

Reasons to search for sterile neutrino with $\Delta m^2 \sim 1 \; \mathrm{eV}^2$

- Gallium anomaly (GA) deficit of ν_e in Ga experim.
- Experiments: SAGE, GALLEX and BEST.
- Reactor antineutrino anomaly (RAA) $\bar{\nu}_e$ deficit from reactors. Experiments: KI, DayaBay and RENO.
- Appearance of ν_e in ν_μ beams.
- Experiments: LSND and MiniBoone.
- Neutrino-4 claim of sterile neutrino observation.

3+1v model:
$$P_{\nu_{\alpha} \to \nu_{\beta}} \simeq sin^2 2\theta_{\alpha\beta} sin^2 \left(\frac{\Delta m_{14}^2 L}{4E}\right);$$

DANSS experiment

DANSS is installed on a movable platform under 3.1 GW WWER-1000 reactor (Core: h=3.7m, \emptyset =3.1m) at Kalinin NPP.

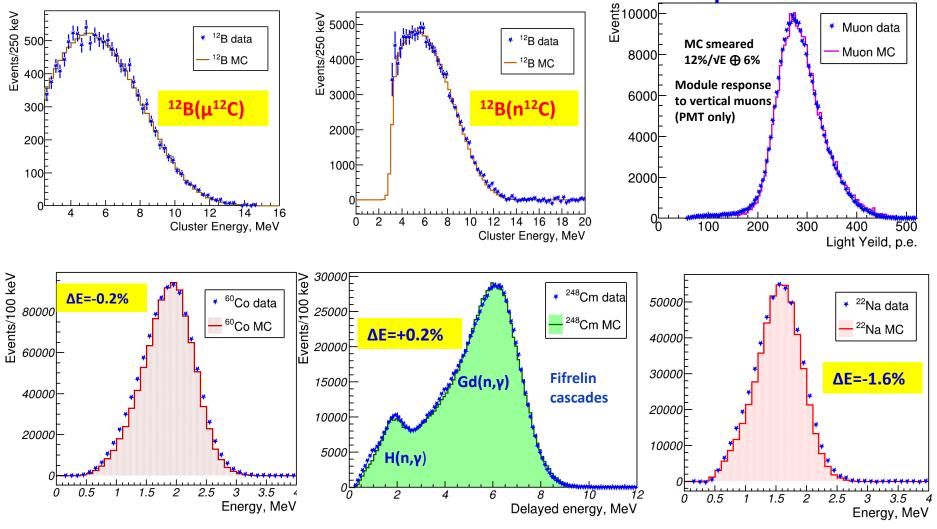
Detector distance from reactor core 10.9-12.9m (center to center) is changed 2-3 times a week

DANSS Detector design Grooves with fibers JINST 11(2016)no11,P11011 Gd containing coating 1.6 mg/cm² 0.35%wt Test MPPCfiber Polystyrene Copper frames SiPM MPPC S12825-050C (= internal part CHB_{int} Pb **CHB**_{ext} based of the shield) scintillator Y11 1.2mm WLS fibers Sensitive volume: PMT R7600U-300 polystyrene-based scintillator strips 1 laver = 5 strips = 20 cm Y-Module The detector basement (cooled copper plate) X-Module MPPC front-Coolant passage 10 layers = 20 cmPMT 100 fibers

 2500 scintillator strips with Gd containing coating for neutron capture

SiPMs

- Light collection with 3 WLS fibers
- Central fiber read out with individual **SiPM**
- Side fibers from 50 strips make a bunch of 100 on a PMT cathode = Module


- Two-coordinate detector with fine segmentation – spatial information
- Multilayer closed passive shielding: electrolytic copper frame ~5 cm, borated polyethylene 8 cm, lead 5 cm, borated polyethylene 8 cm
- 2-layer active μ-veto on 5 sides

