Soft photon QED effects to the ratio of CKM elements

(Based on : A. Bansal, N. Mahajan, D.M., JHEP 03 (2022) 130)

Dayanand Mishra

Email: dayanand@prl.res.in

ullet Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

- ullet Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parameterization):

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4).$$

lacktriangle Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

• CKM matrix (Wolfenstein parameterization):

$$V_{\rm CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4).$$

ullet Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

• CKM matrix (Wolfenstein parameterization):

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4).$$

Disagreement between exclusive and inclusive measurements¹

$$|V_{ub}|_{incl} = 4.40 \times 10^{-3}$$
 $\sim 3.5\sigma...?$
 $|V_{ub}|_{excl} = 3.72 \times 10^{-3},$ V_{ub}

¹pdg.lbl.gov

ullet Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

• CKM matrix (Wolfenstein parameterization):

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4).$$

Disagreement between exclusive and inclusive measurements¹

$$|V_{ub}|_{incl} = 4.40 \times 10^{-3}$$
 $\sim 3.5\sigma...?$ $|V_{cb}|_{incl} = 42.21 \times 10^{-3}$ $\sim 3\sigma...?$ $|V_{ub}|_{excl} = 3.72 \times 10^{-3}$, $|V_{ub}|_{excl} = 39.36 \times 10^{-3}$ $|V_{cb}|_{excl} = 39.36 \times 10^{-3}$

¹pdg.lbl.gov

ullet Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

• CKM matrix (Wolfenstein parameterization):

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4).$$

Disagreement between exclusive and inclusive measurements¹

$$|V_{ub}|_{incl} = 4.40 \times 10^{-3}$$
 $\sim 3.5\sigma...?$ $|V_{cb}|_{incl} = 42.21 \times 10^{-3}$ $\sim 3\sigma...?$ $|V_{ub}|_{excl} = 3.72 \times 10^{-3}$, $|V_{ub}|_{excl} = 39.36 \times 10^{-3}$ $|V_{cb}|_{excl} = 39.36 \times 10^{-3}$

$$\begin{vmatrix} V_{cb} \end{vmatrix}_{incl} = 42.21 \times 10^{-3} \quad \sim 3\sigma...$$

 $\begin{vmatrix} V_{cb} \end{vmatrix}_{excl} = 39.36 \times 10^{-3} \quad V_{cb}$

New Physics or Theoretical uncertainties ...?

Origin of Theoretical uncertainties

Proposed LFU ratios R_K or R_D : less sensitive to hadronic uncertainties but Soft photon QED corrections^{2,3}...?

²Isidori et.al. 2020, ³Mishra et.al. 2020

Proposed LFU ratios R_K or R_D : less sensitive to hadronic uncertainties but Soft photon QED corrections^{2,3}...?

$$R_{K}^{\mu e}\equivrac{\int dq^{2}rac{d\Gamma(B
ightarrow K\mu^{+}\mu^{-})}{dq^{2}}}{\int dq^{2}rac{d\Gamma(B
ightarrow Ke^{+}e^{-})}{dq^{2}}}$$
 $R_{D}\equivrac{\int dq^{2}rac{d\Gamma(B
ightarrow D au
u_{ au})}{dq^{2}}}{\int dq^{2}rac{d\Gamma(B
ightarrow D au
u_{ au})}{dq^{2}}}$

²Isidori et.al. 2020, ³Mishra et.al. 2020

Proposed LFU ratios R_K or R_D : less sensitive to hadronic uncertainties but Soft photon QED corrections^{2,3}...?

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 \end{pmatrix} + O(\lambda^4).$$
 constructed
$$\begin{pmatrix} R_V = \frac{|V_{ub}|}{|V_{cb}|} \\ V_{cb} & V_{cb} \end{pmatrix}$$

²Isidori et.al. 2020, ³Mishra et.al. 2020

Experimental (LHCb) results :

1.
$$\Lambda_b^0 \to p \mu^- \bar{\nu}_{\mu}$$
 and $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}$ modes: (Aaij et.al., 2015) R_V (high q^2) = 0.083 ± 0.004

2.
$$B_s^0 \to K^- \mu^+ \nu_\mu$$
 and $B_s^0 \to D_s^- \mu^+ \nu_\mu$ modes: (Aaij et.al., 2021) R_V (high q^2) = 0.095 ± 0.008

Experimental (LHCb) results:

1.
$$\Lambda_b^0 \to p \mu^- \bar{\nu}_{\mu}$$
 and $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}$ modes: (Aaij et.al., 2015) $R_V (\text{high } q^2) = 0.083 \pm 0.004$

2.
$$B_s^0 \to K^- \mu^+ \nu_\mu$$
 and $B_s^0 \to D_s^- \mu^+ \nu_\mu$ modes: (Aaij et.al., 2021) R_V (high q^2) = 0.095 ± 0.008

ullet R_V as constructed using measurements of $|V_{ub}|$ and $|V_{cb}|$ obtained from PDG:

$$R_V \Big|_{excl}^{\text{high } q^2} = 0.094 \pm 0.005$$
 $R_V \Big|_{incl}^{\text{high } q^2} = 0.101 \pm 0.007$

