QED in $B \rightarrow K\ell\ell$ and LFU

Roman Zwicky Edinburgh University

Rencontre de Vietnam, Flavour Conference

14-20 August 2022 - Quy Nhon

 QCD blind to lepton flavour, hence hadronic effects cancel in ratios:

Vesterday

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

Hiller Kruger'03

$$R_{K} [1.1 \,\mathrm{GeV^{2}}, 6 \,\mathrm{GeV^{2}}] = 0.846^{+0.042+0.013}_{-0.039-0.012}$$
 LHCb (2103.11769)
2-3 σ

• $R_K = 1 + \Delta_{QED}$ as **QED** does not respect LFU

What could go wrong?

- **QED-effects** large due to (soft)-hard collinear logs $O(\alpha) \ln m_e/m_b$; when treated by point-like approximation (=scalar QED)
 - 1. Structure-dependent effects new hard-collinear logs
 - 2. PHOTOS (QED Monte-Carlo) not in harmony with point-like approx.*
 - 3. **Resonances** impact on $[1.1,6]GeV^2$ -bin *
- To understand, need to learn/recap few things:
 - IR logs (and when they cancel and not) [relevant to 1. and 2.]

[relevant to 3.]

- also depends on kinematic variables

* for 2,3 partial answers (as approximations) in Bordone, Pattori, Isidori'16

- I. Recap of basics what we know and what not about IR-logs
- II. 2 Theory Results relevant to understanding *R_K*-safety Isidori, Nabeebaccus, RZ <u>2009.00929</u>
- III. Comparison with PHOTOS & dangerous charmonium resonances Isidori, Lancierini, Nabeebaccus, RZ <u>2205.08635</u>
- END. Summary & Conclusions

Recap on IR sensitive terms for Rates

- d=4 IR-divergences are **logarithmic**:
 - "soft" photon momentum $k \rightarrow 0$
 - "collinear" photon momentum $k \propto p_{ex}$

Kinoshita-Lee-Nauenberg theorem (1962)

Total (decay) rates all divergences (IR-sensitive terms) cancel

Loopholes:

- i) not photon inclusive (next slide)
- ii) differential (sizeable collinear $\alpha \ln m_e/m_b$ can remain)

What is clear and what isn't.

Soft & soft-collinear logs: $\ln m_{\gamma} \& \ln m_{\gamma} \ln m_{\ell} / m_B$

- Soft and soft-coll. logs captured by point-like approximation
- Soft and soft-coll. logs cancel @ differential level (from YFS resummation 61', Weinberg'65, coherent states 60's)
- For $E_{\gamma} < \Delta E$, soft logs $\ln m_{\gamma}|_{real} \rightarrow -\ln \Delta E^{"}$ at leading log

Hard-collinear logs: $\ln m_{\ell}/m_B$

- Unclear whether they cancels at differential level
 `cancellation miraculous [=unitarity by KLN] as topologies unrelated"
- Unclear whether captured by point-like approximation ``not soft"

Generalisation of decay Kinematics for radiative rate

• Also unclear how to generalise To: $\overline{B}(p_B) \to \overline{K}(p_K)\ell_1(\ell_1)\overline{\ell_2}(\ell_2)\gamma(k)$ differential variables $c_\ell \equiv \cos \theta_\ell$

$$\frac{d^2 \Gamma(B \to K\ell\ell(\gamma))}{dq^2 dc_\ell}$$

$$K \xrightarrow{B} \sqrt{Qe}$$

related to previous question?

Natural choices from kinematics viewpoint

- **Theory Result 1**: in $\{q_0^2, c_0\}$ -variables hc logs cancel differentially
 - understood by explicit computation first
 - now also by IR-safety notion from collider physics q_0^2 = jet variable
 - splitting function approach to collinear divergences (close to PHOTOS)

Theory result 2: are hc logs are universal

Or if *B*, *K*-meson resolved (structure-dependence), further collinear logs?

