
Optimization &
Parallelization

Karl Kosack
CEA Paris-Saclay

ESCAPE School, June 2021

Your code is slow.
Now what?

Topics we
will cover

Optimizing your code:

• With Memoization

• With NumPy

• With Numba

• With Cython

Parallelizing your code:

• On a single machine with multiple cores

• On multiple machines

44

Optimization
ESCAPE School, June 2021

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

- Sir Tony Hoare?
or Donald Knuth?

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

- Sir Tony Hoare?
or Donald Knuth?

From a 1974 article on why GOTO statements are good

Karl Kosack - ESCAPE School 2021 47

Why optimize?

Karl Kosack - ESCAPE School 2021

However… once code is working, you do want it to be efficient!

• want a balance between usability/readability/correctness and
speed/memory efficiency

• These are not always both achievable, so err on the side of
usability

47

Why optimize?

Karl Kosack - ESCAPE School 2021

However… once code is working, you do want it to be efficient!

• want a balance between usability/readability/correctness and
speed/memory efficiency

• These are not always both achievable, so err on the side of
usability

Some things:

• Python is interpreted (though some compilation happens), and
can therefore be slow

• For-loops in particular are 100 - 1000x slower than C loops…

• There are some nice ways to speed up code, however, and get

close to low-level language speed

47

Why optimize?

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

48

Slowness of Python

http://pypy.org

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

48

Slowness of Python

So one option to optimization is:

Do nothing!

Wait for a faster implementation, or a
new version of CPython to be released,
or swap in a completely different
implementation!

http://pypy.org

Karl Kosack - ESCAPE School 2021

Advantages of PyPy:

• all PyPy code is JIT-compiled with LLVM

• support for most (but not all) of NumPy

• some support for C-extensions, but not all c-

code can be run yet

• supports (so far) Python language up to

version 3.7.9

Disadvantages:

• Works well speeding-up pure-python code,
but scientific code is often a mix of Numpy/
scipy/c-code: it's often slower than CPython!

• C-extensions not fully supported
49

Some notes on PyPy
Just In time →

compiled when used,
not before

A compiler framework
similar to GCC, the
default on macOS

But... there is a lot you can do to
make your python code faster

now.

Karl Kosack - ESCAPE School 2021

1) Make sure code works correctly first

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization:

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop!

3) Profile the code to identify bottlenecks in a more scientific way

• Profile time spent in each function, line, etc

• Profile memory use

4) try to re-write as little as possible to achieve improvement
5) refactor if it is still problematic…

• some times the design is what is making the code slow... can it be
improved? (e.g.: flat better than nested!)

51

Steps to optimization

Karl Kosack - ESCAPE School 2021

Basic principle: don't recompute things you computed already!

Instead, compute them once, and just return the pre-computed
result when asked. (trade memory for speed)

The hard way:

• keep a dictionary keyed by the input to a function with the
output as the value. If the key exists, return the value:

52

Speeding up code 1: Memoization

RESULTS_CACHE = {}

def memoized_compute(x):
 if x in RESULTS_CACHE:
 return RESULTS_CACHE[x]
 result = do_some_large_computation(x)
 RESULTS_CACHE[x] = result

It works, but is ugly and not very
pythonic...

Also if there are many values of
x, you will use a lot of memory

Karl Kosack - ESCAPE School 2021

The better way: as usual, python already has you covered!

• use functools.lru_cache  
→ built-in memoization as a decorator

• Specify (roughly) the expected maximum size of the cache

➤ it will still work if you go over it, but just not be as efficient

• It uses (a hash of) all inputs to the function as the key

53

Speeding up code 1: Memoization

RESULTS_CACHE = {}

def memoized_compute(x):
 if x in RESULTS_CACHE:
 return RESULTS_CACHE[x]
 result = do_some_large_computation(x)
 RESULTS_CACHE[x] = result

from functools import lru_cache

@lru_cache(maxsize=1000)
def do_some_large_computation(x):
 # slow code here
 return result

LRU: Least Recently Used:
Throw away cached items

that were not accessed
recently, if memory gets slim

(one method for caching,
there are many others)

Karl Kosack - ESCAPE School 2021

For-loops are slow! (in pure python)
Use NumPy vector operations as much as possible → they are optimized already!

• don't call a function on many small pieces of data when you can call it on an
array all at once

• numpy is implemented in C & Fortran and it uses fast numerical libraries,
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)

• usually just vectorizing your code to avoid some for-loops, will give you great
performance.

