Soft photon QED effects to the ratio of CKM elements

(Based on : A. Bansal, N. Mahajan, D.M., JHEP 03 (2022) 130)

Dayanand Mishra

Email: dayanand@prl.res.in

Introduction

Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)

Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parameterization) :

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parameterization) :

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parameterization) :

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

- Disagreement between exclusive and inclusive measurements ${ }^{1}$

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }}=4.40 \times 10^{-3} \\
& \left|V_{u b}\right|_{\text {excl }}=3.72 \times 10^{-3},
\end{aligned}
$$

[^0]
Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parametrization) :

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

- Disagreement between exclusive and inclusive measurements ${ }^{1}$

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }}=4.40 \times 10^{-3} \\
& \left|V_{u b}\right|_{\text {excl }}=3.72 \times 10^{-3},
\end{aligned}
$$

$$
\begin{aligned}
& \left|V_{c b}\right|_{\text {incl }}=42.21 \times 10^{-3} \\
& \left|V_{c b}\right|_{\text {excl }}=39.36 \times 10^{-3}
\end{aligned}
$$

[^1]
Introduction

- Mismatch between flavor and mass eigenstates \Longrightarrow flavor transition in the SM (or CKM matrix)
- CKM matrix (Wolfenstein parameterization) :

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

- Disagreement between exclusive and inclusive measurements ${ }^{1}$

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }}=4.40 \times 10^{-3} \\
& \left|V_{u b}\right|_{\text {excl }}=3.72 \times 10^{-3},
\end{aligned}
$$

$$
\begin{aligned}
& \left|V_{c b}\right|_{\text {incl }}=42.21 \times 10^{-3} \\
& \left|V_{c b}\right|_{\text {excl }}=39.36 \times 10^{-3}
\end{aligned}
$$

New Physics or
Theoretical uncertainties.

[^2]

Origin of Theoretical uncertainties

[^3]

[^4]

Possible Solution:

Either get precise nonperturbation quantities or find an observable which is blind to these theoretical uncertainties

Proposed LFU ratios R_{K} or R_{D} : less sensitive to hadronic uncertainties but Soft photon QED corrections ${ }^{2,3} \ldots$?

$$
\begin{aligned}
R_{K}^{\mu e} & \equiv \frac{\int d q^{2} \frac{d \Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int d q^{2} \frac{d \Gamma\left(B \rightarrow K e^{+} e^{-}\right)}{d q^{2}}} \\
R_{D} & \equiv \frac{\int d q^{2} \frac{d \Gamma\left(B \rightarrow D \tau \nu_{\tau}\right)}{d q^{2}}}{\int d q^{2} \frac{d \Gamma\left(B \rightarrow D \mu \nu_{\mu}\right)}{d q^{2}}}
\end{aligned}
$$

[^5]

Possible Solution:

Either get precise nonperturbation quantities or find an observable which is blind to these theoretical uncertainties

Proposed LFU ratios R_{K} or R_{D} : less sensitive to hadronic uncertainties but Soft photon QED corrections ${ }^{2,3} \ldots$?

$$
V_{\mathrm{CKM}}=\left(\begin{array}{cc}
1-\frac{\lambda^{2}}{2} & \lambda \\
-\lambda & 1-\frac{\lambda^{2}}{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2}
\end{array}\right.
$$

[^6]- Experimental (LHCb) results :

1. $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}$ modes :
(Aaij et.al., 2015)

$$
R_{V}\left(\text { high } q^{2}\right)=0.083 \pm 0.004
$$

2. $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ and $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$ modes:
(Aaij et.al., 2021)

$$
R_{V}\left(\text { high } q^{2}\right)=0.095 \pm 0.008
$$

- Experimental (LHCb) results :

1. $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}$ modes :
(Aaij et.al., 2015)

$$
R_{V}\left(\text { high } q^{2}\right)=0.083 \pm 0.004
$$

2. $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ and $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$ modes:
(Aaij et.al., 2021)

$$
R_{V}\left(\text { high } q^{2}\right)=0.095 \pm 0.008
$$

- R_{V} as constructed using measurements of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ obtained from PDG:

$$
\left.R_{V}\right|_{\text {excl }} ^{\text {high }} \stackrel{q^{2}}{=} 0.094 \pm\left. 0.005 \quad R_{V}\right|_{\text {incl }} ^{\text {high }} \stackrel{q^{2}}{=} 0.101 \pm 0.007
$$

- Experimental (LHCb) results :

1. $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}$ modes :
(Aaij et.al., 2015)

$$
R_{V}\left(\text { high } q^{2}\right)=0.083 \pm 0.004
$$

2. $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ and $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$ modes:
(Aaij et.al., 2021)

$$
R_{V}\left(\text { high } q^{2}\right)=0.095 \pm 0.008
$$

- R_{V} as constructed using measurements of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ obtained from PDG:

$$
\left.R_{V}\right|_{\text {excl }} ^{\text {hish }} \stackrel{q^{2}}{=} 0.094 \pm\left. 0.005 \quad R_{V}\right|_{\text {incl }} ^{\text {high }} \stackrel{q^{2}}{=} 0.101 \pm 0.007
$$

\Longrightarrow Motivation to study R_{V}

QED Corrections to $B \rightarrow P \ell \bar{\nu}_{\ell}(P=D / \pi)$ mode

QED Corrections to $B \rightarrow P \ell \bar{\nu}_{\ell}(P=D / \pi)$ mode

Non-Radiative :