• Write in meson-EFT: $A^{(1)} = \hat{Q}_{\ell_1} \frac{a_{\ell_1}}{\ell_1 \cdot k} + \delta A^{(1)}$

1)
$$\hat{Q}_{\ell_1}^2 \int_{\gamma} \left| \frac{a_{\ell_1}}{\ell_1 \cdot k} \right|^2 = O(1) \hat{Q}_{\ell_1}^2 \ln m_{\ell_1} + . \int_{\gamma} Rest \rightarrow finite^*.$$

collinear-log IR-safe

* by gauge invariance: collinear region: $A = \epsilon^{\mu}A_{\mu} \Rightarrow \ell_{1}^{\mu}A_{\mu} = \mathcal{O}(m_{\ell_{1}})$

- 2) Hence $\delta A \rightarrow \delta A + A_{structure}^{B,K}$, no new <u>real</u> collinear logs
- 3) Since real & virtual cancel (in q_0^2, c_0 variables), no new <u>virtual</u> collinear logs either

Gauge invariance acts as custodian that sweeps away all the ``dangerous" hc logs beyond pt-like app. Point 1. clarified with positive answer

Agreement with PHOTOS?

• Experiment uses PHOTOS [PHOTONS++Sherpa] Monte Carlo event by event simulation [to produce 5-fold diff. distribution]

E.g. single differential plot (at detector level from LHCb) $\frac{d}{dm_{K\ell\ell}}$ equivalent to $\frac{d}{dE_{\gamma}}$ $m_{K\ell\ell}^2 \equiv m_{Brec}^2 = m_B^2 - 2m_B E_{\gamma} = (1 - \delta)m_B^2$

Ought to test whether we agree with PHOTOS.
 We test for fixed m_{Brec} > (4.88,5.18)GeV for (electrons, muons) as this comes closest to what LHCb does.

What we do

Take our point-like computation from Isidori, Nabeebaccus, RZ 2009.00929

 Use it as basis for Monte Carlo Generator (hit or miss algorithm) and compare to PHOTOS using same events (many events = distribution)

Plots for electrons (muons in backup slides)

The charmonium (mainly J/Ψ) resonances

• LHCb uses q^2 -variable, now since

LHCb neglects interference of rare and resonant mode

Collinear logs from splitting function

 With splitting function one can reproduce all collinear logs (and numerically this dominates so can use it for assessment*)

$\Delta_{QED} \propto \ln rac{\mu_{ m hc}}{m_{\ell_1}} \left(rac{1}{\Gamma^{ m LO}} \int_{\max(\hat{q}^2, z_{\ell_1}^\delta)}^1 dz P_{f o f\gamma}(z) rac{d^2 \Gamma^{ m LO}(\hat{q}_0^2, c_0)}{d\hat{q}_0^2 dc_0} ight) J_{\ell_1}(c_\ell, z)$ $P_{f \to f\gamma}(z) = \lim_{z^* \to 0} \left| \frac{1+z^2}{(1-z)} \theta((1-z^*) - z) + (\frac{3}{2} + 2\ln z^*) \delta(1-z) \right|$ $q^{2} = zq_{0}^{2}, \quad c_{0}|_{m_{K}=0} = \frac{c_{\ell}(1+z) + \bar{z}}{c_{\ell}\bar{z} + 1 + z}, \quad J_{\ell_{1}}(c_{\ell}, z)|_{m_{K}=0} = \frac{4}{(c_{\ell}\bar{z} + 1 + z)^{2}}$ $z_{\ell_1}^{\delta}|_{m_K=0} = \frac{1+\hat{q}^2-\delta+c_{\ell}(1-\hat{q}^2-\delta)}{1+\hat{q}^2+\delta+c_{\ell}(1-\hat{q}^2-\delta)}$

* With its resummed version (electron structure function), we can fix the difference with PHOTOS at high q^2 .

splitting fct LO-rate

Assessing neglecting interference

- The **issue** is that we do **not know** the **LO-rate** precisely for the **charm**, e.g. strong phase of the J/Ψ
- To assess we minimise and maximise the interference effect cut out resonant mode (it's amplitude square to mimic LHCb)

• Effects only begin to be sizeable for $q^2 > 6 GeV^2$

Assessment including full resonant mode

- Effects more sizeable at $q^2 = 6 GeV^2$
- On [1,1,6] GeV^2 bin effect is not dramatic However, it would be unwise to extend as at $q^2 = 7.8 GeV^2$ 600, 4000%

Point 3. clarified, J/Ψ does not hugely impact on [1,1,6] GeV^2 -bin

• Hence, it would be wise and great to **provide** finely **binned** *R*_{*K*}

Conclusions & Outlook

- Theory results:
 - no new hard collinear logs beyond pt-like approx.
 sensitivity of hard collinear logs depends on diff-variables
- PHOTOS Monte Carlo

3) Good program and sufficient when pt-like approx. is sufficient4) by pt 2), PHOTOS is then sufficient!