• Experimental (LHCb) results:

1.
$$\Lambda_b^0 \to p \mu^- \bar{\nu}_{\mu}$$
 and $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu}$ modes: (Aaij et.al., 2015) $R_V (\text{high } q^2) = 0.083 \pm 0.004$

2.
$$B_s^0 \to K^- \mu^+ \nu_\mu$$
 and $B_s^0 \to D_s^- \mu^+ \nu_\mu$ modes: (Aaij et.al., 2021) R_V (high q^2) = 0.095 ± 0.008

ullet R_V as constructed using measurements of $|V_{ub}|$ and $|V_{cb}|$ obtained from PDG:

$$R_V \Big|_{excl}^{\text{high } q^2} = 0.094 \pm 0.005$$
 $R_V \Big|_{incl}^{\text{high } q^2} = 0.101 \pm 0.007$

 \Longrightarrow Motivation to study R_V

Non-Radiative:

$$\text{Matrix element}: \mathcal{M}_0(B \to P\ell\bar{\nu_\ell}) = \frac{G_F}{\sqrt{2}} V_{qb} \mathcal{H}_\mu(p_P,p_B) \mathcal{L}^\mu$$

$$\mathcal{H}_{\mu}(p_{P},p_{B}) = (p_{B} + p_{P})_{\mu}f_{+}^{P}(q^{2}) + (p_{B} - p_{P})_{\mu}f_{-}^{P}(q^{2}), \quad \mathcal{L}^{\mu} = u_{\ell}\gamma^{\mu}(1 - \gamma^{5})v_{\nu_{\ell}}$$

Non-Radiative:

Non-Radiative:

Real photon emission:

Non-Radiative:

$$\text{Matrix element}: \mathcal{M}_0(B \to P\ell\bar{\nu_\ell}) = \frac{G_F}{\sqrt{2}} V_{qb} \mathcal{H}_\mu(p_P,p_B) \mathcal{L}^\mu \\ \mathcal{H}_\mu(p_P,p_B) = (p_B + p_P)_\mu f_+^P(q^2) + (p_B - p_P)_\mu f_-^P(q^2), \quad \mathcal{L}^\mu = u_\ell \gamma^\mu (1-\gamma^5) v_{\nu_\ell}$$

Real photon emission:

• Gauge invariant matrix element :

$$\mathcal{M} = e\epsilon_{\alpha}(k) \left[\mathcal{M}_{0} \left(-\frac{p_{B}^{\alpha}}{p_{B}.k} + \frac{p_{\ell}^{\alpha}}{2p_{\ell}.k} \right) + \bar{u}(p_{\ell}) \frac{\gamma^{\alpha}\gamma_{\mu}k^{\mu}}{2p_{B}.k} \Gamma_{\mu}v(p_{\nu})\mathcal{H}^{\mu} \right.$$
$$\left. - (f_{+} - f_{-})\bar{u}(p_{\ell}) \left(\frac{p_{B}^{\alpha}}{p_{B}.k} \gamma_{\mu}k^{\mu} - \gamma^{\alpha} \right) (1 - \gamma^{5})v(p_{\nu}) \right]$$

• General decay width form for $B \to P\ell\bar{\nu}_\ell\gamma$:

$$\Gamma|_{B\to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_{\nu}}{(2\pi)^3 2E_{\nu}} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_{\nu} - k\right) \left|\mathcal{M}\right|_{B\to P\ell\nu_{\ell}\gamma}^2$$

lacktriangle General decay width form for $B \to P \ell \bar{\nu}_\ell \gamma$:

$$\Gamma|_{B\to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_{\nu}}{(2\pi)^3 2E_{\nu}} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_{\nu} - k\right) \left|\mathcal{M}\right|_{B\to P\ell\nu_{\ell}\gamma}^2$$

Photon exclusive case:

Here, experiment is sensitive to radiated photons.

lacktriangle General decay width form for $B \to P \ell \bar{\nu}_{\ell} \gamma$:

$$\Gamma|_{B\to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_\nu}{(2\pi)^3 2E_\nu} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_\nu - k\right) \left|\mathcal{M}\right|_{B\to P\ell\nu_{\ell}\gamma}^2$$

Photon exclusive case:

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$\frac{d^2\Gamma_{\text{real}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(1 + 2\alpha\tilde{B}) + \frac{d^2\Gamma'_{\text{real}}}{dydz}$$

lacktriangle General decay width form for $B \to P \ell \bar{\nu}_{\ell} \gamma$:

$$\Gamma|_{B\to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_\nu}{(2\pi)^3 2E_\nu} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_\nu - k\right) \left|\mathcal{M}\right|_{B\to P\ell\nu_{\ell}\gamma}^2$$

Photon exclusive case:

