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Your code is slow.
Now what?



Topics we 
will cover

Optimizing your code: 

• With Memoization

• With NumPy 

• With Numba

• With Cython


Parallelizing your code: 

• On a single machine with multiple cores

• On multiple machines
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“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil

- Sir Tony Hoare? 
or Donald Knuth?



“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil

- Sir Tony Hoare? 
or Donald Knuth?

From a 1974 article on why GOTO statements are good
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Why optimize?
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However… once code is working, you do want it to be efficient! 

• want a balance between usability/readability/correctness and 
speed/memory efficiency


• These are not always both achievable, so err on the side of 
usability
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However… once code is working, you do want it to be efficient! 

• want a balance between usability/readability/correctness and 
speed/memory efficiency


• These are not always both achievable, so err on the side of 
usability


Some things: 

• Python is interpreted (though some compilation happens), and 
can therefore be slow


• For-loops in particular are 100 - 1000x slower than C loops…

• There are some nice ways to speed up code, however, and get 

close to low-level language speed
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Why optimize?
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Not an inherent problem with the language 

• python ≠ CPython!

➤ but CPython does generally get faster each 

release  

• other python implementations exist that are trying 
to solve the general speed problem:

➤ pypy  - pypy.org fully JIT-compiled python 
➤ pyston - optimized CPython from Facebook 
➤ other efforts to remove bottlenecks from CPython 

(no GIL, etc)

48

Slowness of Python

http://pypy.org
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Slowness of Python

So one option to optimization is: 

Do nothing!  

Wait for a faster implementation, or a 
new version of CPython to be released, 
or swap in a completely different 
implementation!

http://pypy.org
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Advantages of PyPy: 

• all PyPy code is JIT-compiled with LLVM 

• support for most (but not all) of NumPy

• some support for C-extensions, but not all c-

code can be run yet 

• supports (so far) Python language up to 

version 3.7.9 

Disadvantages: 

• Works well speeding-up pure-python code, 
but scientific code is often a mix of Numpy/
scipy/c-code: it's often slower than CPython! 

• C-extensions not fully supported
49

Some notes on PyPy
Just In time → 

compiled when used, 
not before

A compiler framework 
similar to GCC, the 
default on macOS



But... there is a lot you can do to 
make your python code faster 

now. 
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1) Make sure code works correctly  first 

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization: 

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop! 


3) Profile the code to identify bottlenecks in a more scientific way 

• Profile time spent in each function, line, etc

• Profile memory use


4) try to re-write as little as possible to achieve improvement 
5) refactor if it is still problematic… 

• some times the design  is what is making the code slow... can it be 
improved?  (e.g.: flat better than nested!) 
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Steps to optimization
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Basic principle: don't recompute things you computed already!

Instead, compute them once, and just return the pre-computed 
result when asked.  (trade memory for speed)


The hard way: 

• keep a dictionary keyed by the input to a function with the 
output as the value.  If the key exists, return the value:
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Speeding up code 1: Memoization

RESULTS_CACHE = {} 

def memoized_compute(x): 
    if x in RESULTS_CACHE: 
        return RESULTS_CACHE[x] 
    result = do_some_large_computation(x) 
    RESULTS_CACHE[x] = result 

It works, but is ugly and not very 
pythonic... 


Also if there are many values of 
x, you will use a lot of memory
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The better way: as usual, python already has you covered! 

• use functools.lru_cache   
→ built-in memoization as a decorator


• Specify (roughly) the expected maximum size of the cache

➤ it will still work if you go over it, but just not be as efficient 

• It uses (a hash of) all inputs to the function as the key
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Speeding up code 1: Memoization

RESULTS_CACHE = {} 

def memoized_compute(x): 
    if x in RESULTS_CACHE: 
        return RESULTS_CACHE[x] 
    result = do_some_large_computation(x) 
    RESULTS_CACHE[x] = result 

from functools import lru_cache 

@lru_cache(maxsize=1000) 
def do_some_large_computation(x): 
    # slow code here 
    return result 

LRU: Least Recently Used: 
Throw away cached items 

that were not accessed 
recently, if memory gets slim


(one method for caching, 
there are many others)
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For-loops are slow! (in pure python) 
Use NumPy vector operations as much as possible → they are optimized already! 

• don't call a function on many small pieces of data when you can call it on an 
array all at once


• numpy is implemented in C & Fortran and it uses fast numerical libraries, 
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)


• usually just vectorizing your code to avoid some for-loops, will give you great 
performance.