- *J*/Ψ-resonance by migration of radiation
 5) is just ok for [1,1,6] *GeV*²-bin
 6) please provide binned *R_K*
- Going beyond pt-like approximation [in progress]
 7) relevant for non-LFU e.g. ln m_{π,K}/m_B sizeable (backup plots)
 8) challenging and interesting (lattice,SCET,QCD sum rules)

The end as time is surely up!

Backup

Cancellation of logs (photon-inclusive)*

cancel?	${d^2\Gamma\over dq^2 dc_\ell}$	$\frac{d^2\Gamma}{dq_0^2 dc_0}$
soft	yes	yes
soft-collinear	yes	yes
collinear	no	yes

• Note: once photon energy cut-off restored (all logs come back) total rates agree

$$\Gamma(\Delta E) = \int_{\Delta E} \frac{d^2 \Gamma}{dq^2 dc_{\ell}} dq^2 dc_{\ell} = \int_{\Delta E} \frac{d^2 \Gamma}{dq_0^2 dc_0} dq_0^2 dc_0$$

"main result

* use photon energy cut-off - all done analytic (technical aspect: soft energy and angular integral shown to be separately Lorentz-invariant!)

III) Plots

- parameterise relative QED-correction

$$d^2\Gamma_{\bar{B}\to\bar{K}\ell_1\bar{\ell}_2}(\delta_{\mathrm{ex}}) = d^2\Gamma^{\mathrm{LO}}\left[1 + \Delta^{(a)}(q_a^2, c_a; \delta_{\mathrm{ex}})\right] dq_a^2 dc_a$$

- manifest Lorentz-invariant photon "energy" cut off

$$\delta_{ex} = 1 - \frac{(p_K + \ell^+ + \ell^-)^2}{m_B^2}$$

visible final states

corresponds to previous ΔE

Charged meson case

photon-inclusive (dashed)

approx lepton-universality (LU) LU broken by collinear logs $ln \frac{m_{\ell}}{m}$

 m_b

photon-energy cut (straight)

 μ :3-4%, e:6-10%, effects (LU broken by soft-col. & col. logs)

Neutral meson case

skip in talk

- differences to charged case due to absence of collinear $\ln m_K/m_B$
- N.B. did not plot much beyond $10GeV^2$ to avoid charmonium (for semileptonic case no problem)

SM: lepton universality broken by lepton masses. Small but not in QED.
 BSM: lot's of excitement ...

$$R_{K}|_{q_{0}^{2} \in [q_{1}^{2}, q_{2}^{2}]GeV^{2}}^{m_{B}^{rec}} = \frac{\Gamma[\bar{B} \to \bar{K}\mu^{+}\mu^{-}]}{\Gamma[\bar{B} \to \bar{K}e^{+}e^{-}]} \Big|_{q_{0}^{2} \in [q_{1}^{2}, q_{2}^{2}]GeV^{2}}^{m_{B}^{rec}} \approx 1 + \Delta_{\text{QED}}^{m_{B}^{rec}}R_{K}$$

$$R_K|_{q_0^2 \in [1,6]GeV^2} = 0.846^{+0.060+0.016}_{-0.054-0.014}$$
 LHCb (1903.09252)

- Q: do we miss terms col.-logs in $\Delta_{OED}^{m_B^{rec}} R_K$?
- A: no by our main result 2 (by gauge invariance)

⇒ **LFU ratios** of $R_K, R_{K^*}, R_D, R_{D^*}, R_{\phi}$ -type are, from the theory side, **under control w.r.t.** $\ln m_{\ell}/m_B$ **logs**