- Matrix element : $\mathscr{M}_{0}\left(B \rightarrow P \ell \overline{\nu_{\ell}}\right)=\frac{G_{F}}{\sqrt{2}} V_{q b} \mathscr{H}_{\mu}\left(p_{P}, p_{B}\right) \mathscr{L}^{\mu}$

$$
\mathscr{H}_{\mu}\left(p_{P}, p_{B}\right)=\left(p_{B}+p_{P}\right)_{\mu} f_{+}^{P}\left(q^{2}\right)+\left(p_{B}-p_{P}\right)_{\mu} f_{-}^{P}\left(q^{2}\right), \quad \mathscr{L}^{\mu}=u_{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{\nu_{\ell}}
$$

QED Corrections to $B \rightarrow P \ell \bar{\nu}_{\ell}(P=D / \pi)$ mode

Non-Radiative :
$\left.\begin{array}{l}\text { - Matrix element : } \mathscr{M}_{0}\left(B \rightarrow P \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}}{\sqrt{2}} V_{q b} \mathscr{H}_{\mu}\left(p_{P}, p_{B}\right) \mathscr{L}^{\mu} \\ \mathscr{H}_{\mu}\left(p_{P}, p_{B}\right)=\left(p_{B}+p_{P}\right)_{\mu} f_{+}^{P}\left(q^{2}\right)+\left(p_{B}-p_{P}\right)_{\mu} f_{-}^{P}\left(q^{2}\right), \mathscr{L}^{\mu}=u_{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\nu_{\ell}} \\ q^{2}=\left(p_{B}-p_{D}\right)^{2}\end{array}\right] \begin{aligned} & f_{ \pm}=\text {form factors }\end{aligned}$

QED Corrections to $B \rightarrow P \ell \bar{\nu}_{\ell}(P=D / \pi)$ mode

Non-Radiative :

- Matrix element : $\mathscr{M}_{0}\left(B \rightarrow P \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}}{\sqrt{2}} V_{q b} \mathscr{H}_{\mu}\left(p_{P}, p_{B}\right) \mathscr{L}^{\mu}$
$\mathscr{H}_{\mu}\left(p_{P}, p_{B}\right)=\left(p_{B}+p_{P}\right)_{\mu} f_{+}^{P}\left(q^{2}\right)+\left(p_{B}-p_{P}\right)_{\mu} f_{-}^{P}\left(q^{2}\right), \mathscr{L}^{\mu}=u_{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\nu_{e}}$
$q^{2}=\left(p_{B}-p_{D}\right)^{2}$

Real photon emission :

QED Corrections to $B \rightarrow P \ell \bar{\nu}_{\ell}(P=D / \pi)$ mode

Non-Radiative :

- Matrix element : $\mathscr{M}_{0}\left(B \rightarrow P \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}}{\sqrt{2}} V_{q b} \mathscr{H}_{\mu}\left(p_{P}, p_{B}\right) \mathscr{L}^{\mu} \quad\left[\begin{array}{l}f_{ \pm}=\text {form factors } \\ q^{2}=\left(p_{B}-p_{D}\right)^{2}\end{array}\right.$
$\mathscr{H}_{\mu}\left(p_{P}, p_{B}\right)=\left(p_{B}+p_{P}\right)_{\mu} f_{+}^{P}\left(q^{2}\right)+\left(p_{B}-p_{P}\right)_{\mu} f_{-}^{P}\left(q^{2}\right), \quad \mathscr{L}^{\mu}=u_{\ell} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{\nu_{e}}$

Real photon emission :

- Gauge invariant matrix element :

$$
\begin{aligned}
\mathscr{M} & =e \epsilon_{\alpha}(k)\left[\mathscr{M}_{0}\left(-\frac{p_{B}^{\alpha}}{p_{B} \cdot k}+\frac{p_{\ell}^{\alpha}}{2 p_{\ell} \cdot k}\right)+\bar{u}\left(p_{\ell}\right) \frac{\gamma^{\alpha} \gamma_{\mu} k^{\mu}}{2 p_{B} \cdot k} \Gamma_{\mu} v\left(p_{\nu}\right) \mathscr{H}^{\mu}\right. \\
& \left.-\left(f_{+}-f_{-}\right) \bar{u}\left(p_{\ell}\right)\left(\frac{p_{B}^{\alpha}}{p_{B} \cdot k} \gamma_{\mu} k^{\mu}-\gamma^{\alpha}\right)\left(1-\gamma^{5}\right) v\left(p_{\nu}\right)\right]
\end{aligned}
$$

- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:
$\left.\Gamma\right|_{B \rightarrow P \nu_{\nu \ell \gamma}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P \ell \nu_{\ell \ell}}^{2}$
- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:
$\left.\Gamma\right|_{B \rightarrow P \ell \nu_{C l}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P P \nu_{\ell \gamma}}^{2}$

Photon exclusive case :

Here, experiment is sensitive to radiated photons.

- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:
$\left.\Gamma\right|_{B \rightarrow P \ell \nu_{\ell \ell}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P \ell \nu_{\ell \gamma}}^{2}$

Photon exclusive case :

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\text {real }}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(1+2 \alpha \tilde{B})+\frac{d^{2} \Gamma_{\text {real }}^{\prime}}{d y d z}
$$

- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:

$$
\left.\Gamma\right|_{B \rightarrow P \ell \nu_{\ell \gamma}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P \ell \nu_{\nu \ell}}^{2}
$$

Photon exclusive case :

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\text {real }}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(1+2 \alpha \tilde{B})+\frac{d^{2} \Gamma_{\text {real }}^{\prime}}{d y d z}
$$

$$
y=\frac{2 p_{B} \cdot p_{\ell}}{m_{B}^{2}}, z=\frac{2 p_{B} \cdot p_{P}}{m_{B}^{2}}
$$

- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:
$\left.\Gamma\right|_{B \rightarrow P \ell \nu_{\ell \ell}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P \ell \nu_{\ell \gamma}}^{2}$

Photon exclusive case :

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\text {real }}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(1+2 \alpha \tilde{B})+\frac{d^{2} \Gamma_{\text {real }}^{\prime}}{d y d z}
$$

$$
y=\frac{2 p_{B} \cdot p_{\ell}}{m_{B}^{2}}, z=\frac{2 p_{B} \cdot p_{P}}{m_{B}^{2}}
$$

where,

$$
\tilde{B}=\frac{-1}{2 \pi}\left\{\ln \left(\frac{k_{\max }^{2} m_{B} m_{\ell}}{m_{\gamma}^{2} E_{B} E_{\ell}}\right)-\frac{p_{B} \cdot p_{\ell}}{2}\left[\int_{-1}^{1} \frac{d t}{p_{t}^{2}} \ln \left(\frac{k_{\max }^{2}}{E_{t}^{2}}\right)+\int_{-1}^{1} \frac{d t}{p_{t}^{2}} \ln \left(\frac{p_{t}^{2}}{m_{\gamma}^{2}}\right)\right]\right\}
$$

- General decay width form for $B \rightarrow P \ell \bar{\nu}_{\ell} \gamma$:

$$
\left.\Gamma\right|_{B \rightarrow P \ell \nu_{\ell \gamma}}=\frac{1}{2 m_{B}} \int \frac{d^{3} p_{P}}{(2 \pi)^{3} 2 E_{P}} \int \frac{d^{3} p_{l}}{(2 \pi)^{3} 2 E_{l}} \int \frac{d^{3} p_{\nu}}{(2 \pi)^{3} 2 E_{\nu}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}(2 \pi)^{4} \delta^{4}\left(Q-p_{\nu}-k\right)|\mathscr{M}|_{B \rightarrow P \ell \nu_{\nu \ell}}^{2}
$$

Photon exclusive case :

- Here, experiment is sensitive to radiated photons.
- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\text {real }}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(1+2 \alpha \tilde{B})+\frac{d^{2} \Gamma_{\text {real }}^{\prime}}{d y d z}
$$

$$
y=\frac{2 p_{B} \cdot p_{\ell}}{m_{B}^{2}}, z=\frac{2 p_{B} \cdot p_{P}}{m_{B}^{2}}
$$

where,

$$
\tilde{B}=\frac{-1}{2 \pi}\left\{\ln \left(\frac{k_{\max }^{2} m_{B} m_{\ell}}{m_{r}^{2} E_{B} E_{\ell}}\right)-\frac{p_{B} \cdot p_{\ell}}{2}\left[\int_{-1}^{1} \frac{d t}{p_{t}^{2}} \ln \left(\frac{k_{\max }^{2}}{E_{t}^{2}}\right)+\int_{-1}^{1} \frac{d t}{p_{t}^{2}} \ln \left(\frac{p_{t}^{2}}{m_{\gamma}^{2}}\right)\right]\right\}
$$

- Choosing the kinematical cut, total decay width can get rid of Collinear divergences

Virtual Correction:

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

where,

$$
\begin{aligned}
B & =\frac{1}{4 \pi}\left[2 B_{0}\left(q^{2}, m_{B}^{2}, m_{\ell}^{2}\right)-4 B_{0}\left(m_{\ell}^{2}, 0, m_{\ell}^{2}\right)-4\left(\left(p_{B} \cdot p_{\ell}\right)+m_{B}^{2}\right) C_{1}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)-8\left(p_{B} \cdot p_{\ell}\right) C_{0}\left(m_{\ell}^{2}, m_{B}^{2}, q^{2}, m_{\ell}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right. \\
& \left.-4 m_{\ell}^{2} C_{2}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)+2-B_{0}\left(p_{\ell}^{2}, 0, m_{\ell}^{2}\right)+4 m_{\ell}^{2} B_{0}^{\prime}\left(p_{\ell}^{2}, m_{\gamma}^{2}, m_{\ell}^{2}\right)+2 B_{0}\left(p_{B}^{2}, 0, m_{\ell}^{2}\right)+4 m_{B}^{2} B_{0}^{\prime}\left(p_{B}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right]
\end{aligned}
$$

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

where,

$$
\begin{aligned}
B & =\frac{1}{4 \pi}\left[2 B_{0}\left(q^{2}, m_{B}^{2}, m_{\ell}^{2}\right)-4\left(B_{0}\left(m_{\ell}^{2}, 0, m_{\ell}^{2}\right)-4\left(\left(p_{B} \cdot p_{\ell}\right)+m_{B}^{2}\right) C_{1}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)-8\left(p_{B} \cdot p_{\ell}\right) C_{0}\left(m_{\ell}^{2}, m_{B}^{2}, q^{2}, m_{\ell}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right.\right. \\
& -4 m_{\ell}^{2} C_{2}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)+2-B_{0}\left(p_{\ell}^{2}, 0, m_{\ell}^{2}\right)+4 m^{2}\left(B_{0}^{1}\left(p_{\ell}^{2}, m_{\gamma}^{2}, m_{\ell}^{2}\right)+2\left(B_{0}\left(p_{B}^{2}, 0, m_{\ell}^{2}\right)+4 m_{B}^{2}\left(b_{0}^{\prime}\left(p_{B}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right]\right.\right.
\end{aligned}
$$