➤ bad: 

| for ii in range(100): 
|     x = ii*0.1 
|     y[ii] = f(x) 

➤ Good: 
| x = np.linspace(0,10,100) 
| y = f(x)
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Speeding up code 2: Numpy
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Speeding up code 2: Numpy

This requires practice, and feels very 
strange at first if you are coming 
from C programming! 

Take some time to look through the 
NumPy and SciPy API documentation 
- there are tons of interesting functions 
to help you!
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Takes python code and directly uses introspection to compile it with LLVM 

• Pretty automatic, but doesn't always help! Still need code written in a way that 
can be optimized (for-loops are actually good here, it can't do much with numpy 
operations since they are already compiled code)


• Can generate NumPy "ufuncs" directly (function that works on scalars but is run 
on all elements of an array), which are too slow to write in python normally.


• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs! 

from numba import jit 
from numpy import arange 

# jit decorator tells Numba to compile this function. 
# The argument types will be inferred by Numba when function is called. 
@jit 
def sum2d(arr): 
    M, N = arr.shape 
    result = 0.0 
    for i in range(M): 
        for j in range(N): 
            result += arr[i,j] 
    return result 

a = arange(9).reshape(3,3) 
print(sum2d(a)) 

|
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Speeding up code 3: Numba

just add this decorator, 
and it's magic (nearly)



Aside: 
Some 
caveats for 
Numba

Numba operates in two modes: 

• No-Python Mode:

➤ gives large performance boost 
➤ but only supports basic python types and a subset of 

numpy/scipy operations 

• Object Mode 

➤ fall-back if No Python mode fails 
➤ supports any python object 
➤ but gives little or not speed up in most situations 

Tip:

• To force it to use No-Python mode


➤  set nopython=True in the options 
➤ better: use @njit 

• @njit will fail if the code cannot be optimized by 
numba, and it will tell you why! 

• There is some discussion that @njit will become the 
default in the future 56
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from timeit import default_timer as timer 
from matplotlib.pylab import imshow, jet, show, ion 
import numpy as np 

from numba import jit 

@jit 
def mandel(x, y, max_iters): 
    """ 
    Given the real and imaginary parts of a  
    complex number, 
    determine if it is a candidate for membership  
    in the Mandelbrot 
    set given a fixed number of iterations. 
    """ 
    i = 0 
    c = complex(x,y) 
    z = 0.0j 
    for i in range(max_iters): 
        z = z*z + c 
        if (z.real*z.real + z.imag*z.imag) >= 4: 
            return i 

    return 255 

@jit 
def create_fractal(min_x, max_x, min_y, max_y, image, iters): 
    height = image.shape[0] 
    width = image.shape[1] 

    pixel_size_x = (max_x - min_x) / width 
    pixel_size_y = (max_y - min_y) / height 
    for x in range(width): 
        real = min_x + x * pixel_size_x 
        for y in range(height): 
            imag = min_y + y * pixel_size_y 
            color = mandel(real, imag, iters) 
            image[y, x] = color 

    return image 

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8) 
s = timer() 
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20) 
e = timer() 
print(e - s) 
imshow(image)

example from the Numba docs

note that you need to "jit" not only the parent function, but any function that it calls 
that needs to be sped up.   Otherwise, only Object Mode can work!
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More numba caveats:
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Numba supports a large number of NumPy functions (and even some scipy): 

• It does not actually call NumPy code!

• it re-implements it in a way that is compilable with LLVM.


So what is the point?  Isn't NumPy really optimized already? 

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end: 

x = np.arange(1000) 
result = A * x**2 + B * x + C 

• More control over parallelization (See next lecture) 
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Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html 

in C, you might do this all in one loop, with no extra 
memory needed:


for (i=0; i<x.size; i+*) { 
    result[i] = A*x[i]*x[i] + B*x[i] + C; 
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
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Numba includes a lot of advanced features and options to jit that can help speed things 
up 

• e.g. specify the input and output type mapping, rather than infer it

• Easy NumPy Ufunc generation with   vectorize  and guvectorize (generalized)  

➤ e.g. let you write code that operates on 1D array, and broadcast it to N-dimensional arrays 

• Options like target='GPU' for producing CUDA code or similar

• Parallelization onto multiple threads with parallel=True (see next lecture)
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Advanced Numba

import numpy as np 

from numba import guvectorize 

@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)') 
def move_mean(a, window_arr, out): 
    window_width = window_arr[0] 
    asum = 0.0 
    count = 0 
    for i in range(window_width): 
        asum += a[i] 
        count += 1 
        out[i] = asum / count 
    for i in range(window_width, len(a)): 
        asum += a[i] - a[i - window_width] 
        out[i] = asum / count 

arr = np.arange(20, dtype=np.float64).reshape(2, 10) 
print(arr) 
print(move_mean(arr, 3)) example from the Numba docs
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Write good clean code first! 