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$\frac{d^2\Gamma_{\text{real}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(1 + 2\alpha\tilde{B}) + \frac{d^2\Gamma'_{\text{real}}}{dydz}$$

$$y = \frac{2p_B \cdot p_{\ell}}{m_B^2}, z = \frac{2p_B \cdot p_P}{m_B^2}$$

lacktriangle General decay width form for $B \to P \ell \bar{\nu}_{\ell} \gamma$:

$$\Gamma|_{B\to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_{\nu}}{(2\pi)^3 2E_{\nu}} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_{\nu} - k\right) \left|\mathcal{M}\right|_{B\to P\ell\nu_{\ell}\gamma}^2$$

Photon exclusive case:

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$\frac{d^2\Gamma_{\text{real}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(1 + 2\alpha\tilde{B}) + \frac{d^2\Gamma'_{\text{real}}}{dydz}$$

$$y = \frac{2p_B \cdot p_{\ell}}{m_B^2}, z = \frac{2p_B \cdot p_P}{m_B^2}$$

where,
$$\tilde{B} = \frac{-1}{2\pi} \left\{ \ln \left(\frac{k_{max}^2 m_B m_\ell}{m_\gamma^2 E_B E_\ell} \right) - \frac{p_B \cdot p_\ell}{2} \left[\int_{-1}^1 \frac{dt}{p_t^2} \ln \left(\frac{k_{max}^2}{E_t^2} \right) + \int_{-1}^1 \frac{dt}{p_t^2} \ln \left(\frac{p_t^2}{m_\gamma^2} \right) \right] \right\}$$

• General decay width form for $B \to P\ell\bar{\nu}_{\ell}\gamma$:

$$\Gamma |_{B \to P\ell\nu_{\ell}\gamma} = \frac{1}{2m_B} \int \frac{d^3p_P}{(2\pi)^3 2E_P} \int \frac{d^3p_l}{(2\pi)^3 2E_l} \int \frac{d^3p_{\nu}}{(2\pi)^3 2E_{\nu}} \int \frac{d^3k}{(2\pi)^3 2E_k} (2\pi)^4 \delta^4 \left(Q - p_{\nu} - k \right) \left| \mathcal{M} \right|_{B \to P\ell\nu_{\ell}\gamma}^2$$

Photon exclusive case:

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$\frac{d^2\Gamma_{\text{real}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(1 + 2\alpha\tilde{B}) + \frac{d^2\Gamma'_{\text{real}}}{dydz}$$

$$y = \frac{2p_B \cdot p_{\ell}}{m_B^2}, z = \frac{2p_B \cdot p_P}{m_B^2}$$

where,
$$\tilde{B} = \frac{-1}{2\pi} \left\{ \ln \left(\frac{k_{max}^2 m_B m_\ell}{m_\gamma^2 E_B E_\ell} \right) - \frac{p_B \cdot p_\ell}{2} \left[\int_{-1}^1 \frac{dt}{p_t^2} \ln \left(\frac{k_{max}^2}{E_t^2} \right) + \int_{-1}^1 \frac{dt}{p_t^2} \ln \left(\frac{p_t^2}{m_\gamma^2} \right) \right] \right\}$$

• Choosing the kinematical cut, total decay width can get rid of Collinear divergences

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

where,

$$B = \frac{1}{4\pi} \Big[2B_0(q^2, m_B^2, m_\ell^2) - 4B_0(m_\ell^2, 0, m_\ell^2) - 4\left((p_B, p_\ell) + m_B^2\right) C_1(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) - 8(p_B, p_\ell) C_0(m_\ell^2, m_B^2, q^2, m_\ell^2, m_\gamma^2, m_B^2) \\ - 4m_\ell^2 C_2(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) + 2 - B_0(p_\ell^2, 0, m_\ell^2) + 4m_\ell^2 B_0'(p_\ell^2, m_\gamma^2, m_\ell^2) + 2B_0(p_B^2, 0, m_\ell^2) + 4m_B^2 B_0'(p_B^2, m_\gamma^2, m_B^2) \Big]$$

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

where,

$$B = \frac{1}{4\pi} \Big[2B_0(q^2, m_B^2, m_\ell^2) - 4B_0(m_\ell^2, 0, m_\ell^2) - 4\left((p_B, p_\ell) + m_B^2\right) C_1(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) - 8(p_B, p_\ell) C_0(m_\ell^2, m_B^2, q^2, m_\ell^2, m_\ell^2, m_\ell^2) \\ - 4m_\ell^2 C_2(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) + 2 - B_0(p_\ell^2, 0, m_\ell^2) + 4m_\ell^2 B_0'(p_\ell^2, m_\gamma^2, m_\ell^2) + 2B_0(p_B^2, 0, m_\ell^2) + 4m_B^2 B_0'(p_B^2, m_\gamma^2, m_B^2) \Big]$$

2-point PV functions

Virtual Correction:

