

Search for new physics in b \rightarrow sll transitions at LHCb

Stefania Ricciardi STFC, Rutherford Appleton Laboratory on behalf of LHCb

Rencontres du Vietnam Flavour Physics Conference 2022 I I CISE, Quy Nhon, Vietnam

$b \rightarrow sll transitions$

- Decays mediated by $b \rightarrow sll$ are FCNC
- Proceed in the SM only via loops
- Rare processes (BF $\leq 10^{-6}$)
 - New (virtual) particles may significantly alter decay amplitudes
 - Sensitive to new physics at high scales, that are inaccessible to direct production searches
- **Rich laboratory**
 - Many channels:
 - *b* mesons or baryons
 - $I = e, \mu \text{ or } \tau$
 - leptonic or semi-leptonic decays
 - Many observables, depending on final state

Outline

- $b \rightarrow s \mu \mu$
 - Branching fractions
 - Angular observables
- $b \rightarrow s\mu\mu / b \rightarrow see$
 - Lepton Flavour Universality tests
- b → sll', l≠l'
 - Lepton Flavour Violating decays searches
- Outlook

Anomalies: discrepancies with SM in several observables

- 1-3.6 σ in semi-leptonic branching fractions and angular observables
- 3.1 σ in LFU tests (R_K)
- >4 σ discrepancy in global fits

b-slianomalies

Stefania Ricciardi

16/08/22

$B_{s}^{0} \rightarrow \mu\mu$

- Unique decay, very sensitive to new physics
 - helicity suppressed \Rightarrow very rare (BF 10⁻⁹)
 - B⁰_s decay constant well-known from lattice QCD \Rightarrow precise (4%) BF predictions

SM: Beneke, Bobeth, Szafron, arXiv:1908.07011 $B(B_{c}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.66 \pm 0.14) \times 10^{-9}$ $B(B^0 \rightarrow \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

- $\sim 2 \sigma$ tension between ATLAS+CMS+LHCb combined measurement of B_{s}^{0} results (2020) and SM prediction
- 2022: new results from LHCb

Semi-leptonic: differential branching fractions

All semi-leptonic BFs lower than SM predictions at low $q^2(~1-4\sigma)$ Science and [comparison limited due to large theory uncertainties on form factors] **Facilities** Council

Technology

4-body decays: angular observables

- Prototype: $B^0 \rightarrow K^{*0} \mu \mu$
- Differential decay rate described by 3 angles and di-muon invariant mass squared (q²)
- Rich structure of observables in the angular coefficients [functions of q²]

Optimised observables can be formed out of the angular coefficients which are robust against form-factors uncertainties (e.g., P_5 ')

Descotes-Genon et al., JHEP 01 (2013) 048

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

$$\frac{1}{\Gamma} \frac{d^3(\Gamma + \Gamma)}{d\cos\theta_\ell \, d\cos\theta_K \, d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ \left. - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \frac{1}{\sqrt{F_L(1 - F_L)}} \frac{1}{P_5'} \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{FB} \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\phi_\ell} \right]$$

Science and Technology Facilities Council

- Anomaly in P'₅ found in $B^0 \rightarrow K^{*0} \mu \mu$ for $4 < q^2 < 8 \text{ GeV}^2$
- Recently observed also in B⁺ isospin partner
- Deviations from SM predictions also in other angular observables

Extent of hadronic contributions still matter of debate (particularly charm-quark loops)

Lepton Flavour Universality (LFU)

- Equal gauge coupling of electroweak bosons to all leptons in $SM \Rightarrow LFU$
- R_X ratios test LFU in $b \rightarrow sll$
 - Theoretically pristine
 - QCD uncertainties cancel in the ratio, small uncertainty O(1%) from QED

[Eur. Phys. J. C (2016) 76:440, JHEP 12(2020)104]

• Five different ratios published so far by LHCb: $X_s = K^+$, K^0_s , K^{*0} , K^{*+} and pK^-

LFU results: R_x all below SM

Stefania Ricciardi

LFU: experimental challenge

Trigger and reconstruction differences between electrons and muons

Science and Technology Facilities Council

Electrons:

- Calorimeter trigger
- Higher trigger thresholds than muons (E_T >3 GeV)
- Challenging PID: e→e ~90%, h→e ~5%
 Bremsstrahlung:
 - Degradation of *B* mass resolution
 - Higher background than muons

