
Soft photon QED effects to the ratio of 
CKM elements

(Based on : A. Bansal, N. Mahajan, D.M., JHEP 03 (2022) 130)

Dayanand Mishra
Email: dayanand@prl.res.in

mailto:dayanand@prl.res.in


Introduction 



Introduction 
• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 

(or CKM matrix)



Introduction 

• CKM matrix (Wolfenstein parameterization) :  

• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 
(or CKM matrix)



Introduction 

• CKM matrix (Wolfenstein parameterization) :  

• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 
(or CKM matrix)

Vub

Vcb



Introduction 

• CKM matrix (Wolfenstein parameterization) :  

• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 
(or CKM matrix)

• Disagreement between exclusive and inclusive measurements  1

pdg.lbl.gov1

Vub

Vcb

∼ 3.5σ . . . ?

Vub

|Vub |incl = 4.40 × 10−3

Vub excl
= 3.72 × 10−3,

http://pdg.lbl.gov


Introduction 

• CKM matrix (Wolfenstein parameterization) :  

• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 
(or CKM matrix)

• Disagreement between exclusive and inclusive measurements  1

pdg.lbl.gov1

Vub

Vcb

∼ 3σ . . . ?

Vcb

∼ 3.5σ . . . ?

Vub

|Vub |incl = 4.40 × 10−3

Vub excl
= 3.72 × 10−3,

Vcb incl
= 42.21 × 10−3

Vcb excl
= 39.36 × 10−3

http://pdg.lbl.gov


Introduction 

• CKM matrix (Wolfenstein parameterization) :  

• Mismatch between flavor and mass eigenstates ⟹flavor transition in the SM 
(or CKM matrix)

• Disagreement between exclusive and inclusive measurements  1

pdg.lbl.gov1

Vub

Vcb

∼ 3σ . . . ?

Vcb

∼ 3.5σ . . . ?

Vub

|Vub |incl = 4.40 × 10−3

Vub excl
= 3.72 × 10−3,

Vcb incl
= 42.21 × 10−3

Vcb excl
= 39.36 × 10−3

New Physics or 
Theoretical 

uncertainties …?

http://pdg.lbl.gov


 



 

Origin of Theoretical uncertainties  



 

Origin of Theoretical uncertainties  

suitable kinematical cuts



 

Origin of Theoretical uncertainties  

Due to Non-perturbative 
quantitiessuitable kinematical cuts



 

Origin of Theoretical uncertainties  Possible Solution: 
Either get precise non-
perturbation quantities 
or find an observable 
which is blind to these 
theoretical uncertainties

Due to Non-perturbative 
quantitiessuitable kinematical cuts



 

Origin of Theoretical uncertainties  Possible Solution: 
Either get precise non-
perturbation quantities 
or find an observable 
which is blind to these 
theoretical uncertainties

Proposed LFU ratios  or  : less sensitive to hadronic uncertainties but 
Soft photon QED corrections …?

RK RD
2,3

Due to Non-perturbative 
quantitiessuitable kinematical cuts

Isidori et.al. 2020,  Mishra et.al. 20202 3



 

Origin of Theoretical uncertainties  Possible Solution: 
Either get precise non-
perturbation quantities 
or find an observable 
which is blind to these 
theoretical uncertainties

Proposed LFU ratios  or  : less sensitive to hadronic uncertainties but 
Soft photon QED corrections …?

RK RD
2,3

Due to Non-perturbative 
quantitiessuitable kinematical cuts

Isidori et.al. 2020,  Mishra et.al. 20202 3



constructed 

 

Origin of Theoretical uncertainties  Possible Solution: 
Either get precise non-
perturbation quantities 
or find an observable 
which is blind to these 
theoretical uncertainties

Vub

Vcb

RV =
|Vub |
|Vcb |

Proposed LFU ratios  or  : less sensitive to hadronic uncertainties but 
Soft photon QED corrections …?