2-point PV functions

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

where,

$$
\begin{aligned}
B & =\frac{1}{4 \pi}\left[2 B_{0}\left(q^{2}, m_{B}^{2}, m_{\ell}^{2}\right)-4 B_{0}\left(m_{\ell}^{2}, 0, m_{\ell}^{2}\right)-4\left(\left(p_{B} \cdot p_{\ell}\right)+m_{B}^{2}\right) C_{1}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)-8\left(p_{B} \cdot p_{\ell}\right) C_{0}\left(m_{\ell}^{2}, m_{B}^{2}, q^{2}, m_{\ell}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right. \\
& -4 m^{2}\left(C_{2}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}-2-B_{0}\left(p_{\ell}^{2}, 0, m_{\ell}^{2}\right)+4 m_{\ell}^{2} B_{0}^{\prime}\left(p_{\ell}^{2}, m_{\gamma}^{2}, m_{\ell}^{2}\right)+2 B_{0}\left(p_{B}^{2}, 0, m_{\ell}^{2}\right)+4 m_{B}^{2} B_{0}^{\prime}\left(p_{B}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right]\right.
\end{aligned}
$$

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

where,

$$
\begin{aligned}
B & =\frac{1}{4 \pi}\left[2 B_{0}\left(q^{2}, m_{B}^{2}, m_{\ell}^{2}\right)-4 B_{0}\left(m_{\ell}^{2}, 0, m_{\ell}^{2}\right)-4\left(\left(p_{B} \cdot p_{\ell}\right)+m_{B}^{2}\right) C_{1}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)-8\left(p_{B} \cdot p_{\ell}\right) C_{0}\left(m_{\ell}^{2}, m_{B}^{2}, q^{2}, m_{\ell}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right. \\
& \left.-4 m_{\ell}^{2} C_{2}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)+2-B_{0}\left(p_{\ell}^{2}, 0, m_{\ell}^{2}\right)+4 m_{\ell}^{2} B_{0}^{\prime}\left(p_{\ell}^{2}, m_{\gamma}^{2}, m_{\ell}^{2}\right)+2 B_{0}\left(p_{B}^{2}, 0, m_{\ell}^{2}\right)+4 m_{B}^{2} B_{0}^{\prime}\left(p_{B}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right]
\end{aligned}
$$

- Total $\mathcal{O}(\alpha)$ QED correction: $d^{2} \Gamma^{\mathrm{QED}}$

$$
\frac{d^{2} \Gamma_{\ell}^{\mathrm{QED}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}\left(1+\Delta_{\ell}^{Q E D}\right)
$$

Virtual Correction:

- The second order differential decay width

$$
\frac{d^{2} \Gamma_{\mathrm{vir}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}(2 \alpha B)+\frac{d^{2} \Gamma_{\mathrm{vir}}^{\prime}}{d y d z}
$$

where,

$$
\begin{aligned}
B & =\frac{1}{4 \pi}\left[2 B_{0}\left(q^{2}, m_{B}^{2}, m_{\ell}^{2}\right)-4 B_{0}\left(m_{\ell}^{2}, 0, m_{\ell}^{2}\right)-4\left(\left(p_{B} \cdot p_{\ell}\right)+m_{B}^{2}\right) C_{1}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)-8\left(p_{B} \cdot p_{\ell}\right) C_{0}\left(m_{\ell}^{2}, m_{B}^{2}, q^{2}, m_{\ell}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right. \\
& \left.-4 m_{\ell}^{2} C_{2}\left(m_{B}^{2}, q^{2}, m_{\ell}^{2}, 0, m_{B}^{2}, m_{\ell}^{2}\right)+2-B_{0}\left(p_{\ell}^{2}, 0, m_{\ell}^{2}\right)+4 m_{\ell}^{2} B_{0}^{\prime}\left(p_{\ell}^{2}, m_{\gamma}^{2}, m_{\ell}^{2}\right)+2 B_{0}\left(p_{B}^{2}, 0, m_{\ell}^{2}\right)+4 m_{B}^{2} B_{0}^{\prime}\left(p_{B}^{2}, m_{\gamma}^{2}, m_{B}^{2}\right)\right]
\end{aligned}
$$

- Total $\mathcal{O}(\alpha)$ QED correction: $d^{2} \Gamma^{Q E D}$

$$
\frac{d^{2} \Gamma_{\ell}^{\mathrm{QED}}}{d y d z}=\frac{d^{2} \Gamma_{0}}{d y d z}\left(1+\Delta_{\ell}^{Q E D}\right)
$$

Observables

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e x p}}{q_{q b}^{0}}}$

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e x p}}{\mathcal{G}_{q b}^{0}}}$

$$
\text { with, } \quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|M_{0}\right|^{2}
$$

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e x p}}{\mathcal{G}_{q b}^{0}}}$
with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|\mathscr{M}_{0}\right|^{2}$.
QED shift in the CKM elements: $\delta_{V_{q b}}^{\mathscr{S E D}_{q b}^{0}}=\frac{\left|V_{q b}\right|}{\left|V_{q b}^{0}\right|}-1$

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{\text {eap }}}{\xi_{q b}^{0}}}$
with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|\mathscr{M}_{0}\right|^{2}$.
QED shift in the CKM elements: $\delta_{V_{q b}}^{\mathcal{S}_{q b}^{0}}=\frac{\left|V_{q b}\right|}{\left|V_{q b}^{0}\right|}-1$
- The Ratio $R_{V}: \quad R_{V}=\sqrt{\frac{\Gamma_{q b}^{\exp } \mathscr{G}_{c b}}{\Gamma_{q b}^{e x p} \mathscr{G}_{u b}}}$,