Additional Plots for muons

Additional Plots

Dependance on photon "energy" cut-off

$$\delta_{ex} = 1 - \frac{(p_K + \ell^+ + \ell^-)^2}{m_B^2}$$

Comparison with BIP

Appendix A.2

$$\frac{d\Gamma}{dq_0^2} = \frac{\alpha}{\pi} \left[\frac{d\Gamma}{dq_0^2} \right]^{\text{LO}} \left(A_0 \ln \delta_{\text{ex}} + C_0 \right) \ln m_\ell + \text{non-collinear}$$

differences partly due to tight angle cut in BIP

$$A_0 = A_0^{\rm INZ} = A_0^{\rm BIP} = -4$$

$$m_K \to 0 \text{ limit}$$

$$C_0^{\text{INZ}} = -\frac{19}{3} + 8 \frac{\hat{q}_0^2}{(1-\hat{q}_0^2)^2} + 4 \frac{(3-\hat{q}_0^2)}{(1-\hat{q}_0^2)^3} \hat{q}_0^4 \ln \hat{q}_0^2 + \mathcal{O}(\delta_{\text{ex}}) \xrightarrow{\hat{q}_0^2 \to 1} -3 + \mathcal{O}(\delta_{\text{ex}}) + \mathcal{O}(\hat{q}_0^2 - 1)$$

$$C_0^{\text{BIP}} = -3 + \mathcal{O}(\delta_{\text{ex}}) .$$
(A.13)

Constant versus non-constant form factor & distortion of q^2 -spectrum

 $(q_0^2)_{\max} = \begin{cases} q^2 + \delta_{ex} q_0^2 & \cos \theta_{\gamma}^{(1)} = -1 & \text{tight-angle cut} \\ q^2 + \delta_{ex} m_B^2 & \cos \theta_{\gamma}^{(1)} = +1 & \text{max-angle} \end{cases}$

Additional Literature on QED corrections

2-body decays

• $B_s \rightarrow \mu\mu$ in SCET Beneke, Bobeth, Szafrom'17'19 Power enhanced effects $\frac{m_\ell}{\Lambda} \rightarrow \frac{m_b}{\Lambda}$ chirality suppression in different disguise

Factorisation in QED considerably more complicated than in QCD Process dependent distribution amplitudes

• $B \rightarrow K\pi$ in SCET Beneke, Boer, Toelstede, Vos '20 Even more distribution amplitudes discussed

3-body decays

- $K \rightarrow \pi \ell \ell$ in "scalar QED", Kubis, Schmidt '10 Became aware only after publication
- $B \rightarrow D\ell\nu$ in "scalar QED" with constant form factor Ginsparg '67 (no approximation), de Boer, Kitahara, Nisandzic '18 (soft photon)
- $K \rightarrow \pi \ell \nu$ in ChiPT ,Cirigliano, Knecht, Neufeld, Rugensberger,Talavera '01 structure-dependence, also derivative expansion but ChiPT as EFT (more mature)

 b → sℓ⁺ℓ⁻(inclusive) ,Huber, Lunghi, Misiak, Wyler'05 Dedicated comparison in paper in appendix. Beautiful universality of coll-logs emerging depending on the spin encoded in splitting functions for the leptons

$$\tilde{\Delta}_{\rm hc}^{(\ell)}(\hat{q}^2) = \frac{1}{\Gamma^{\rm LO}} \left(\int_{\hat{q}^2}^1 \frac{dz}{z} P_{f \to f\gamma}(z) \frac{d\Gamma^{\rm LO}(\hat{q}^2/z)}{d\hat{q}^2/z} \right) \ln \frac{\Lambda_b}{m_\ell}$$

$$P_{f \to f\gamma}(z) = \frac{1+z^2}{(1-z)_+} + \frac{3}{2}\delta(1-z)$$

$$\frac{1}{\Gamma^{\rm LO}} \frac{d\Gamma^{\rm LO}(\hat{q}^2)}{d\hat{q}^2} = \begin{cases} 2(1-\hat{q}^2)^2(2\hat{q}^2+1) & b \to s\ell^+\ell^-\\ 4(1-\hat{q}^2)^3 & \bar{B} \to \bar{K}\ell^+\ell^- \end{cases}$$

- $b \rightarrow s\ell^+\ell^-$ (inclusive) ,Huber, Hurth, Lunghi,'15 Includes angular analysis (not looked at closely)
- K_{l2}, K_{l3} (lattice QCD & current insertion) Sachrajda, Martinelli, ...'15'& later challenges with massless photon and exponentially growing states
 And other lattice groups: Portelli et al , Patella et al (C* boundary conditions)