Identify bottlenecks in speed and memory with profiling tools 

• don't worry so much about things that are not called often!

• try to narrow it down to the most critical parts of code


Use numpy, cython, numba or other technologies to improve 
the bottleneck 

• try not to obfuscate the code to achieve speed! Readability 
still counts. 
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Summary



Demo



Parallelization
ESCAPE School, June 2021



Karl Kosack - ESCAPE School 2021

What is parallelization?

On a Single Machine 

• Multi-threading / processes  
Multiple cores


• Vectorization  
Multiple instructions for one core 

On Multiple Machines: 

• Batch Queues

• Workflow Systems

• MPI (Message Passing Interface)

Run non-sequential parts of a computing 
task  simultaneously, maximizing 
resource use.
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Jobs that run on your computer are called Processes 

• You can run many at once (your OS handles multi-tasking)

• Each has a process ID (PID) and it's own memory space, and 

takes some time to start up.

• Processes can start child sub-processes (hierarchy)

• Shared memory difficult, socket communication (send/receive 

messages)  usually preferred 

Within a process, you can also start any number of 
"lightweight sub processes" called Threads.  

• very little overhead to start or stop a Thread (start hundreds in 
a fraction of a second)


• Memory is shared with parent - easy!  ... but pay attention
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Multiple Processes vs Multi-Threading 

} Your computer's 
operating system will  

automatically schedule 
Processes or Threads 
on all available CPU 

cores


They run in parallel 
and preemptively (on 

most systems)



A side note 
on shared 
memory
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shared memory  

a = █ █ █ █ █ █ █ █ █ █ █ █

Thread1 Thread2Thread3 Thread4

Multiple threads can write to or read from the same 
object in memory (e.g. an array) 

• The order in which threads run is not defined 

• if two threads access the same memory address, but 
the order in which it happens changes the results, this 
is called a "race condition" 


• they are both "racing" to access the memory, the 
result depends who "wins"



A side note 
on shared 
memory

The way to avoid this is by locking memory in blocks of 
code where it must not be changed by another process. 

• (implemented via e.g. mutexes, semaphores...)

• It is very easy to make mistakes

• For example deadlocks (code hangs because multiple 

threads ask for a lock in the wrong order)

Preferred method to avoid this: Fork and Join 

| solve(problem): 
|     if problem is small enough: 
|         solve problem directly (sequential algorithm) 
|     else: 
|         for part in subdivide(problem) 
|             fork subtask to solve(part) 
|         join all subtasks spawned in previous loop 
|         return combined results
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Fork Join
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Python (CPython) is bad at multi-threading! 

• Global Interpreter Lock (GIL) locks shared memory when the 
interpreter is executing a statement


• Means that in practice all python threads run on the same 
core → parallel but not across cores! 

• Still useful for things like processing while also waiting for I/O 
(see also cooperative multi-tasking using async/await however!)


In Python, generally prefer multiple processes to threads. 

• CAVEAT:  when python runs compiled C-code (or Fortran, or 
Numba!), multiple threads can be used inside that code (but not 
once it returns to the interpreter)... 
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Python and Multi-threading/processes
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Many NumPy and SciPy operations use the underlying  
libraries like BLAS: 

• Basic Linear Algebra Subprograms 

• Created in 1979 as standard interface for linear algebra 

(Fortran)

• Many heavily optimized versions exist today that include 

automatic vectorization and multi-core 
parallelization:

➤ OpenBLAS 
➤ Intel MKL (Math Kernel Library)  - closed source, but 

included in Anaconda 
Functions that use these like np.dot(X,Y) automatically 
run large operations on all cores in the system  

• you can control how many using environment variables
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Multi-core Multi-threading without thinking...

To Stop NumPy from multi-threading:
export MKL_NUM_THREADS=1 
export NUMEXPR_NUM_THREADS=1 
export OMP_NUM_THREADS=1 

(e.g. on shared batch systems, you may 
need to do this)

How to benefit? 
Just use NumPy and SciPy 

more! Avoid loops, use vector-
style math. 