Muons:

- Triggered by muon end-system
- Lower threshold: $p_T > 1.5 \text{ GeV}$
- Good p-resolution and PID $\mu \rightarrow \mu \sim 97\%$, $h \rightarrow \mu 1-3\%$

16/08/22

LFU tests: experimental strategy

Double ratios to reduce systematics uncertainties:

$$X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)}$$

- Ratios determined using yields and efficiencies
 - Efficiencies calibrated using control data
 - Yields extracted with fits to the data
- Blind analysis to minimise analysts' bias
- Procedure validated using resonant decays:
 - $B_q \rightarrow X_s J/\psi(l^+l^-)$ and $B_q \rightarrow X_s \psi(2S)(l^+l^-)$
 - LFU for $J/\psi \rightarrow l^+l^-$ established at $\[$ level [PDG 2022] $\]$

16/08/22

Science and Technology Facilities Council

R

LFU: analysis validation

Single ratio of BFs:

- Limited cancellation of systematics
- Probes directly electrons vs muons
- \Rightarrow Stringent validation

$$r_{J/\psi} = \frac{\mathcal{B}\left(B_q \to X_s J/\psi(\mu^+\mu^-)\right)}{\mathcal{B}\left(B_q \to X_s J/\psi(e^+e^-)\right)}$$

X _s	r _{J/ψ}	$R_{\psi(2S)}$
K+	0.981 ± 0.020	0.997 ± 0.011
K*+	0.965 ± 0.032	1.017 ± 0.050
K ⁰ s	0.977 ± 0.028	1.014 ± 0.036
K*0	1.043 ± 0.045	within 1σ from 1
pK⁻	0.96 ± 0.05	within 1σ from 1

$$R_{\psi(2S)} = \frac{\mathcal{B}(B_q \to X_s \psi(2S)(\mu^+\mu^-))}{\mathcal{B}(B_q \to X_s \psi(2S)(e^+e^-))} \cdot r_{J/\psi}^{-1}$$

Double ratio of BFs:

- Cancellation of systematics similar to R_X
- "Rehearsal" of R_X

Stefania Ricciardi

 $r_{J/\psi}$ and $R_{\psi(2S)}$ compatible with unity within 1σ for all modes

16/08/22

- Lepton Flavour Violation (LFV) closely connected to LFU violation [Glashow, Guadagnoli, Lane, PRL 114(2015)091801]
 - LFV forbidden in SM (occurring only via v oscillation, with BFs ~10⁻⁵⁰, much below detection), signal would be unequivocal proof of new physics
 - Several BSM models predict LFV within reach if LFU violation is as large as measured (e.g., leptoquark [Hiller et al., JHEP 12 (2016)027], Z' models [Crivellin et al, PRD 92(2015)054013])
- Searches conducted in many decay modes @LHCb, only two most recent ones shown here

Lepton Flavour Violation

arXiv:2207.04005

 $B^0 \rightarrow K^{*0} \mu e$ results separated

LFV: $B^0 \rightarrow K^{*0} \mu e$ and $B_s \rightarrow \phi \mu e$

- $B^0 \rightarrow K^{*0} \mu e$ limits improved by ~x10 over previous best results
- World's first constraint of a semi-leptonic LFV B⁰_s decay.

Facilities Council

5500

 $B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$ ₹ Data

- Total bkg

Bkg + sig model

--- Combinatorial bkg ----- Higher excited D_s^-

 $---- B_{sig} = 1 \times 10^{-7}$

6000

LHCb

 $9 \, {\rm fb}^{-1}$

6500

Summary and outlook

"Cautious" excitement!

- Intriguing tensions between experimental results and SM predictions have appeared in many decays mediated by b→sll
- Consistent new physics solution favoured when results are fitted within EFT framework
- Anomalies under close scrutiny by theory and experimental communities:
 - Easier experimental observables (differential branching fractions, angular observables) not theoretically clean
 - Theory clean observables (LFU) experimentally more challenging
- All results limited by statistical uncertainties
 - More data will allow to clarify situation

LHCb (50 fb⁻¹ during Run3 and Run4), Belle II expected to achieve similar precision with 50 ab⁻¹. >5 σ LFU violation if central values don't change

Thank you

Charm-loops in $B^0 \to K^{*0} \mu^+ \mu^-$

New physics effects in the short-distance coefficients can be disentangled from non-local hadronic effects (charm loops) via an amplitude analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$. Two different approaches pursued at LHCb (Bobeth et al. Eur.Phys.J. C (2018) 78:451 and Egede et al. Eur.Phys.J. C (2018) 78:453) using Run 1 and Run 2 data.