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

where,

$$B = \frac{1}{4\pi} \left[2B_0(q^2, m_B^2, m_\ell^2) - 4B_0(m_\ell^2, 0, m_\ell^2) - 4\left((p_B, p_\ell) + m_B^2\right) C_1(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) - 8(p_B, p_\ell) C_0(m_\ell^2, m_B^2, q^2, m_\ell^2, m_\gamma^2, m_B^2) - 4m_\ell^2 C_2(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) + 2 - B_0(p_\ell^2, 0, m_\ell^2) + 4m_\ell^2 B_0'(p_\ell^2, m_\gamma^2, m_\ell^2) + 2B_0(p_B^2, 0, m_\ell^2) + 4m_B^2 B_0'(p_B^2, m_\gamma^2, m_B^2) \right]$$

3-point PV functions

Virtual Correction:

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

where,

h
$$B^ \ell^ B^ \ell^ B^ \ell^ D^0$$
 $\bar{\nu}_\ell$ Self energy $\bar{\nu}_\ell$ Vertex correction $\bar{\nu}_\ell$

$$B = \frac{1}{4\pi} \Big[2B_0(q^2, m_B^2, m_\ell^2) - 4B_0(m_\ell^2, 0, m_\ell^2) - 4\left((p_B, p_\ell) + m_B^2\right) C_1(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) - 8(p_B, p_\ell) C_0(m_\ell^2, m_B^2, q^2, m_\ell^2, m_\gamma^2, m_B^2) \\ - 4m_\ell^2 C_2(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) + 2 - B_0(p_\ell^2, 0, m_\ell^2) + 4m_\ell^2 B_0'(p_\ell^2, m_\gamma^2, m_\ell^2) + 2B_0(p_B^2, 0, m_\ell^2) + 4m_B^2 B_0'(p_B^2, m_\gamma^2, m_B^2) \Big]$$

• Total $\mathcal{O}(\alpha)$ QED correction: $\frac{d^2\Gamma_\ell^{\text{QED}}}{dydz} = \frac{d^2\Gamma_0}{dydz} \left(1 + \Delta_\ell^{\text{QED}}\right)$

Virtual Correction:

• The second order differential decay width

$$\frac{d^2\Gamma_{\text{vir}}}{dydz} = \frac{d^2\Gamma_0}{dydz}(2\alpha B) + \frac{d^2\Gamma'_{\text{vir}}}{dydz}$$

where,

$$B^ e^ B^ e^ B^ e^ E^-$$

$$B = \frac{1}{4\pi} \Big[2B_0(q^2, m_B^2, m_\ell^2) - 4B_0(m_\ell^2, 0, m_\ell^2) - 4\left((p_B, p_\ell) + m_B^2\right) C_1(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) - 8(p_B, p_\ell) C_0(m_\ell^2, m_B^2, q^2, m_\ell^2, m_\gamma^2, m_B^2) \\ - 4m_\ell^2 C_2(m_B^2, q^2, m_\ell^2, 0, m_B^2, m_\ell^2) + 2 - B_0(p_\ell^2, 0, m_\ell^2) + 4m_\ell^2 B_0'(p_\ell^2, m_\gamma^2, m_\ell^2) + 2B_0(p_B^2, 0, m_\ell^2) + 4m_B^2 B_0'(p_B^2, m_\gamma^2, m_B^2) \Big]$$

• Total $\mathcal{O}(\alpha)$ QED correction: $\frac{d^2\Gamma_\ell^{\rm QED}}{dydz} = \frac{d^2\Gamma_0}{dydz} \left(1 + \Delta_\ell^{\rm QED}\right)$ QED correction factor

lackbox The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_{qb}^0}}$

ullet The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_{qb}^0}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

• The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_{qb}^0}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}^{0}|} - 1$

ullet The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_{qb}^0}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}^{0}|} - 1$

• The Ratio R_V : $R_V = \sqrt{\frac{\Gamma_{qb}^{exp} \mathcal{G}_{cb}}{\Gamma_{qb}^{exp} \mathcal{G}_{ub}}},$

• The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_{qb}^0}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}^{0}|} - 1$

• The Ratio
$$R_V$$
: $R_V = \sqrt{\frac{\Gamma_{qb}^{exp} \mathcal{G}_{cb}}{\Gamma_{qb}^{exp} \mathcal{G}_{ub}}},$

QED shift in
$$R_V$$
: $\Delta_{R_V} = \delta_{V_{ub}}^{\text{QED}} - \delta_{V_{cb}}^{\text{QED}}$

• The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{exp}}{\mathscr{G}_0}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}^{0}|} - 1$

• The Ratio
$$R_V$$
: $R_V = \sqrt{\frac{\Gamma_{qb}^{exp} \mathcal{G}_{cb}}{\Gamma_{qb}^{exp} \mathcal{G}_{ub}}}$, QED shift in R_V : $\Delta_{R_V} = \delta_{V_{ub}}^{\text{QED}} - \delta_{V_{cb}}^{\text{QED}}$

• The LFU Ratio
$$R_P$$
 : $R_P=rac{\int dq^2 rac{d\Gamma(B o P auar
u_ au)}{dq^2}}{\int dq^2 rac{d\Gamma(B o P\muar
u_ au)}{dq^2}},$

• The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{ap}}{g_{0}}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}|} - 1$

• The Ratio R_V : $R_V = \sqrt{\frac{\Gamma_{qb}^{exp} \mathcal{G}_{cb}}{\Gamma_{qb}^{exp} \mathcal{G}_{ub}}}$, QED shift in R_V : $\Delta_{R_V} = \delta_{V_{ub}}^{\text{QED}} - \delta_{V_{cb}}^{\text{QED}}$

• The CKM elements extracted from experimental decay width: $|V_{qb}^0| = \sqrt{\frac{\Gamma_{qb}^{ap}}{g_{0}}}$

with,
$$\Gamma_{qb}^{exp} = |V_{qb}^0|^2 \frac{m_B}{256\pi^3} \frac{G_F^2}{2} \int dy \int dz |\mathcal{M}_0|^2$$
.