Don't have to think about 
parallelization, you some for 

free (but not perfect)
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Parallelism with Numba!
Remember: the GIL only affects python code, not 
compiled code, where we can use Threads as 
normal! 

Numba makes it really easy to make parallel 
loops that use threads even knowing about 
threads! 

• The @njit decorator has a parallel=True option

• It tries to parallelize what it thinks it can 

safely (e.g. numpy sums, products, etc) 

• You can also say what should be parallelized 
using prange (parallel range) in an explicit 
loop

from numba import njit, prange 
 
@jit(parallel=true) 
def my_fast_parallel_func(n): 
    for i in prange(10): 
       for j in range(1000): 
          do_something(i, j, n) 

This runs in parallel
This doesn't

https://numba.pydata.org/numba-doc/latest/user/parallel.html

https://numba.pydata.org/numba-doc/latest/user/parallel.html
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Numba Parallel Gotchas

@njit(parallel=True) 
def prange_wrong_result(x): 
    n = x.shape[0] 
    y = np.zeros(4) 
    for i in prange(n): 
        # accumulating into the same element of `y` from different 
        # parallel iterations of the loop results in a race condition 
        y[:] += x[i] 

    return y 
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Numba Parallel Gotchas

@njit(parallel=True) 
def prange_wrong_result(x): 
    n = x.shape[0] 
    y = np.zeros(4) 
    for i in prange(n): 
        # accumulating into the same element of `y` from different 
        # parallel iterations of the loop results in a race condition 
        y[:] += x[i] 

    return y 

Careful: race conditions! 
No locking is done, be sure that two 
the same memory is not written to 
by two iterations of the loop! 
Remember the order is not 
guaranteed.



Another 
side note: 
Multi-
threading in 
C++

 
compiler extension to support easier multi-threaded 
parallelism in C/C++ 

• easily paralleize loops with little effort

• fork-and-join method made easy

• very similar to what is done in numba parallel! (even 

more flexible in fact)
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https://www.openmp.org/

int main(int argc, char **argv)
{
    int a[100000];

    #pragma omp parallel for
    for (int i = 0; i < 100000; i++) {
        a[i] = 2 * i;
    }

    return 0;
}



Demo
(back to the Heat Equation Solver)
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You can inspect what numba has done! 

| @jit(parallel=True) 
def some_function(): 
       ... code here 

| some_function.parallel_diagnostics() 
|

73

Debugging (understanding) Numba parallel
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Python's standard library provides all that you need to use all 
your cores via the  concurrent.futures*  

• concurrent.futures.ThreadPoolExecutor: 

➤ sends work (function calls) to multiple worker threads  
➤ see previous slide, however → will not really give you multi-core 

performance 

• concurrent.futures.ProcessPoolExecutor: 

➤ launches multiple worker processes and sends work to each 
➤ There is some overhead in creating the workers and for sending 

data between them, so small jobs may be slower than non-
parallel! 

• and more via external packages... (see MPIPoolExecutor later)
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Basic multi-core processing

* There is also 
the older but 

more complex 
multiprocessing 
module that has 

similar 
functionality
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Example

from concurrent.futures import ProcessPoolExecutor 
from time import sleep 

def work(x): 
    sleep(5) 
    return x**2 

if __name__ == "__main__": 

    with ProcessPoolExecutor() as pool: 
        future = pool.submit(work, 10) 

        # non-blocking calls to done() 
        for ii in range(10): 
            print("Is it done?", future.done()) 
            sleep(1) 

        # blocking call to result() 
        print("Result:",  future.result()) 

Is it done? False 
Is it done? False 
Is it done? False 
Is it done? False 
Is it done? False 
Is it done? False 
Is it done? True 
Is it done? True 
Is it done? True 
Is it done? True 
Result: 100

Tip: you need this 
guard line! It will 

fail otherwise
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Example with map() interface
from concurrent.futures import ProcessPoolExecutor 
from time import sleep 
import random 

def work(x): 
    sleep(random.uniform(1,5)) 
    print(f"Computing {x}") 
    return x**2 

if __name__ == "__main__": 

    values = [1,2,3,10,20,50,100,200] 
     
    with ProcessPoolExecutor() as pool: 
       print("Input ", values) 
       output = pool.map(work, values) 
       print("Output ", output) # non-blocking! (generator object) 
       print("Output ", list(output)) #blocking! 