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e a p}}{g_{q b}^{0}}}$
with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|M_{0}\right|^{2}$.
QED shift in the CKM elements: $\delta_{V_{q b}}^{\mathcal{S}_{q b}^{0}}=\frac{\left|V_{q b}\right|}{\left|V_{q b}^{0}\right|}-1$
- The Ratio $R_{V}: \quad R_{V}=\sqrt{\frac{\Gamma_{q b}^{\text {exp }} \mathscr{G}_{c b}}{\Gamma_{q b}^{e x p} \mathscr{G}_{u b}}}, \quad$ QED shift in $R_{V}: \Delta_{R_{V}}=\delta_{V_{u b}}^{\text {QED }}-\delta_{V_{c b}}^{\text {QED }}$

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e a p}}{g_{q b}^{0}}}$
with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|\mathscr{M}_{0}\right|^{2}$.
QED shift in the CKM elements: $\delta_{V_{q b}}^{\mathcal{S}_{q b}^{0}}=\frac{\left|V_{q b}\right|}{\left|V_{q b}^{0}\right|}-1$
- The Ratio $R_{V}: \quad R_{V}=\sqrt{\frac{\Gamma_{q b}^{\text {exp }} \mathscr{G}_{c b}}{\Gamma_{q b}^{e x p} \mathscr{G}_{u b}}}, \quad$ QED shift in $R_{V}: \Delta_{R_{V}}=\delta_{V_{u b}}^{\text {QED }}-\delta_{V_{c b}}^{\text {QED }}$
- The LFU Ratio $R_{P}: R_{P}=\frac{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \tau \bar{\nu}_{\nu}\right)}{d q^{2}}}{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \mu \bar{\nu}_{\mu}\right)}{d q^{2}}}$,

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e a p}}{g_{q b}^{0}}}$ with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|\mathscr{M}_{0}\right|^{2}$.

QED shift in the CKM elements: $\delta_{V_{q b}}^{\mathscr{S}_{q b}^{0}}=\frac{\left|V_{q b}\right|}{\left|V_{q q}^{0}\right|}-1$

- The Ratio $R_{V}: \quad R_{V}=\sqrt{\sqrt{\frac{\Gamma_{q b}^{\text {exp }} \mathscr{G}_{c b}}{\Gamma_{q b}^{e x p} \mathscr{G}_{u b}}}}$, QED shift in $R_{V}: \Delta_{R_{V}}=\delta_{V_{u b}}^{\text {QED }}-\delta_{V_{c b}}^{\text {QED }}$
- The LFU Ratio $R_{P}: \quad R_{P}=\frac{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \tau \bar{\nu}_{\tau}\right)}{d q^{2}}}{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \mu \bar{\nu}_{\mu}\right)}{d q^{2}}}, \quad$ QED shift in $R_{P}: \delta_{R_{P}}=R_{P}^{0}\left(\frac{\Delta_{\tau}^{\mathrm{QED}}}{\Gamma_{\tau}^{0}}-\frac{\Delta_{\mu}^{\mathrm{QED}}}{\Gamma_{\mu}^{0}}\right)$

Observables

- The CKM elements extracted from experimental decay width: $\left|V_{q b}^{0}\right|=\sqrt{\frac{\Gamma_{q b}^{e x p}}{\mathcal{G}_{q b}^{0}}}$ with, $\quad \Gamma_{q b}^{e x p}=\left|V_{q b}^{0}\right|^{2} \frac{m_{B}}{256 \pi^{3}} \frac{G_{F}^{2}}{2} \int d y \int d z\left|\mathscr{M}_{0}\right|^{2}$.
QED shift in the CKM elements: $\delta_{V_{q b}}^{0} \delta_{q \text { ED }}^{0}=\frac{\left|V_{q b}\right|}{\left|V_{q b}^{0}\right|}-1$
- The Ratio $R_{V}: \quad R_{V}=\sqrt{\frac{\Gamma_{q b}^{\text {exp }} \mathscr{G}_{c b}}{\Gamma_{q b}^{e p p} \mathscr{G}_{u b}}}, \quad$ QED shift in $R_{V}: \Delta_{R_{V}}=\delta_{V_{u b}}^{\text {QED }}-\delta_{V_{c b}}^{\text {QED }}$
- The LFU Ratio $R_{P}: \quad R_{P}=\frac{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \tau \bar{\nu}_{\tau}\right)}{d q^{2}}}{\int d q^{2} \frac{d \Gamma\left(B \rightarrow P \mu \bar{\tau}_{\mu}\right)}{d q^{2}}}$, QED shift in $R_{P}: \quad \delta_{R_{P}}=R_{P}^{0}\left(\frac{\Delta_{\tau}^{\mathrm{QED}}}{\Gamma_{\tau}^{0}}-\frac{\Delta_{\mu}^{\mathrm{QED}}}{\Gamma_{\mu}^{0}}\right)$

Note: All quantities with ' O ' as superscript or subscript are non-radiative while without any superscript or subscript are $\mathcal{O}(\alpha)$ QED corrected quantity.