QED shift in the CKM elements: $\delta_{V_{qb}}^{\text{QED}} = \frac{|V_{qb}|}{|V_{qb}|} - 1$

• The Ratio
$$R_V$$
: $R_V = \sqrt{\frac{\Gamma_{qb}^{exp} \mathcal{G}_{cb}}{\Gamma_{qb}^{exp} \mathcal{G}_{ub}}}$, QED shift in R_V : $\Delta_{R_V} = \delta_{V_{ub}}^{\text{QED}} - \delta_{V_{cb}}^{\text{QED}}$

Note: All quantities with '0' as superscript or subscript are non-radiative while without any superscript or subscript are $\mathcal{O}(\alpha)$ QED corrected quantity.

$$B^0 \rightarrow P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$$

$$B^- \to P^0 (\,=D,\pi) \mu^- \bar{\nu}_\mu$$

QED Corrections:

Radiative corrections to R_V for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+(=D,\pi)\mu^-\bar{\nu}_\mu$ and (b) $B^- \to P^0(=D,\pi)\mu^-\bar{\nu}_\mu$

QED Corrections:

Radiative corrections to R_V for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+(=D,\pi)\mu^-\bar{\nu}_\mu$ and (b) $B^- \to P^0(=D,\pi)\mu^-\bar{\nu}_\mu$

- Charged modes: almost zero correction
- Neutral mode : very minute ($\sim \mathcal{O}(10^{-3})$)

QED Corrections:

Radiative corrections to R_V for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+(=D,\pi)\mu^-\bar{\nu}_\mu$ and (b) $B^- \to P^0(=D,\pi)\mu^-\bar{\nu}_\mu$

- Charged modes: almost zero correction
- Neutral mode : very minute ($\sim \mathcal{O}(10^{-3})$)

Consequence of photon emission from D vs π mesons

$$B^0 \to P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$$

$$B^-\to P^0(\,=D,\pi)\mu^-\bar\nu_\mu$$

Radiative corrections to the CKM elements $|V_{cb}|$ (solid) and $|V_{ub}|$ (dashed) for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$ and (b) $B^- \to P^0 (=D,\pi) \mu^- \bar{\nu}_\mu$

Radiative corrections to the CKM elements $|V_{cb}|$ (solid) and $|V_{ub}|$ (dashed) for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$ and (b) $B^- \to P^0 (=D,\pi) \mu^- \bar{\nu}_\mu$

Corrections to both CKM elements :
$$\delta_{V_{qb}}^{\rm QED} = \frac{|V_{qb}|}{|V_{qb}^0|} - 1$$

Radiative corrections to the CKM elements $|V_{cb}|$ (solid) and $|V_{ub}|$ (dashed) for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$ and (b) $B^- \to P^0 (=D,\pi) \mu^- \bar{\nu}_\mu$

Radiative corrections to the CKM elements $|V_{cb}|$ (solid) and $|V_{ub}|$ (dashed) for different thresholds on photon energy, k_{max} for (a) $B^0 \to P^+ (=D,\pi) \mu^- \bar{\nu}_\mu$ and (b) $B^- \to P^0 (=D,\pi) \mu^- \bar{\nu}_\mu$

Sensitivity of R_V on the choice of form factors :

Sensitivity of R_V on the choice of form factors:

Sensitivity of R_V on the choice of form factors :

- We choose two set of form factors
 - 1. (I): form factors used in calculating R_{ν}

Using QCD Sum rule and HQET (Ligeti et.al., 2017)

Using QCD LCSR (Khodjamirian et.al., 2011)

2. (II): form factors obtained from lattice (FLAG, 2021)

Sensitivity of R_V on the choice of form factors :

	$(f_{B\to\pi}^{(I)}; f_{B\to D}^{(I)})$	$(f_{B\to\pi}^{(II)}; f_{B\to D}^{(I)})$	$(f_{B\to\pi}^{(I)}; f_{B\to D}^{(II)})$	$(f_{B\to\pi}^{(II)}; f_{B\to D}^{(II)})$
R_V	0.091	0.093	0.091	0.093

The ratio of RV determined with the choice $f_{B\to\pi}^{(A)}$ and $f_{B\to D}^{(A)}$ for the corresponding form factors.