        
         
         

Input  [1, 2, 3, 10, 20, 50, 100, 200] 
Output  <generator object _chain_from_iterable_of_lists at 0x107f875f0> 
Computing 2 
Computing 100 
Computing 10 
Computing 20 
Computing 200 
Computing 1 
Computing 50 
Computing 3 
Output  [1, 4, 9, 100, 400, 2500, 10000, 40000]
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Python's standard library also provides an older module 
called multiprocessing*   

• multiprocessing.Pool 

➤ creates a set of worker processes  
➤ provides an interface to loop over jobs in an iterable that works 

exactly like the python built-in map() command: 
| results  = map(function, sequence) 

which is equivalent to :


| results  = (function(x) for x in sequence) 

With multiprocessing this becomes:


| pool = multiprocessing.Pool() 
| results = pool.map(function, sequence)

77

Basic multi-core processing (2)

* There is also a newer 
(but less feature-full) 
concurrent.futures 
module that has 
similar functionality
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Basic multi-core processing (2)

* There is also a newer 
(but less feature-full) 
concurrent.futures 
module that has 
similar functionality

IMPORTANT NOTE: 

The way both multiprocessing  and 
concurrent.futures work prevents 
them from running in a notebook!


The functions that use them must be 
in a module/script.
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Multiprocessing: 

• has a easier to understand (for new users) interface

• allows inter-process communication with Pipes and Queues

• provides map()-like interface, with array return  


Concurrent.futures: 

• Provides a unified interface for many parallelization backends 

• Provides map()-like interface returned as generator (lazy 

• Much simpler API (good and bad - you have less flexibility)


Both: 

• Do not allow direct shared memory → require you to use a mechanism to 
communicate with other proceses

78

Differences in the two implementations



to the 
notebook!

How to parallelize using multiprocessing



Now, if there is time, lets talk a bit about 
multi-machine parallelism...
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Much of theoretical science has problems that operate 
on large N-dimensional grids of numbers : 

• magneto-hydrodynamic simulations (e.g. of a 
supernova)


• computational particle physics (e.g. lattice QCD)

• weather prediction


These cannot be "embarassingly parallelized"  

• require block parallelism

• No shared memory (as in Threads), so have to 

exchange information a edges of blocks

• A good solution: MPI via the  MPI4py library

81

Workflows with inter-job communication

Job 1 Job 2

Job 3 Job 4

https://mpi4py.readthedocs.io/en/stable/


https://mpi4py.readthedocs.io/en/stable/
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Workflows with inter-job communication

Job 1 Job 2

Job 3 Job 4

information 
to be 

exchanged:

information 
to be 

exchanged:

https://mpi4py.readthedocs.io/en/stable/


https://mpi4py.readthedocs.io/en/stable/


Demo
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Data oriented science is often a example of an 
"embarrassingly parallel problem" 

• I/O and processing times can take a long time

• But the work can trivially be split into many "jobs", with no 

communication between them needed

• Typical solution: use  a  batch queuing system!
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Simple Parallelization on Many Machines

Example:  

I have 100 raw data 
files and I want to 
process them to 

reduced data files

General procedure:


for job in list_of_work: 
    batch_queue.submit(work) 

Wait for all jobs to 

Download the results. 
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Imaging your workflow is a directed acyclic graph (DAG) 

• Similar to a Makefile (which is a language to define DAGs!)

• A simple batch queue will require you to do a lot of work manually

• fortunately there are systems to help! 
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More complicated parallel workflows
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Example: Apache Airflow airflow.apache.org  

• fully python based workflow management system

• somewhat complex to set up and get running  (compared to 

single-machine systems)

• define your DAG as steps in python


Many many others... 

• DIRAC (used by CMS, CTA)
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Workflow Management Systems

| mamba install -c 
conda-forge apache-
airflow  

 → but probably needs 
it's own env due to lots of 
dependencies


http://airflow.apache.org


Karl Kosack - ESCAPE School 2021

No one language is used...  so for each system, you usually have 
to re-write your workflow 

Common Workflow Language www.commonwl.org  

• started by biologists working in bioinformatics

• defines a common way to define a DAG in YAML text, where 

each step can be an executable with inputs and outputs.  Steps 
run in Docker Containers for easy reproducibility.


• many systems already support this language, so DAGs can run 
on local machine, or on an Airflow cluster, or others
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The problem with workflow management

http://www.commonwl.org