R_x numerical results

Statistical uncertainty dominates

- Main sources of systematic uncertainties:
 - Fit model
 - Limited size of control samples used to calibrate simulation

LFU planned future measurements

- High priority work ongoing:
 - Unified analysis of R_K and R_{K*0} will provide final results with Run 1 and Run 2 full data sample
 - Efforts lead to a deeper understanding of the LFU measurements that will be reflected in the results
- In parallel also measurements of R_{pK} with full 9/fb dataset, R_φ and R_{Kππ} (new)
 We appreciate your patience until results become available

Expected stat. uncertainty on some of the planned measurements [extrapolation uses Run1 results, from "Physics case for an LHCb Upgrade II", arXiv: 1808.08865]

R_X	$9{\rm fb}^{-1}$	$50{\rm fb}^{-1}$
R_K	0.043	0.017
$R_{K^{*0}}$	0.052	0.020
R_{ϕ}	0.130	0.050
R_{pK}	0.105	0.041
R_{π}	0.302	0.117

Future schedule

N. Tuning @ ECFA meeting, 22 July 2022

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035+	+
		Run III						Run IV					Run V		n V
LS2						LS3						LS4			
LHCb 4 UPGRA	O MHZ	L	= 2 x 10)33	LHCb Conso	lidate		L	= 2 x 10 50 fb ⁻¹	Эзз		LHCb L=1-1 UPGRADE II 300		x10 ³⁴ fb ⁻¹	
ATLAS Phase I	Upgr	L	= 2 x 10) ³⁴	ATLAS Phase II UPGRADE		L	$= 5 \times 10^{-1}$	<mark>С</mark>) ³⁴				$\frac{HL-L}{L=5}$	- HC x10 ³⁴	
CMS Phase I	Upgr		300 fb-1		CMS Phase II UPGRADE							3000) fb-1		
Belle I	I	L = 3	x 10 ³⁵			7 ab-1		$L = 6 x 10^{35} \qquad 50 ab^{-1}$							
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm LHC schedule:									le/LHC-lo	ng-term.	htm		nedule:		

LHCD

b→sll prospects with LHCb Upgrade II

- European Strategy Update 2020
- "The full potential of the LHC and HL-LHC, including the study of flavour physics, should be exploited"
- Upgrade II will realise the full physics potential

March 2022: LHCC approved R&D programme, followed by subsystem TDRs

LHCC-2018-027

16/08/22

R_x: projected yield and uncertainties

LHCC-2018-027

Yield	Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29 [274]	1120	3 300	7500	46000
$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14 275	490	1400	3300	20000
$B_s^0 \rightarrow \phi e^+ e^-$	_	80	230	530	3 300
$\Lambda_b^0 \rightarrow pKe^+e^-$	—	120	360	820	5000
$B^+ \rightarrow \pi^+ e^+ e^-$	_	20	70	150	900
R_X precision	Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	$0.745 \pm 0.090 \pm 0.036$ [274]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05$ [275]	0.052	0.031	0.020	0.008
R_{ϕ}		0.130	0.076	0.050	0.020
R_{pK}	—	0.105	0.061	0.041	0.016
n		0.900	0.170	0.117	0.047

LFV: CLs

LHCB-PAPER-2022-021 in preparation p value Expected CLs - Median Expected CLs $\pm 1 \sigma$ Expected CLs $\pm 2 \sigma$ 0.6 LHCb 0.4 9 fb⁻¹ 0.2 ×10⁻⁶ 10 15 20 5 0 $BR(B^0 \rightarrow K^{*0}\tau^+ \mu^-)$ p value Observed CLs Expected CLs - Median Expected CLs $\pm 1 \sigma$ 0.8 Expected CLs $\pm 2 \sigma$ 0.6 LHCb 0.4 $9 \, \text{fb}^{-1}$ 0.2 ×10⁻⁶ 0 15 5 10 20 $BR(B^0 \rightarrow K^{*0}\tau^- \mu^+)$