Results

$$
B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

$$
B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

Results

QED Corrections :

$$
B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

$$
B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

Radiative corrections to R_{V} for different thresholds on photon energy, $k_{\max }$ for
(a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Results

QED Corrections :

$$
B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

$$
B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

Radiative corrections to R_{V} for different thresholds on photon energy, $k_{\max }$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

- $\Delta_{R_{V}}=\delta_{V_{u b}}^{Q E D}-\delta_{V_{c b}}^{Q E D}$,
- Charged modes : almost zero correction
- Neutral mode: very minute $\left(\sim \mathcal{O}\left(10^{-} 3\right)\right)$

Results

QED Corrections :

$$
B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

$$
B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}
$$

Radiative corrections to R_{V} for different thresholds on photon energy, $k_{\max }$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

- $\Delta_{R_{V}}=\delta_{V_{u b}}^{\mathrm{QED}}-\delta_{V_{c b}}^{\mathrm{QED}}$,
- Charged modes : almost zero correction

Consequence of photon emission from D vs π mesons

- Neutral mode : very minute ($\left.\sim \mathcal{O}\left(10^{-} 3\right)\right)$
$B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$
$B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Radiative corrections to the CKM elements $\left|V_{c b}\right|$ (solid) and $\left|V_{u b}\right|$ (dashed) for different thresholds on photon energy, $k_{\max }$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Radiative corrections to the CKM elements $\left|V_{c b}\right|$ (solid) and $\left|V_{u b}\right|$ (dashed) for different thresholds on photon energy, $k_{\text {max }}$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Radiative corrections to the CKM elements $\left|V_{c b}\right|$ (solid) and $\left|V_{u b}\right|$ (dashed) for different thresholds on photon energy, $k_{\text {max }}$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Radiative corrections to the CKM elements $\left|V_{c b}\right|$ (solid) and $\left|V_{u b}\right|$ (dashed) for different thresholds on photon energy, $k_{\text {max }}$ for (a) $B^{0} \rightarrow P^{+}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$ and (b) $B^{-} \rightarrow P^{0}(=D, \pi) \mu^{-} \bar{\nu}_{\mu}$

Sensitivity of R_{V} on the choice of form factors :

- We choose two set of form factors

Sensitivity of R_{V} on the choice of form factors :

- We choose two set of form factors

1. (I) : form factors used in calculating R_{v}

> Using QCD Sum rule and HQET (Ligeti et.al., 2017)

Sensitivity of R_{V} on the choice of form factors :

- We choose two set of form factors

1. (I) : form factors used in calculating R_{v}

2. (II) : form factors obtained from lattice

Sensitivity of R_{V} on the choice of form factors :

- We choose two set of form factors

1. (I) : form factors used in calculating R_{v}

2. (II) : form factors obtained from lattice

	$\left(f_{B \rightarrow \pi}^{(I)} ; f_{B \rightarrow D}^{(I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I I)} ; f_{B \rightarrow D}^{(I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I)} ; f_{B \rightarrow D}^{(I I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I I)} ; f_{B \rightarrow D}^{(I I)}\right)$
R_{V}	0.091	0.093	0.091	0.093

The ratio of $R V$ determined with the choice $f_{B \rightarrow \pi}^{(A)}$ and $f_{B \rightarrow D}^{(A)}$ for the corresponding form factors.

	$\left(f_{B \rightarrow \pi}^{(I)} ; f_{B \rightarrow D}^{(I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I I)} ; f_{B \rightarrow D}^{(I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I)} ; f_{B \rightarrow D}^{(I I)}\right)$	$\left(f_{B \rightarrow \pi}^{(I I)} ; f_{B \rightarrow D}^{(I I)}\right)$
R_{V}	0.091	0.093	0.091	0.093

The ratio of RV determined with the choice $f_{B \rightarrow \pi}^{(A)}$ and $f_{B \rightarrow D}^{(A)}$ for the corresponding form factors.

R_{V} turns out to be robust against soft photon corrections as well as choice of form factors

Phenomenological impact (an example)

- Consider new physics (NP) in the form of right handed currents in quarks :

$$
H_{\mathrm{NP}}=\frac{4 G_{F}}{\sqrt{2}} V_{q b} c_{R}^{q}\left(\overline{\ell_{\mu}} P_{L} \nu\right)\left(\bar{q} \gamma_{\mu} P_{R} b\right),
$$

Phenomenological impact (an example)

- Consider new physics (NP) in the form of right handed currents in quarks :

$$
H_{\mathrm{NP}}=\frac{4 G_{F}}{\sqrt{2}} V_{q b} c_{R}^{q}\left(\bar{e}_{\gamma_{\mu}} P_{L} \nu\right)\left(\bar{q} \gamma_{\mu} P_{R} b\right),
$$

- Differential decay width
- For exclusive process $B \rightarrow P \ell \bar{\nu}_{\ell}$:

$$
\frac{d^{2} \Gamma_{B \rightarrow P \ell \bar{\nu}_{\ell}}}{d y}=\left.\frac{d^{2} \Gamma_{B \rightarrow P \ell \bar{\nu}_{\ell}}}{d y}\right|_{\mathrm{SM}}\left|1+c_{R}^{q}\right|^{2}
$$

Phenomenological impact (an example)

- Consider new physics (NP) in the form of right handed currents in quarks :

$$
H_{\mathrm{NP}}=\frac{4 G_{F}}{\sqrt{2}} V_{q b} c_{R}^{q}\left(\bar{e} \gamma_{\mu} P_{L} \nu\right)\left(\bar{q} \gamma_{\mu} P_{R} b\right),
$$