Calibration

2500 SiPM gains and X-talks are calibrated every 30-40 min.

All 2550 channels are calibrated every 2 days using cosmic muons

Several calibration sources are used to check the detector response

Systematic error on E scale of +/-2% was added due to ²²Na disagreement

Test statistics

$$\chi^{2} = \min_{\eta, k} \sum_{i=1}^{N} (Z_{1i} \quad Z_{2i}) \cdot W^{-1} \cdot \begin{pmatrix} Z_{1i} \\ Z_{2i} \end{pmatrix} + \sum_{i=1}^{N} \frac{Z_{1i}^{2}}{\sigma_{1i}^{2}} + \sum_{i=1,2} \frac{(k_{j} - k_{j}^{0})^{2}}{\sigma_{kj}^{2}} + \sum_{l} \frac{(\eta_{l} - \eta_{l}^{0})^{2}}{\sigma_{\eta l}^{2}}$$

3 position data

2 position data

Nuisance parameters i - energy bin (36 total) in range 1.5-6 MeV; (systematics and efficiency)

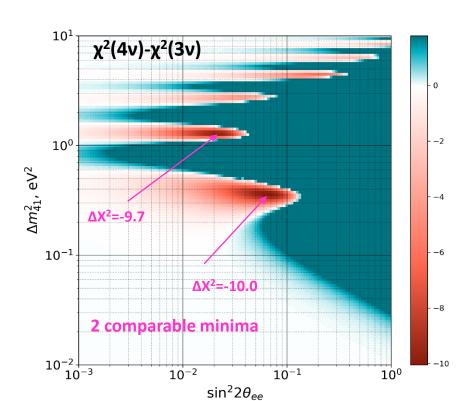
$$Z_j = R_j^{\text{obs}} - k_j \times R_j^{\text{pre}}(\Delta m^2, \sin^2 2\theta, \eta)$$
 for each energy bin,

$$R_1 = Bottom/Top, R_2 = Middle/\sqrt{Bottom \cdot Top}, \text{ where}$$

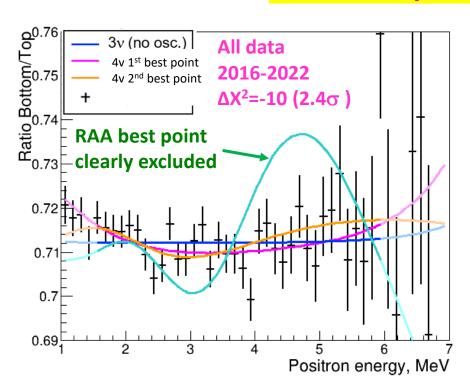
Top, Middle, Bottom – absolute count rates per day for each detector position, k - relative efficiency, $k^0=1$ $\eta^0=0$

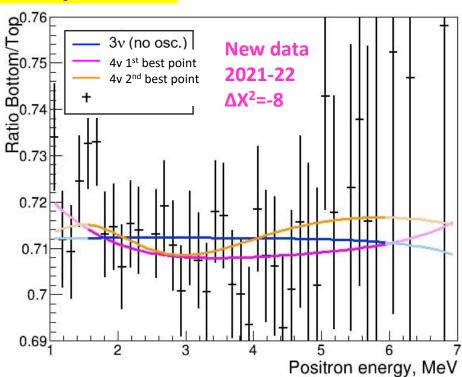
$$\eta$$
 – nuisance parameters;

$$W$$
 – covariance matrix;


Difference in χ^2 between 4v and 3v hypotheses

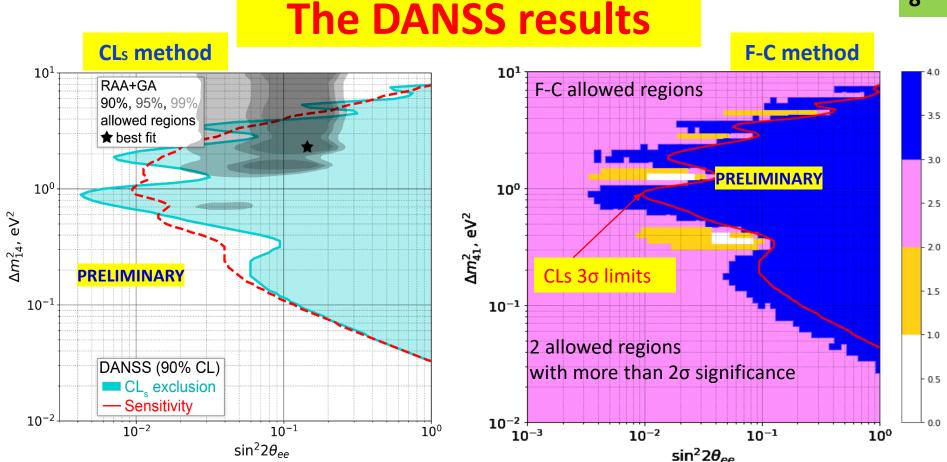
Red -
$$\chi^2(4v) < \chi^2(3v)$$
,


Blue –
$$\chi^2(4v) > \chi^2(3v)$$
,


Dark blue region is excluded at 3σ CL in case of χ^2 distribution with 2 DoF $(\chi^2(4\nu)-\chi^2_{min})=11.8$