➤ bad:

| for ii in range(100):
| x = ii*0.1
| y[ii] = f(x)

➤ Good:
| x = np.linspace(0,10,100)
| y = f(x)

54

Speeding up code 2: Numpy

Karl Kosack - ESCAPE School 2021

For-loops are slow! (in pure python)
Use NumPy vector operations as much as possible → they are optimized already!

• don't call a function on many small pieces of data when you can call it on an
array all at once

• numpy is implemented in C & Fortran and it uses fast numerical libraries,
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)

• usually just vectorizing your code to avoid some for-loops, will give you great
performance.

➤ bad:

| for ii in range(100):
| x = ii*0.1
| y[ii] = f(x)

➤ Good:
| x = np.linspace(0,10,100)
| y = f(x)

54

Speeding up code 2: Numpy

This requires practice, and feels very
strange at first if you are coming
from C programming!

Take some time to look through the
NumPy and SciPy API documentation
- there are tons of interesting functions
to help you!

Karl Kosack - ESCAPE School 2021

Takes python code and directly uses introspection to compile it with LLVM

• Pretty automatic, but doesn't always help! Still need code written in a way that
can be optimized (for-loops are actually good here, it can't do much with numpy
operations since they are already compiled code)

• Can generate NumPy "ufuncs" directly (function that works on scalars but is run
on all elements of an array), which are too slow to write in python normally.

• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs!

from numba import jit
from numpy import arange

jit decorator tells Numba to compile this function.
The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

|

55

Speeding up code 3: Numba

just add this decorator,
and it's magic (nearly)

Aside:
Some
caveats for
Numba

Numba operates in two modes:

• No-Python Mode:

➤ gives large performance boost
➤ but only supports basic python types and a subset of

numpy/scipy operations

• Object Mode

➤ fall-back if No Python mode fails
➤ supports any python object
➤ but gives little or not speed up in most situations

Tip:

• To force it to use No-Python mode

➤ set nopython=True in the options
➤ better: use @njit

• @njit will fail if the code cannot be optimized by
numba, and it will tell you why!

• There is some discussion that @njit will become the
default in the future 56

Karl Kosack - ESCAPE School 2021

from timeit import default_timer as timer
from matplotlib.pylab import imshow, jet, show, ion
import numpy as np

from numba import jit

@jit
def mandel(x, y, max_iters):
 """
 Given the real and imaginary parts of a
 complex number,
 determine if it is a candidate for membership
 in the Mandelbrot
 set given a fixed number of iterations.
 """
 i = 0
 c = complex(x,y)
 z = 0.0j
 for i in range(max_iters):
 z = z*z + c
 if (z.real*z.real + z.imag*z.imag) >= 4:
 return i

 return 255

@jit
def create_fractal(min_x, max_x, min_y, max_y, image, iters):
 height = image.shape[0]
 width = image.shape[1]

 pixel_size_x = (max_x - min_x) / width
 pixel_size_y = (max_y - min_y) / height
 for x in range(width):
 real = min_x + x * pixel_size_x
 for y in range(height):
 imag = min_y + y * pixel_size_y
 color = mandel(real, imag, iters)
 image[y, x] = color

 return image

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)
s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer()
print(e - s)
imshow(image)

example from the Numba docs

note that you need to "jit" not only the parent function, but any function that it calls
that needs to be sped up. Otherwise, only Object Mode can work!

57

More numba caveats:

Karl Kosack - ESCAPE School 2021

Numba supports a large number of NumPy functions (and even some scipy):

• It does not actually call NumPy code!

• it re-implements it in a way that is compilable with LLVM.

So what is the point? Isn't NumPy really optimized already?

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end:

x = np.arange(1000)
result = A * x**2 + B * x + C

• More control over parallelization (See next lecture)

58

Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

in C, you might do this all in one loop, with no extra
memory needed:

for (i=0; i<x.size; i+*) {
 result[i] = A*x[i]*x[i] + B*x[i] + C;
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

Karl Kosack - ESCAPE School 2021

Numba includes a lot of advanced features and options to jit that can help speed things
up

• e.g. specify the input and output type mapping, rather than infer it

• Easy NumPy Ufunc generation with vectorize and guvectorize (generalized)

➤ e.g. let you write code that operates on 1D array, and broadcast it to N-dimensional arrays

• Options like target='GPU' for producing CUDA code or similar

• Parallelization onto multiple threads with parallel=True (see next lecture)

59

Advanced Numba

import numpy as np

from numba import guvectorize

@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)')
def move_mean(a, window_arr, out):
 window_width = window_arr[0]
 asum = 0.0
 count = 0
 for i in range(window_width):
 asum += a[i]
 count += 1
 out[i] = asum / count
 for i in range(window_width, len(a)):
 asum += a[i] - a[i - window_width]
 out[i] = asum / count

arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print(move_mean(arr, 3)) example from the Numba docs

Karl Kosack - ESCAPE School 2021

Write good clean code first!