	$(f_{B\to\pi}^{(I)}; f_{B\to D}^{(I)})$	$(f_{B\to\pi}^{(II)}; f_{B\to D}^{(I)})$	$(f_{B\to\pi}^{(I)}; f_{B\to D}^{(II)})$	$(f_{B\to\pi}^{(II)}; f_{B\to D}^{(II)})$
R_V	0.091	0.093	0.091	0.093

The ratio of RV determined with the choice $f_{B\to\pi}^{(A)}$ and $f_{B\to D}^{(A)}$ for the corresponding form factors.

 R_V turns out to be robust against soft photon corrections as well as choice of form factors

Phenomenological impact (an example)

Consider new physics (NP) in the form of right handed currents in quarks:

$$H_{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{qb} c_R^q (\bar{\ell} \gamma_\mu P_L \nu) \Big(\bar{q} \gamma_\mu P_R b \Big),$$

Phenomenological impact (an example)

Consider new physics (NP) in the form of right handed currents in quarks:

$$H_{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{qb} c_R^q (\bar{\ell} \gamma_\mu P_L \nu) \Big(\bar{q} \gamma_\mu P_R b \Big),$$

- Differential decay width

• For exclusive process
$$B \to P\ell\bar{\nu}_{\ell}$$
:
$$\frac{d^2\Gamma_{B\to P\ell\bar{\nu}_{\ell}}}{dy} = \frac{d^2\Gamma_{B\to P\ell\bar{\nu}_{\ell}}}{dy} \Big|_{\text{SM}} |1 + c_R^q|^2$$

Phenomenological impact (an example)

Consider new physics (NP) in the form of right handed currents in quarks:

$$H_{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{qb} c_R^q (\bar{\ell} \gamma_\mu P_L \nu) \Big(\bar{q} \gamma_\mu P_R b \Big),$$

- Differential decay width

• For exclusive process
$$B \to P\ell\bar{\nu}_{\ell}$$
:
$$\frac{d^{2}\Gamma_{B\to P\ell\bar{\nu}_{\ell}}}{dy} = \frac{d^{2}\Gamma_{B\to P\ell\bar{\nu}_{\ell}}}{dy} \Big|_{\text{SM}} |1 + c_{R}^{q}|^{2}$$

$$\begin{array}{l} \bullet \text{ For inclusive process } (m_u/m_b \to 0): \\ \frac{d^2\Gamma_{B \to X_q \ell \bar{\nu}_\ell}}{dy} = |1 + c_R^q|^2 \frac{d^2\Gamma_{B \to X_q \ell \bar{\nu}_\ell}}{dy} \bigg|_{\text{SM}} + c_R^q \frac{d^2\Gamma_{B \to X_q \ell \bar{\nu}_\ell}}{dy} \bigg|_{\text{LR}}$$

ullet NP impact on $|V_{qb}|$

	Modes	V_{qb}^{NP}		
	$B \to D\ell\nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 + c_R^c}$		
Exclusive Decays	$B \to D^* \ell \nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 - c_R^c}$		
Exclusive Decays	$B \to \pi \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 + c_R^u}$		
	$B \to \rho \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 - c_R^u}$		
Inclusive Decay	$B \to X_c \ell \nu_\ell$	$V_{cb} = \frac{V_{cb}(SM)}{1 - 0.34c_R^c}$		
J	$B \to X_u \ell \nu_\ell$	$V_{cb} - \frac{1 - 0.34c_R^c}{1 - 0.34c_R^c}$ $V_{ub} = V_{ub}^{(SM)} (\text{for } m_u \sim 0)$		

 $V_{qb}^{\mbox{NP}}$ is the corresponding CKM elements in the presence of NP

ullet NP impact on $|V_{qb}|$

	Modes	V_{qb}^{NP}
	$B \to D\ell\nu_{\ell}$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 + c_R^c}$
Exclusive Decays	$B \to D^* \ell \nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 - c_R^c}$
Exclusive Decays	$B \to \pi \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 + c_R^u}$
	$B \to \rho \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 - c_R^u}$
Inclusive Decay	$B \to X_c \ell \nu_\ell$	$V_{cb} = \frac{V_{cb}(SM)}{1 - 0.34c_R^c}$
	$B \to X_u \ell \nu_\ell$	$V_{ub} = V_{ub}^{(SM)} \text{(for } m_u \sim 0)$

 $V_{qb}^{\mbox{NP}}$ is the corresponding CKM elements in the presence of NP

Note: $V_{qb}^{\mbox{SM}}$ is the corresponding CKM elements in the absence of NP

ullet NP impact on $|V_{qb}|$

	Modes	V_{qb}^{NP}	
	$B \to D\ell\nu_{\ell}$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 + c_R^c}$	
Exclusive Decays	$B \to D^* \ell \nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 - c_R^c}$	
Exclusive Decays	$B \to \pi \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 + c_R^u}$	
	$B \to \rho \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 - c_R^u}$	
Inclusive Decay	$B \to X_c \ell \nu_\ell$	$V_{cb} = \frac{V_{cb}(SM)}{1 - 0.34c_R^c}$	
	$B \to X_u \ell \nu_\ell$	$V_{ub} = V_{ub}^{(\mathrm{SM})} (\text{for } m_u \sim 0)$	