This assumption is not valid > we use **Gaussian CLs method to get limits**

Ratio of positron spectra



- **Fit in 1.5-6 MeV range (to be conservative).**
- ***** 2016-2020 data no statistically significant indication of $4v(\Delta X^2 = -5.6, 1.5 \sigma)$
- ❖ 2021-2022 data weak, statistically not significant hint of 4v (ΔX²=-8.0, 2.0 σ)
- ❖ Using current statistics 2016-2022 (~4.4 million IBD events with 1.5 MeV<E<6MeV) we see statistically not significant hint of 4v signal:</p>

 ΔX^2 =-10 (2.4 σ) for 4v hypothesis best point Δm^2 =0.35 eV², $\sin^2 2\theta$ =0.067 ΔX^2 =-9.7 for 4v hypothesis second best point Δm^2 =1.26 eV², $\sin^2 2\theta$ =0.02

* RAA was excluded by DANSS with more than 5σ already in 2018 (Phys. Lett. B, Vol. 787, no.10, p.56-63) 7

Exclusion region was calculated using Gaussian CLs method for $E_{\rm e+}$ in 1.5-6 MeV region

A very interesting part of 4v parameters is excluded.

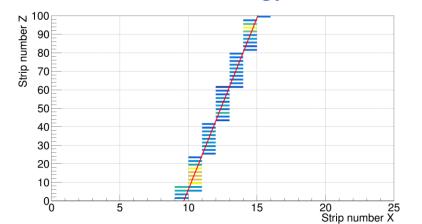
The most probable point of RAA is excluded at $>5\sigma$ confidence level

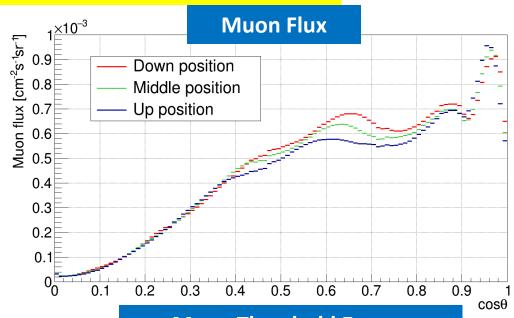
There are two F-C allowed regions with more than 2σ significance

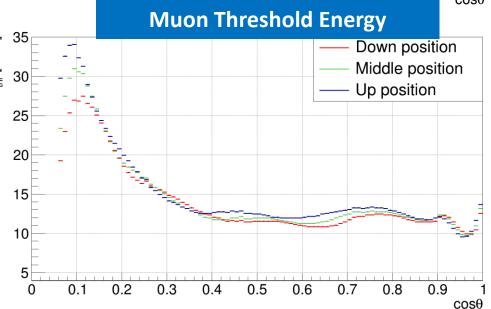
However even the best one (2.4σ) is not significant enough to claim indication of 4v

Temperature and barometric effects on cosmic muons

Reasons for:

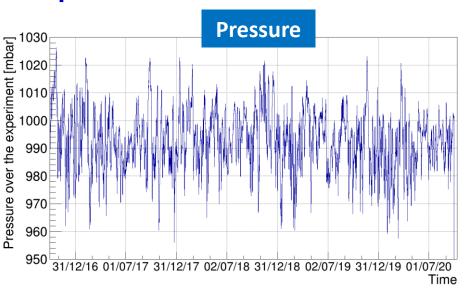

- Muon variations are major background for some dark matter or Sun researches.
- 2. Unique conditions of the detector thick reactor with water vessels above and only walls from the sides.