Identify bottlenecks in speed and memory with profiling tools

• don't worry so much about things that are not called often!

• try to narrow it down to the most critical parts of code

Use numpy, cython, numba or other technologies to improve
the bottleneck

• try not to obfuscate the code to achieve speed! Readability
still counts.

60

Summary

Demo

Parallelization
ESCAPE School, June 2021

Karl Kosack - ESCAPE School 2021

What is parallelization?

On a Single Machine

• Multi-threading / processes  
Multiple cores

• Vectorization  
Multiple instructions for one core 

On Multiple Machines:

• Batch Queues

• Workflow Systems

• MPI (Message Passing Interface)

Run non-sequential parts of a computing
task simultaneously, maximizing
resource use.

Karl Kosack - ESCAPE School 2021

Jobs that run on your computer are called Processes

• You can run many at once (your OS handles multi-tasking)

• Each has a process ID (PID) and it's own memory space, and

takes some time to start up.

• Processes can start child sub-processes (hierarchy)

• Shared memory difficult, socket communication (send/receive

messages) usually preferred

Within a process, you can also start any number of
"lightweight sub processes" called Threads.

• very little overhead to start or stop a Thread (start hundreds in
a fraction of a second)

• Memory is shared with parent - easy! ... but pay attention

64

Multiple Processes vs Multi-Threading

} Your computer's
operating system will

automatically schedule
Processes or Threads
on all available CPU

cores

They run in parallel
and preemptively (on

most systems)

A side note
on shared
memory

65

shared memory

a = █ █ █ █ █ █ █ █ █ █ █ █

Thread1 Thread2Thread3 Thread4

Multiple threads can write to or read from the same
object in memory (e.g. an array)

• The order in which threads run is not defined

• if two threads access the same memory address, but
the order in which it happens changes the results, this
is called a "race condition"

• they are both "racing" to access the memory, the
result depends who "wins"

A side note
on shared
memory

The way to avoid this is by locking memory in blocks of
code where it must not be changed by another process.

• (implemented via e.g. mutexes, semaphores...)

• It is very easy to make mistakes

• For example deadlocks (code hangs because multiple

threads ask for a lock in the wrong order)

Preferred method to avoid this: Fork and Join

| solve(problem):
| if problem is small enough:
| solve problem directly (sequential algorithm)
| else:
| for part in subdivide(problem)
| fork subtask to solve(part)
| join all subtasks spawned in previous loop
| return combined results

66

Fork Join

Karl Kosack - ESCAPE School 2021

Python (CPython) is bad at multi-threading!

• Global Interpreter Lock (GIL) locks shared memory when the
interpreter is executing a statement

• Means that in practice all python threads run on the same
core → parallel but not across cores!

• Still useful for things like processing while also waiting for I/O
(see also cooperative multi-tasking using async/await however!)

In Python, generally prefer multiple processes to threads.

• CAVEAT: when python runs compiled C-code (or Fortran, or
Numba!), multiple threads can be used inside that code (but not
once it returns to the interpreter)...

67

Python and Multi-threading/processes

Karl Kosack - ESCAPE School 2021

Many NumPy and SciPy operations use the underlying
libraries like BLAS:

• Basic Linear Algebra Subprograms

• Created in 1979 as standard interface for linear algebra

(Fortran)

• Many heavily optimized versions exist today that include

automatic vectorization and multi-core
parallelization:

➤ OpenBLAS
➤ Intel MKL (Math Kernel Library) - closed source, but

included in Anaconda
Functions that use these like np.dot(X,Y) automatically
run large operations on all cores in the system

• you can control how many using environment variables

68

Multi-core Multi-threading without thinking...

To Stop NumPy from multi-threading:
export MKL_NUM_THREADS=1
export NUMEXPR_NUM_THREADS=1
export OMP_NUM_THREADS=1

(e.g. on shared batch systems, you may
need to do this)

How to benefit?
Just use NumPy and SciPy

more! Avoid loops, use vector-
style math.

Don't have to think about
parallelization, you some for

free (but not perfect)

Karl Kosack - ESCAPE School 2021 69

Parallelism with Numba!
Remember: the GIL only affects python code, not
compiled code, where we can use Threads as
normal!

Numba makes it really easy to make parallel
loops that use threads even knowing about
threads!