 $V_{qb}^{\mbox{NP}}$ is the corresponding CKM elements in the presence of NP

Note: $V_{qb}^{\mbox{SM}}$ is the corresponding CKM elements in the absence of NP

ullet NP impact on the ratio of R_V^{NP} to R_V^{SM}

	$\frac{B \to X_u}{B \to X_c}$	$\frac{B{\to}\pi}{B{\to}D}$	$\frac{B{\to}\pi}{B{\to}D^*}$	$\frac{B \rightarrow \rho}{B \rightarrow D}$	$\frac{B{\to}\rho}{B{\to}D^*}$
$\left(\frac{ V_{ub} }{ V_{cb} }\right)^{\!\!\!NP}\!\!/\left(\frac{ V_{ub} }{ V_{cb} }\right)_{\rm SM}$	$1 - 0.34c_R^c$	$1 + c_R^c - c_R^u$	$1 - c_R^c - c_R^u$	$1 + c_R^c + c_R^u$	$1 - c_R^c + c_R^u$

ullet NP impact on $|V_{qb}|$

	Modes	V_{qb}^{NP}			
Exclusive Decays	$B \to D\ell\nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 + c_R^c}$			
	$B \to D^* \ell \nu_\ell$	$V_{cb}^{NP} = \frac{V_{cb}^{(SM)}}{1 - c_R^c}$			
	$B \to \pi \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 + c_R^u}$			
	$B \to \rho \ell \nu_{\ell}$	$V_{ub}^{NP} = \frac{V_{ub}^{(SM)}}{1 - c_R^u}$			
Inclusive Decay	$B \to X_c \ell \nu_\ell$	$V_{cb} = \frac{V_{cb}(SM)}{1 - 0.34c_R^c}$			
	$B \to X_u \ell \nu_\ell$	$V_{ub} = V_{ub}^{(SM)} (\text{for } m_u \sim 0)$			

 $V_{qb}^{\mbox{NP}}$ is the corresponding CKM elements in the presence of NP

Note: $V_{qb}^{\mbox{SM}}$ is the corresponding CKM elements in the absence of NP

ullet NP impact on the ratio of R_V^{NP} to R_V^{SM}

	$\frac{B \to X_u}{B \to X_c}$	$\frac{B{\to}\pi}{B{\to}D}$	$\frac{B{\to}\pi}{B{\to}D^*}$	$\frac{B \rightarrow \rho}{B \rightarrow D}$	$\frac{B{\to}\rho}{B{\to}D^*}$
$\left(\frac{ V_{ub} }{ V_{cb} }\right)^{\!\!\!NP}\!\!/\left(\frac{ V_{ub} }{ V_{cb} }\right)_{\rm SM}$	$1 - 0.34c_R^c$	$1 + c_R^c - c_R^u$	$1 - c_R^c - c_R^u$	$1 + c_R^c + c_R^u$	$1 - c_R^c + c_R^u$

• We get constraint on $c_R^u:c_R^u\in[-1.34,1.34]c_R^c$ (actual power of R_V)

 \bullet Attempt to find the constraint on $\mathscr{BR}(B_c \to \tau \nu_\tau)$ using $\mathscr{BR}(B \to \tau \nu_\tau)$

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) = (1 - 2c_R^{u(c)}) \mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau})|_{SM}$$

 \bullet Attempt to find the constraint on $\mathscr{BR}(B_c \to \tau \nu_\tau)$ using $\mathscr{BR}(B \to \tau \nu_\tau)$

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) = (1 - 2c_R^{u(c)}) \mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau})|_{SM}$$

where,

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) |_{SM} = \frac{G_F^2 m_{B(B_c)} m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_{u(c)}}^2} \right) f_{B(B_c)}^2 |V_{u(c)b}|^2$$

 \bullet Attempt to find the constraint on $\mathscr{BR}(B_c\to \tau\nu_\tau)$ using $\mathscr{BR}(B\to \tau\nu_\tau)$

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) = (1 - 2c_R^{u(c)}) \mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau})|_{SM}$$

where,

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) |_{SM} = \frac{G_F^2 m_{B(B_c)} m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_{u(c)}}^2} \right) f_{B(B_c)}^2 |V_{u(c)b}|^2$$

With $f_{B(B_c)} = 185(434) \text{MeV}$ And $\mathscr{BR}(B \to \tau \nu_{\tau})|_{exp} = 1.09 \times 10^{-4}$

• $\mathcal{BR}(B_c \to \tau \nu_\tau)$ is found to be $[1.9-2.4]\,\%$, well below the bound for $\mathcal{BR}(B_c \to \tau \nu_\tau) < 30\,\%$

³Grinstein et.al, PRL 2017.