- Differential decay width
- For exclusive process $B \rightarrow P \ell \bar{\nu}_{\ell}$:

$$
\frac{d^{2} \Gamma_{B \rightarrow P \ell \bar{\nu}_{e}}}{d y}=\left.\frac{d^{2} \Gamma_{B \rightarrow P \ell \bar{\nu}_{\ell}}}{d y}\right|_{\mathrm{SM}}\left|1+c_{R}^{q}\right|^{2}
$$

- For inclusive process $\left(m_{u} / m_{b} \rightarrow 0\right)$:

$$
\frac{d^{2} \Gamma_{B \rightarrow X_{q} q \bar{\nu}_{e}}}{d y}=\left.\left|1+c_{R}^{q}\right|^{2} \frac{d^{2} \Gamma_{B \rightarrow X_{q}} e_{\bar{\nu}_{e}}}{d y}\right|_{S M}+\left.c_{R}^{q} \frac{d^{2} \Gamma_{B \rightarrow X_{q} \ell \bar{\nu}_{e}}}{d y}\right|_{\mathrm{LR}}
$$

- NP impact on $\left|V_{q b}\right|$
- NP impact on $\left|V_{q b}\right|$

- NP impact on $\left|V_{q b}\right|$

- NP impact on the ratio of $R_{V}^{N P}$ to $R_{V}^{S M}$

	$\frac{B \rightarrow X_{u}}{B \rightarrow X_{c}}$	$\frac{B \rightarrow \pi}{B \rightarrow D}$	$\frac{B \rightarrow \pi}{B \rightarrow D^{*}}$	$\frac{B \rightarrow \rho}{B \rightarrow D}$	$\frac{B \rightarrow \rho}{B \rightarrow D^{*}}$
$\left(\frac{\left\|V_{u b}\right\|}{\left\|V_{c b}\right\|}\right)^{\mathrm{NP}} /\left(\frac{\left\|V_{u b}\right\|}{\left\|V_{c b}\right\|}\right)_{\mathrm{SM}}$	$1-0.34 c_{R}^{c}$	$1+c_{R}^{c}-c_{R}^{u}$	$1-c_{R}^{c}-c_{R}^{u}$	$1+c_{R}^{c}+c_{R}^{u}$	$1-c_{R}^{c}+c_{R}^{u}$

- NP impact on $\left|V_{q b}\right|$

- NP impact on the ratio of $R_{V}^{N P}$ to $R_{V}^{S M}$

	$\frac{B \rightarrow X_{u}}{B \rightarrow X_{c}}$	$\frac{B \rightarrow \pi}{B \rightarrow D}$	$\frac{B \rightarrow \pi}{B \rightarrow D^{*}}$	$\frac{B \rightarrow \rho}{B \rightarrow D}$	$\frac{B \rightarrow \rho}{B \rightarrow D^{*}}$
$\left(\frac{\left\|V_{u b}\right\|}{\left\|V_{c b}\right\|}\right)^{\mathrm{NP}} /\left(\frac{\left\|V_{u b}\right\|}{\left\|V_{c b}\right\|}\right)_{\mathrm{SM}}$	$1-0.34 c_{R}^{c}$	$1+c_{R}^{c}-c_{R}^{u}$	$1-c_{R}^{c}-c_{R}^{u}$	$1+c_{R}^{c}+c_{R}^{u}$	$1-c_{R}^{c}+c_{R}^{u}$

- We get constraint on $c_{R}^{u}: c_{R}^{u} \in[-1.34,1.34] c_{R}^{c}$ (actual power of R_{V})

Application:

- Attempt to find the constraint on $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ using $\mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)$

$$
\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)=\left.\left(1-2 c_{R}^{u(c)}\right) \mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}
$$

Application:

- Attempt to find the constraint on $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ using $\mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)$

$$
\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)=\left.\left(1-2 c_{R}^{u(c)}\right) \mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}
$$

where,

$$
\left.\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}=\frac{G_{F}^{2} m_{B\left(B_{c}\right)} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B_{u(c)}}^{2}}\right) f_{B\left(B_{c}\right)}^{2}\left|V_{u(c) b}\right|^{2}
$$

Application:

- Attempt to find the constraint on $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ using $\mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)$

$$
\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)=\left.\left(1-2 c_{R}^{u(c)}\right) \mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}
$$

where,

$$
\begin{aligned}
& \left.\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}=\frac{G_{F}^{2} m_{B\left(B_{c}\right)} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B_{u(c)}}^{2}}\right) f_{B\left(B_{c}\right)}^{2}\left|V_{u(c) b}\right|^{2} \\
& \text { With } \quad f_{B\left(B_{c}\right)}=185(434) \mathrm{MeV} \quad \text { And }\left.\quad \mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)\right|_{\text {exp }}=1.09 \times 10^{-4}
\end{aligned}
$$

- $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ is found to be $[1.9-2.4] \%$, well below the bound for $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)<30 \%^{3}$
${ }^{3}$ Grinstein et.al , PRL 2017.

Application:

- Attempt to find the constraint on $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ using $\mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)$

$$
\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)=\left.\left(1-2 c_{R}^{u(c)}\right) \mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}
$$

where,

$$
\begin{aligned}
& \left.\mathscr{B} \mathscr{R}\left(B_{u(c)} \rightarrow \tau \nu_{\tau}\right)\right|_{\mathrm{SM}}=\frac{G_{F}^{2} m_{B\left(B_{c}\right)} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B_{u(c)}}^{2}}\right) f_{B\left(B_{c}\right)}^{2}\left|V_{u(c) b}\right|^{2} \\
& \text { With } \quad f_{B\left(B_{c}\right)}=185(434) \mathrm{MeV} \quad \text { And }\left.\quad \mathscr{B} \mathscr{R}\left(B \rightarrow \tau \nu_{\tau}\right)\right|_{\text {exp }}=1.09 \times 10^{-4}
\end{aligned}
$$

- $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ is found to be $[1.9-2.4] \%$, well below the bound for $\mathscr{B} \mathscr{R}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)<30 \%^{3}$
- This examples $\Longrightarrow V_{c b}$ puzzle and $V_{u b}$ puzzle are not independent

[^7]
Conclusion

Conclusion

The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.