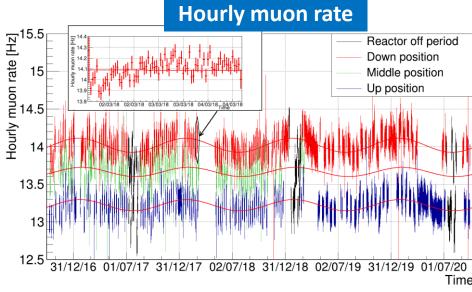

Sum of both effects:

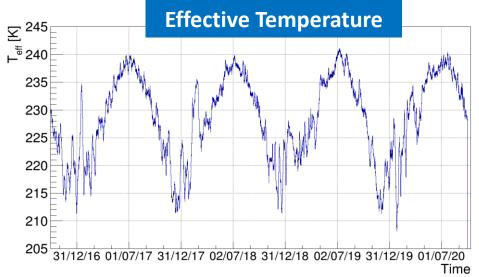

$$\frac{I-\langle I\rangle}{\langle I\rangle} = \frac{\alpha}{\alpha} \frac{T_{eff}-\langle T_{eff}\rangle}{\langle T_{eff}\rangle} + \beta(P-\langle P\rangle);$$

β(<Ethr>) – barometric cor. coefficient

 $\alpha(\langle Ethrcos\theta \rangle)$ – temperature cor. coefficient Ethr – muon threshold energy

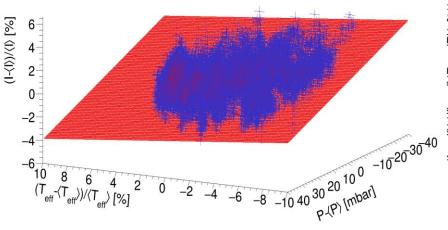


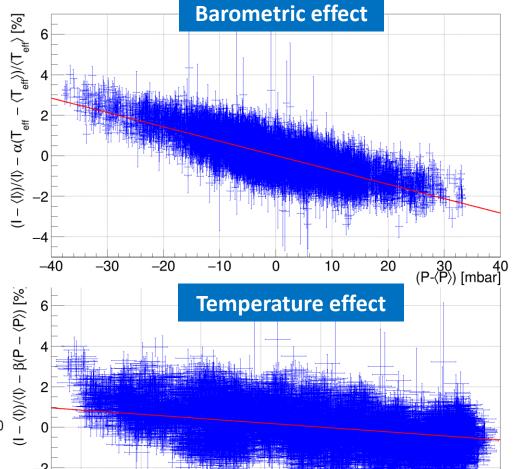




Atmospheric and muon data

- 4 years of muon statistic are used in analysis;
- First time in such researches climate model ERA5 is used;
- Seasonal variations are clearly seen for muon rate and Teff, and are not observed for pressure.

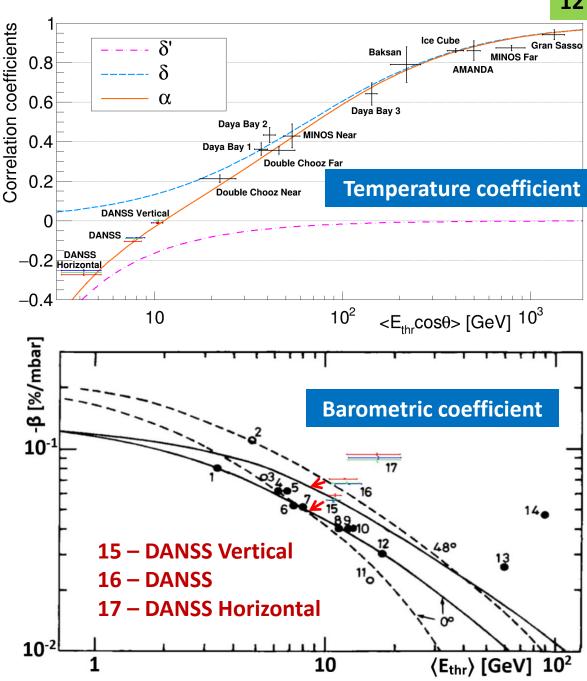



Correlation analysis

Muon rate dependency on pressure and effective temperature:

$$rac{I-\langle I
angle}{\langle I
angle}=rac{lpha}{lpha}rac{T_{eff}-\langle T_{eff}
angle}{\langle T_{eff}
angle}+eta(P-\langle P
angle);$$