• The @njit decorator has a parallel=True option

• It tries to parallelize what it thinks it can

safely (e.g. numpy sums, products, etc)

• You can also say what should be parallelized
using prange (parallel range) in an explicit
loop

from numba import njit, prange

@jit(parallel=true)
def my_fast_parallel_func(n):
 for i in prange(10):
 for j in range(1000):
 do_something(i, j, n)

This runs in parallel
This doesn't

https://numba.pydata.org/numba-doc/latest/user/parallel.html

https://numba.pydata.org/numba-doc/latest/user/parallel.html

Karl Kosack - ESCAPE School 2021 70

Numba Parallel Gotchas

@njit(parallel=True)
def prange_wrong_result(x):
 n = x.shape[0]
 y = np.zeros(4)
 for i in prange(n):
 # accumulating into the same element of `y` from different
 # parallel iterations of the loop results in a race condition
 y[:] += x[i]

 return y

Karl Kosack - ESCAPE School 2021 70

Numba Parallel Gotchas

@njit(parallel=True)
def prange_wrong_result(x):
 n = x.shape[0]
 y = np.zeros(4)
 for i in prange(n):
 # accumulating into the same element of `y` from different
 # parallel iterations of the loop results in a race condition
 y[:] += x[i]

 return y

Careful: race conditions!
No locking is done, be sure that two
the same memory is not written to
by two iterations of the loop!
Remember the order is not
guaranteed.

Another
side note:
Multi-
threading in
C++

 
compiler extension to support easier multi-threaded
parallelism in C/C++

• easily paralleize loops with little effort

• fork-and-join method made easy

• very similar to what is done in numba parallel! (even

more flexible in fact)

71

https://www.openmp.org/

int main(int argc, char **argv)
{
 int a[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Demo
(back to the Heat Equation Solver)

Karl Kosack - ESCAPE School 2021

You can inspect what numba has done!

| @jit(parallel=True)
def some_function():
 ... code here

| some_function.parallel_diagnostics()
|

73

Debugging (understanding) Numba parallel

Karl Kosack - ESCAPE School 2021

Python's standard library provides all that you need to use all
your cores via the concurrent.futures*

• concurrent.futures.ThreadPoolExecutor:

➤ sends work (function calls) to multiple worker threads
➤ see previous slide, however → will not really give you multi-core

performance

• concurrent.futures.ProcessPoolExecutor:

➤ launches multiple worker processes and sends work to each
➤ There is some overhead in creating the workers and for sending

data between them, so small jobs may be slower than non-
parallel!

• and more via external packages... (see MPIPoolExecutor later)

74

Basic multi-core processing

* There is also
the older but

more complex
multiprocessing
module that has

similar
functionality

Karl Kosack - ESCAPE School 2021 75

Example

from concurrent.futures import ProcessPoolExecutor
from time import sleep

def work(x):
 sleep(5)
 return x**2

if __name__ == "__main__":

 with ProcessPoolExecutor() as pool:
 future = pool.submit(work, 10)

 # non-blocking calls to done()
 for ii in range(10):
 print("Is it done?", future.done())
 sleep(1)

 # blocking call to result()
 print("Result:", future.result())

Is it done? False
Is it done? False
Is it done? False
Is it done? False
Is it done? False
Is it done? False
Is it done? True
Is it done? True
Is it done? True
Is it done? True
Result: 100

Tip: you need this
guard line! It will

fail otherwise

Karl Kosack - ESCAPE School 2021 76

Example with map() interface
from concurrent.futures import ProcessPoolExecutor
from time import sleep
import random

def work(x):
 sleep(random.uniform(1,5))
 print(f"Computing {x}")
 return x**2

if __name__ == "__main__":

 values = [1,2,3,10,20,50,100,200]

 with ProcessPoolExecutor() as pool:
 print("Input ", values)
 output = pool.map(work, values)
 print("Output ", output) # non-blocking! (generator object)
 print("Output ", list(output)) #blocking!

Input [1, 2, 3, 10, 20, 50, 100, 200]
Output <generator object _chain_from_iterable_of_lists at 0x107f875f0>
Computing 2
Computing 100
Computing 10
Computing 20
Computing 200
Computing 1
Computing 50
Computing 3
Output [1, 4, 9, 100, 400, 2500, 10000, 40000]

Karl Kosack - ESCAPE School 2021

Python's standard library also provides an older module
called multiprocessing*

• multiprocessing.Pool

➤ creates a set of worker processes
➤ provides an interface to loop over jobs in an iterable that works

exactly like the python built-in map() command:
| results = map(function, sequence)

which is equivalent to :

| results = (function(x) for x in sequence)

With multiprocessing this becomes:

| pool = multiprocessing.Pool()
| results = pool.map(function, sequence)