 \bullet Attempt to find the constraint on $\mathscr{BR}(B_c\to \tau\nu_\tau)$ using $\mathscr{BR}(B\to \tau\nu_\tau)$

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) = (1 - 2c_R^{u(c)}) \mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) |_{SM}$$

where,

$$\mathscr{BR}(B_{u(c)} \to \tau \nu_{\tau}) |_{SM} = \frac{G_F^2 m_{B(B_c)} m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_{u(c)}}^2} \right) f_{B(B_c)}^2 |V_{u(c)b}|^2$$

With $f_{B(B_c)} = 185(434) \text{MeV}$ And $\mathscr{BR}(B \to \tau \nu_{\tau})|_{exp} = 1.09 \times 10^{-4}$

- $\mathcal{BR}(B_c \to \tau \nu_\tau)$ is found to be $[1.9-2.4]\,\%$, well below the bound for $\mathcal{BR}(B_c \to \tau \nu_\tau) < 30\,\%$
- lacktriangle This examples $\Longrightarrow V_{cb}$ puzzle and V_{ub} puzzle are not independent

³Grinstein et.al, PRL 2017.

- lacktriangle The QED radiative corrections are found to be sensitive to maximum energy k_{max} and very little sensitive to the angle between photon and lepton.
- ullet R_V gets negligible correction due to the soft photon QED effects.

- ullet The QED radiative corrections are found to be sensitive to maximum energy k_{max} and very little sensitive to the angle between photon and lepton.
- ullet R_V gets negligible correction due to the soft photon QED effects.
- ullet R_V is affected very mildly by the choice of form factors in chosen q^2 range.

- lacktriangle The QED radiative corrections are found to be sensitive to maximum energy k_{max} and very little sensitive to the angle between photon and lepton.
- ullet R_V gets negligible correction due to the soft photon QED effects.
- ullet R_V is affected very mildly by the choice of form factors in chosen q^2 range.
- ullet $|V_{ub}|$ and $|V_{cb}|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_V relates two type of couplings in a model independent approach.

- lacktriangle The QED radiative corrections are found to be sensitive to maximum energy k_{max} and very little sensitive to the angle between photon and lepton.
- ullet R_V gets negligible correction due to the soft photon QED effects.
- ullet R_V is affected very mildly by the choice of form factors in chosen q^2 range.
- ullet $|V_{ub}|$ and $|V_{cb}|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_V relates two type of couplings in a model independent approach.

We are thus encouraged to propose the use of R_V in our quest for probing the SM and beyond it, both experimentally and theoretically.

- ullet The QED radiative corrections are found to be sensitive to maximum energy k_{max} and very little sensitive to the angle between photon and lepton.
- ullet R_V gets negligible correction due to the soft photon QED effects.
- ullet R_V is affected very mildly by the choice of form factors in chosen q^2 range.
- ullet $|V_{ub}|$ and $|V_{cb}|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_V relates two type of couplings in a model independent approach.

We are thus encouraged to propose the use of R_V in our quest for probing the SM and beyond it, both experimentally and theoretically.

Thank You for your attention

BACKUP

Differential decay width for inclusive modes:

$$\begin{split} \frac{d\Gamma}{d\hat{q}^2}\bigg|_{SM} = & \Big(1 + \frac{\lambda_1}{2m_b^2}\Big)\lambda(1,\hat{q}^2,\rho^2)\Big\{\Big[(1-\rho)^2 + \hat{q}^2(1+\rho) - 2(\hat{q}^2)^2\Big] \\ & + \frac{\hat{m}_\tau^2}{\hat{q}^2}\Big[2(1-\rho)^2 - \hat{q}^2(1+\rho) - (\hat{q}^2)^2\Big]\Big\} + \frac{3\lambda_2}{2m_b^2}\Big\{\Big[(1-\rho)^3(1-5\rho) - \hat{q}^2(1-\rho)^2(1+5\rho) \\ & - 3(\hat{q}^2)^2(5+6\rho+5\rho^2) + 25(\hat{q}^2)^3(1+\rho) - 10(\hat{q}^2)^4\Big] \\ & + \frac{\hat{m}_\tau^2}{\hat{q}^2}\Big[2(1-\rho)^3(1-5\rho) - \hat{q}^2(5-9\rho-21\rho^2+25\rho^3) \\ & + 3(\hat{q}^2)^2(1+2\rho+5\rho^2) + 5(\hat{q}^2)^3(1+\rho) - 5(\hat{q}^2)^4\Big]\Big\}, \end{split}$$

$$\frac{d\Gamma}{dq^2}\Big|_{LR} = -12\sqrt{\rho}\hat{q}^2\Big(1 + \frac{\lambda_1}{2m_b^2}\Big)\lambda(1,\hat{q}^2,\rho^2) + 4\sqrt{\rho}\frac{3\lambda_2}{2m_b^2}\Big\{\Big[2(1-\rho)^3 - 3\hat{q}^2(1-\rho)^2 + 12(\hat{q}^2)^2(1+\rho) - 7(\hat{q}^2)^3\Big] + \frac{4\hat{m}_{\tau}^2}{\hat{q}^2}\Big[(1-\rho)^3 - 3\hat{q}^2\rho(1-\rho) - 3\rho(\hat{q}^2)^2 + (\hat{q}^2)^3\Big]\Big\},$$