3-dimentional distribution



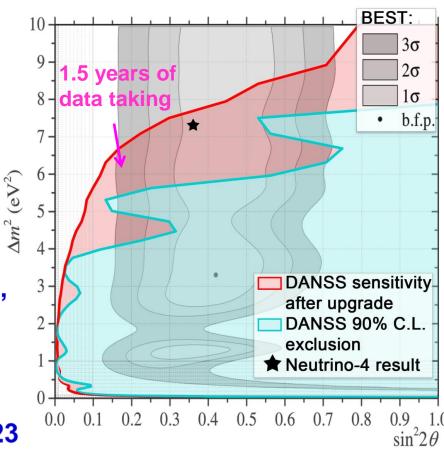
 $(T_{eff} \stackrel{2}{-} \langle T_{eff} \rangle) / \langle T_{eff}^4 \rangle$ [%]

Comparison with theory and other experiments

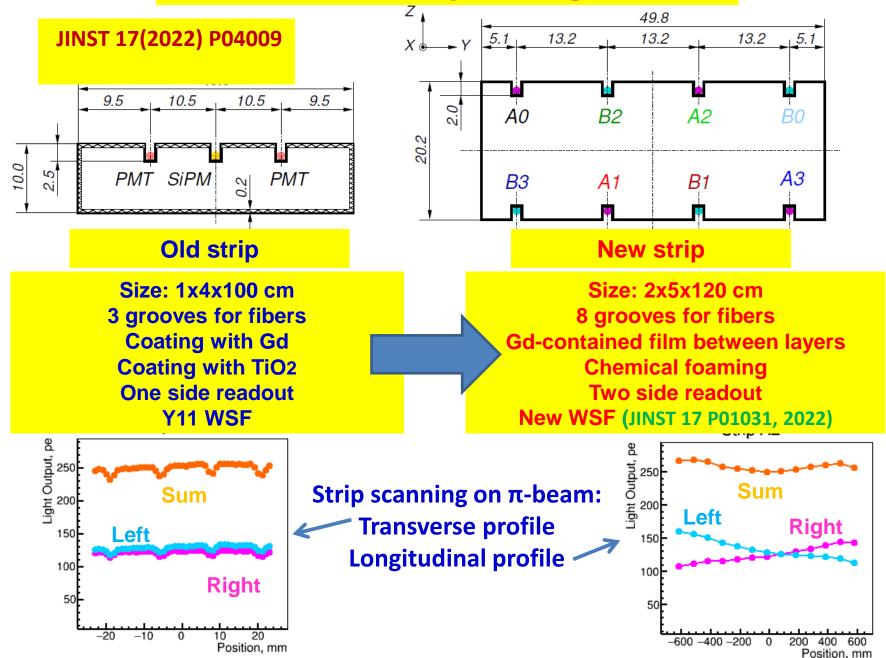
Eur. Phys. J. C (2022) 82: 515

- 9 values of α and β was calculated for each detector position, and for each angular area;
- All values of α are in perfect agreement with theory curve;
- β values are ~30% above model predictions!

Plans for the DANSS upgrade


Main goal is to reach energy resolution $12\%/\sqrt{E}$ (now it only $34\%/\sqrt{E}$)

New design:


- Same passive shielding;
- Same lifting system;
- Same digitizing system;
- No PMT readout;
- New strips 2x5x120 cm,
- with 2-side 4SiPM readout;
- New structure: 60 layers x 24 strips,
 sensitive volume 1.7 m³;
- Gd-contained film between layers;

Upgrade planned to be finished in 2023

DANSS sensitivity after the upgrade

New strip design



- DANSS collects more than 6M of IBD events;
- Big part of the RAA+GA region was excluded;
- With new data weak hint on sterile neutrino has appeared – two close points:

 ΔX^2 =-10 for Δm^2 =0.35 eV², $\sin^2 2\theta$ =0.067 ΔX^2 =-9.7 for Δm^2 =1.26 eV², $\sin^2 2\theta$ =0.02

- But these results are not statistically significant (2.4 σ) to claim the indication of the sterile neutrino;
- Temperature and barometric correlation coefficients for cosmic muon flux were measured in new area of the overburden parameters;

Summary

Our plans:

To take data for a few more months

To upgrade detector in 2023