RK RD
2,3

Due to Non-perturbative 
quantitiessuitable kinematical cuts

Isidori et.al. 2020,  Mishra et.al. 20202 3



• Experimental (LHCb) results :

1.  and  modes :  

	  (high ) =  

2.  and  modes: 

  	  (high ) = 

Λ0
b → pμ−ν̄μ Λ0

b → Λ+
c μ−ν̄μ

RV q2 0.083 ± 0.004

B0
s → K−μ+νμ B0

s → D−
s μ+νμ

RV q2 0.095 ± 0.008
(Aaij et.al., )2021

(Aaij et.al., )2015



•  as constructed using measurements of  and  obtained from PDG :RV |Vub | |Vcb |

RV
excl

= 0.094 ± 0.005 RV
incl

= 0.101 ± 0.007high q2 high q2

• Experimental (LHCb) results :

1.  and  modes :  

	  (high ) =  

2.  and  modes: 

  	  (high ) = 

Λ0
b → pμ−ν̄μ Λ0

b → Λ+
c μ−ν̄μ

RV q2 0.083 ± 0.004

B0
s → K−μ+νμ B0

s → D−
s μ+νμ

RV q2 0.095 ± 0.008
(Aaij et.al., )2021

(Aaij et.al., )2015



•  as constructed using measurements of  and  obtained from PDG :RV |Vub | |Vcb |

RV
excl

= 0.094 ± 0.005 RV
incl

= 0.101 ± 0.007high q2 high q2

 Mo$va$on to study ⟹ RV

• Experimental (LHCb) results :

1.  and  modes :  

	  (high ) =  

2.  and  modes: 

  	  (high ) = 

Λ0
b → pμ−ν̄μ Λ0

b → Λ+
c μ−ν̄μ

RV q2 0.083 ± 0.004

B0
s → K−μ+νμ B0

s → D−
s μ+νμ

RV q2 0.095 ± 0.008
(Aaij et.al., )2021

(Aaij et.al., )2015



QED Corrections to  modeB → Pℓν̄ℓ(P = D/π)



• Matrix element : 

,   

ℳ0(B → Pℓν̄ℓ) =
GF

2
Vqbℋμ(pP, pB)ℒμ

ℋμ(pP, pB) = (pB + pP)μ fP
+(q2) + (pB − pP)μ fP

−(q2) ℒμ = uℓγμ(1 − γ5)vνℓ

QED Corrections to  modeB → Pℓν̄ℓ(P = D/π)
Non-Radiative :



• Matrix element : 

,   

ℳ0(B → Pℓν̄ℓ) =
GF

2
Vqbℋμ(pP, pB)ℒμ

ℋμ(pP, pB) = (pB + pP)μ fP
+(q2) + (pB − pP)μ fP

−(q2) ℒμ = uℓγμ(1 − γ5)vνℓ

QED Corrections to  modeB → Pℓν̄ℓ(P = D/π)
Non-Radiative :

q2 = (pB − pD)2

form factorsf± =



• Matrix element : 

,   

ℳ0(B → Pℓν̄ℓ) =
GF

2
Vqbℋμ(pP, pB)ℒμ

ℋμ(pP, pB) = (pB + pP)μ fP
+(q2) + (pB − pP)μ fP

−(q2) ℒμ = uℓγμ(1 − γ5)vνℓ

QED Corrections to  modeB → Pℓν̄ℓ(P = D/π)
Non-Radiative :

Real photon emission :

ℓ−B−

D0 ν̄ℓ

B− ℓ−

D0 ν̄ℓ

q2 = (pB − pD)2

form factorsf± =



• Gauge invariant matrix element :

ℳ = eϵα(k)[ℳ0 (−
pα

B

pB . k
+

pα
ℓ

2pℓ . k ) + ū(pℓ)
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are  QED corrected quantity.𝒪(α)

ΔRV
= δQED

Vub
− δQED

Vcb

δQED
Vqb

=
|Vqb |

|V0
qb |

− 1QED shift in the CKM elements:

QED shift in  :RV

δRP
= R0

P( ΔQED
τ

Γ0
τ

−
ΔQED

μ

Γ0
μ

)QED shift in  :RPRP =
∫ dq2 dΓ(B → Pτν̄τ)

dq2

∫ dq2
dΓ(B → Pμν̄μ)

dq2

,• The LFU Ratio  :RP
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• For exclusive  process  : 

 

B → Pℓν̄ℓ
d2ΓB→Pℓν̄ℓ

dy
=

d2ΓB→Pℓν̄ℓ

dy SM
|1 + cq

R |2

• For inclusive process  : (mu/mb → 0)
d2ΓB→Xqℓν̄ℓ

dy
= |1 + cq

R |2
d2ΓB→Xqℓν̄ℓ

dy SM
+ cq

R

d2ΓB→Xqℓν̄ℓ

dy LR
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• NP impact on the ratio of   to  RNP
V RSM

V

  is the corresponding CKM 
elements in the presence of NP
VNP

qb

Note:  is the corresponding 
CKM elements in the absence of 

NP

VSM
qb

NP

• We get constraint on  :  (actual power of )cu
R cu

R ∈ [−1.34,1.34]cc
R RV
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Differential decay width for inclusive modes :


