRL
- Xenon community uniting into the XLZD Consortium to build one xenon experiment to rule them all
 - Multi-purpose observatory with huge physics potential!

Backup

Detector Response Characterization

- Monoenergetic ER peaks used to determine
 - g1: photon detection efficiency
 - o g2: amplification factor of an ionization electron

G. Blockinger

Rn-chain Backgrounds

 4.37 ± 0.31 (stat)

- Alphas from ²²²Rn easily identified by S1 spectrum.
- ²²²Rn not uniformly distributed
 - Stratification in LXe flow is a possible tool to reject ²¹⁴Pb in future

± 0.57(sys)

G. Blockinger

 $2.56 \pm 0.21 \text{ (stat)}$

Accidentals Backgrounds

- Isolated S1 pulses occur at O(1 Hz)
- Isolated S2 pulses occur at O(10⁻³ Hz) (above threshold)
- Occasionally, a lone S1 will accidentally come within 1ms of an unrelated, lone S2, and will look like a valid single scatter in the TPC.
- Events with measured drift > 1ms are caused by accidental coincidences and are used to constrain our rate of this background.

- Data-quality cuts largely address this background
- We build a data set of fake events built from isolated raw pulses and pass them through our processing+analysis frameworks to generate the PDF
- Estimated number of accidentals in SR1 is 1.2 ± 0.3
 events

Active Xenon Isotopes

- Cosmogenically activated xenon isotopes
 - Xe-127
 - Includes gamma ray that is usually vetoed by the TPC itself, or the LXe skin
 - Xe-131m
 - > Xe-129m
 - Xe-133

SR1 WIMP conventions

Using the statistical and astrophysical conventions recommended in (*). Highlights:

- Frequentist, 2-sided profile-likelihood-ratio (PLR) test statistic
- 90% confidence bands
- Signal rate must be non-negative
- Power constrain at $\pi_{crit} = 0.32$
- Local density of DM: 0.3 GeV/cm²
- $v_0 = 238 \text{ km/s}$
- $v_{esc} = 544 \text{ km/s}$

Eur. Phys. J. C (2021) 81:907 https://doi.org/10.1140/epjc/s10052-021-09655-y THE EUROPEAN
PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Recommended conventions for reporting results from direct dark matter searches

```
D. Baxter<sup>1</sup>, I. M. Bloch<sup>2</sup>, E. Bodnia<sup>3</sup>, X. Chen<sup>4,5</sup>, J. Conrad<sup>6</sup>, P. Di Gangi<sup>7</sup>, J. E. Y. Dobson<sup>8</sup>, D. Durnford<sup>9</sup>, S. J. Haselschwardt<sup>10</sup>, A. Kaboth<sup>11,12</sup>, R. F. Lang<sup>13</sup>, Q. Lin<sup>14</sup>, W. H. Lippincott<sup>3,a</sup>, J. Liu<sup>4,5,15</sup>, A. Manalaysay<sup>10</sup>, C. McCabe<sup>16</sup>, K. D. Morå<sup>17</sup>, D. Naim<sup>18</sup>, R. Neilson<sup>19</sup>, I. Olcina<sup>10,20</sup>, M. -C. Piro<sup>9</sup>, M. Selvi<sup>7</sup>, B. von Krosigk<sup>21</sup>, S. Westerdale<sup>22</sup>, Y. Yang<sup>4</sup>, N. Zhou<sup>4</sup>
```


SR1 Data

Events after selection
1.1×10^{8}
6.0×10^7
1.0×10^7
$1.8 imes 10^5$
3.1×10^{4}
416
335

Downward fluctuation at 30 GeV

- Downward fluctuation in the observed upper limit near 30 GeV/c² is a result of the deficit of events under the ³⁷Ar population.
 - Due to background under-fluctuation or unaccounted for signal inefficiency? Probe the latter.
- Tritium data analyzed identically to WS data.
 Deficit region is well-covered.

- DD data also shows deficit region is well-covered.
 (Not shown here) AmLi neutron calibration data also shows deficit region well-covered.
- Deficit appears consistent with under-fluctuation of background.

Projected Sensitivity (5.6 t exposure, 1000 live day)

G. Blockinger