77

Basic multi-core processing (2)

* There is also a newer
(but less feature-full)
concurrent.futures
module that has
similar functionality

Karl Kosack - ESCAPE School 2021

Python's standard library also provides an older module
called multiprocessing*

• multiprocessing.Pool

➤ creates a set of worker processes
➤ provides an interface to loop over jobs in an iterable that works

exactly like the python built-in map() command:
| results = map(function, sequence)

which is equivalent to :

| results = (function(x) for x in sequence)

With multiprocessing this becomes:

| pool = multiprocessing.Pool()
| results = pool.map(function, sequence)

77

Basic multi-core processing (2)

* There is also a newer
(but less feature-full)
concurrent.futures
module that has
similar functionality

IMPORTANT NOTE:

The way both multiprocessing and
concurrent.futures work prevents
them from running in a notebook!

The functions that use them must be
in a module/script.

Karl Kosack - ESCAPE School 2021

Multiprocessing:

• has a easier to understand (for new users) interface

• allows inter-process communication with Pipes and Queues

• provides map()-like interface, with array return

Concurrent.futures:

• Provides a unified interface for many parallelization backends

• Provides map()-like interface returned as generator (lazy

• Much simpler API (good and bad - you have less flexibility)

Both:

• Do not allow direct shared memory → require you to use a mechanism to
communicate with other proceses

78

Differences in the two implementations

to the
notebook!

How to parallelize using multiprocessing

Now, if there is time, lets talk a bit about
multi-machine parallelism...

Karl Kosack - ESCAPE School 2021

Much of theoretical science has problems that operate
on large N-dimensional grids of numbers :

• magneto-hydrodynamic simulations (e.g. of a
supernova)

• computational particle physics (e.g. lattice QCD)

• weather prediction

These cannot be "embarassingly parallelized"

• require block parallelism

• No shared memory (as in Threads), so have to

exchange information a edges of blocks

• A good solution: MPI via the MPI4py library

81

Workflows with inter-job communication

Job 1 Job 2

Job 3 Job 4

https://mpi4py.readthedocs.io/en/stable/

https://mpi4py.readthedocs.io/en/stable/

Karl Kosack - ESCAPE School 2021

Much of theoretical science has problems that operate
on large N-dimensional grids of numbers :

• magneto-hydrodynamic simulations (e.g. of a
supernova)

• computational particle physics (e.g. lattice QCD)

• weather prediction

These cannot be "embarassingly parallelized"

• require block parallelism

• No shared memory (as in Threads), so have to

exchange information a edges of blocks

• A good solution: MPI via the MPI4py library

81

Workflows with inter-job communication

Job 1 Job 2

Job 3 Job 4

information
to be

exchanged:

information
to be

exchanged:

https://mpi4py.readthedocs.io/en/stable/

https://mpi4py.readthedocs.io/en/stable/

Demo

Karl Kosack - ESCAPE School 2021

Data oriented science is often a example of an
"embarrassingly parallel problem"

• I/O and processing times can take a long time

• But the work can trivially be split into many "jobs", with no

communication between them needed

• Typical solution: use a batch queuing system!

83

Simple Parallelization on Many Machines

Example:

I have 100 raw data
files and I want to
process them to

reduced data files

General procedure:

for job in list_of_work:
 batch_queue.submit(work)

Wait for all jobs to

Download the results.

Karl Kosack - ESCAPE School 2021

Imaging your workflow is a directed acyclic graph (DAG)

• Similar to a Makefile (which is a language to define DAGs!)

• A simple batch queue will require you to do a lot of work manually

• fortunately there are systems to help!

84

More complicated parallel workflows

Karl Kosack - ESCAPE School 2021

Example: Apache Airflow airflow.apache.org

• fully python based workflow management system

• somewhat complex to set up and get running (compared to

single-machine systems)

• define your DAG as steps in python

Many many others...

• DIRAC (used by CMS, CTA)

85

Workflow Management Systems

| mamba install -c
conda-forge apache-
airflow

 → but probably needs
it's own env due to lots of
dependencies

http://airflow.apache.org

Karl Kosack - ESCAPE School 2021

No one language is used... so for each system, you usually have
to re-write your workflow

Common Workflow Language www.commonwl.org

• started by biologists working in bioinformatics

• defines a common way to define a DAG in YAML text, where

each step can be an executable with inputs and outputs. Steps
run in Docker Containers for easy reproducibility.

• many systems already support this language, so DAGs can run
on local machine, or on an Airflow cluster, or others

86

The problem with workflow management

http://www.commonwl.org