Conclusion

- The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.
- R_{V} gets negligible correction due to the soft photon QED effects.

Conclusion

- The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.
- R_{V} gets negligible correction due to the soft photon QED effects.
- R_{V} is affected very mildly by the choice of form factors in chosen q^{2} range.

Conclusion

- The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.
- R_{V} gets negligible correction due to the soft photon QED effects.
- R_{V} is affected very mildly by the choice of form factors in chosen q^{2} range.
- $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_{V} relates two type of couplings in a model independent approach.

Conclusion

- The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.
- R_{V} gets negligible correction due to the soft photon QED effects.
- R_{V} is affected very mildly by the choice of form factors in chosen q^{2} range.
- $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_{V} relates two type of couplings in a model independent approach.

We are thus encouraged to propose the use of R_{V} in our quest for probing the SM and beyond it, both experimentally and theoretically.

Conclusion

- The QED radiative corrections are found to be sensitive to maximum energy $k_{\max }$ and very little sensitive to the angle between photon and lepton.
- R_{V} gets negligible correction due to the soft photon QED effects.
- R_{V} is affected very mildly by the choice of form factors in chosen q^{2} range.
- $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ puzzles treat the NP couplings independently. While the equality of inclusive and exclusive R_{V} relates two type of couplings in a model independent approach.

We are thus encouraged to propose the use of R_{V} in our quest for probing the SM and beyond it, both experimentally and theoretically.

Thank You for your attention

BACKUP

Differential decay width for inclusive modes :

$$
\begin{aligned}
\left.\frac{d \Gamma}{d \hat{q}^{2}}\right|_{S M}= & \left(1+\frac{\lambda_{1}}{2 m_{b}^{2}}\right) \lambda\left(1, \hat{q}^{2}, \rho^{2}\right)\left\{\left[(1-\rho)^{2}+\hat{q}^{2}(1+\rho)-2\left(\hat{q}^{2}\right)^{2}\right]\right. \\
& \left.+\frac{\hat{m}_{\tau}^{2}}{\hat{q}^{2}}\left[2(1-\rho)^{2}-\hat{q}^{2}(1+\rho)-\left(\hat{q}^{2}\right)^{2}\right]\right\}+\frac{3 \lambda_{2}}{2 m_{b}^{2}}\left\{\left[(1-\rho)^{3}(1-5 \rho)-\hat{q}^{2}(1-\rho)^{2}(1+5 \rho)\right.\right. \\
& \left.-3\left(\hat{q}^{2}\right)^{2}\left(5+6 \rho+5 \rho^{2}\right)+25\left(\hat{q}^{2}\right)^{3}(1+\rho)-10\left(\hat{q}^{2}\right)^{4}\right] \\
& +\frac{\hat{m}_{\tau}^{2}}{\hat{q}^{2}}\left[2(1-\rho)^{3}(1-5 \rho)-\hat{q}^{2}\left(5-9 \rho-21 \rho^{2}+25 \rho^{3}\right)\right. \\
& \left.\left.+3\left(\hat{q}^{2}\right)^{2}\left(1+2 \rho+5 \rho^{2}\right)+5\left(\hat{q}^{2}\right)^{3}(1+\rho)-5\left(\hat{q}^{2}\right)^{4}\right]\right\}, \\
\left.\frac{d \Gamma}{d q^{2}}\right|_{L R}= & -12 \sqrt{\rho} \hat{q}^{2}\left(1+\frac{\lambda_{1}}{2 m_{b}^{2}}\right) \lambda\left(1, \hat{q}^{2}, \rho^{2}\right)+4 \sqrt{\rho} \frac{3 \lambda_{2}}{2 m_{b}^{2}}\left\{\left[2(1-\rho)^{3}-3 \hat{q}^{2}(1-\rho)^{2}\right.\right. \\
& \left.\left.+12\left(\hat{q}^{2}\right)^{2}(1+\rho)-7\left(\hat{q}^{2}\right)^{3}\right]+\frac{4 \hat{m}_{\tau}^{2}}{\hat{q}^{2}}\left[(1-\rho)^{3}-3 \hat{q}^{2} \rho(1-\rho)-3 \rho\left(\hat{q}^{2}\right)^{2}+\left(\hat{q}^{2}\right)^{3}\right]\right\},
\end{aligned}
$$

[^0]: ${ }^{1}$ pdg.lbl.gov

[^1]: ${ }^{1}$ pdg.lbl.gov

[^2]: ${ }^{1}$ pdg.lbl.gov

[^3]: Possible Solution:
 Either get precise nonperturbation quantities or find an observable which is blind to these theoretical uncertainties

[^4]: ${ }^{2}$ Isidori et.al. 2020, ${ }^{3}$ Mishra et.al. 2020

[^5]: ${ }^{2}$ Isidori et.al. 2020, ${ }^{3}$ Mishra et.al. 2020

[^6]: ${ }^{2}$ Isidori et.al. 2020, ${ }^{3}$ Mishra et.al. 2020

[^7]: ${ }^{3}$ Grinstein et.al , PRL 2017.

