
Debugging and Profiling
Karl Kosack
CEA Paris-Saclay

ESCAPE School, June 2021

A bit about
me... Astrophysicist at CEA Paris-Saclay  

→ Fundamental science institute (DRF/IRFU) 
 → Astrophysics Department (DAp + AIM) 
 → High-energy Astrophysics group (LEPCHE)

• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (50% of time)

Other Background (apart from gamma-ray astro):

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/perl(!) user, now essentially 100% python for 5+ years!

2

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/

H.E.S.S. (Namibia)

https://github.org/cta-observatory/ctapipe

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe

A bit about
me... Astrophysicist at CEA Paris-Saclay  

→ Fundamental science institute (DRF/IRFU) 
 → Astrophysics Department (DAp + AIM) 
 → High-energy Astrophysics group (LEPCHE)

• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (50% of time)

Other Background (apart from gamma-ray astro):

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/perl(!) user, now essentially 100% python for 5+ years!

2

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/

Cherenkov Telescope Array - (Canary Islands + Chile) - artist's conception

https://github.org/cta-observatory/ctapipe

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe

Topics we
will cover
in this
lecture

Debugging:

• What happens when a program runs?

• What is a debugger?

• How do you use a debugger?

➤ command-line
➤ GUI
➤ in a notebook

Profiling:

• Why profile your code?

• How to profile:

➤ Using timing loops
➤ Function Call Profiling with cProfile
➤ Memory Profiling with memprof
➤ Line profiling with lineprof

3

... and in
the next
lecture

Now that your code is debugged and you know where
the slow parts are....

Optimizing your code:

• With Memoization

• With NumPy

• With Numba

• [With Cython]

Parallelizing your code:

• On a single machine with multiple cores

• On multiple machines

4

Debugging
ESCAPE School, June 2021

Karl Kosack - ESCAPE School 2021 6

What is your current approach?

Karl Kosack - ESCAPE School 2021

When you run a piece of code and:
• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is

doing "under the hood"

6

What is your current approach?

Karl Kosack - ESCAPE School 2021

When you run a piece of code and:
• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is

doing "under the hood"
 What do you usually do?

6

What is your current approach?

Karl Kosack - ESCAPE School 2021

When you run a piece of code and:
• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is

doing "under the hood"
 What do you usually do?

Do you:
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python

interpreter or notebook?

• Write a set of unit tests?

• Run the code in a debugger?

6

What is your current approach?

Karl Kosack - ESCAPE School 2021

When you run a piece of code and:
• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is

doing "under the hood"
 What do you usually do?

Do you:
• Add a bunch of print statements

and try to track down the issue?

• Use an interactive python

interpreter or notebook?

• Write a set of unit tests?

• Run the code in a debugger?

6

What is your current approach?

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

7

First: how do programs run?

The Call Stack

Local Memory

Global Memory

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

8

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

9

First: how do programs run?

main programwe are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

10

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

11

First: how do programs run?

main program

function_a
we are here

The Call Stack

Local Memory
n = 0

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

12

First: how do programs run?

main program

function_a

function_b
we are here

The Call Stack

Local Memory
n = 0
x = 3.3

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

13

First: how do programs run?

main program

function_a

function_bwe are here

The Call Stack

Local Memory
n = 0
x = 3.3

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

14

First: how do programs run?

main program

function_awe are here

The Call Stack

Local Memory
n = 0

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

15

First: how do programs run?

main program
we are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 0

Karl Kosack - ESCAPE School 2021

Our program

def function_b(n):
 x = 3.3
 return sin(n * x * RAD_TO_DEG)

def function_a(n):
 return n * function_b(n) + 1

if __name__ == "__main__":
 RAD_TO_DEG = 180.0/np.pi
 for ii in range(10):
 function_a(ii)

16

First: how do programs run?

main programwe are here

The Call Stack

Local Memory

Global Memory
RAD_TO_DEG = 57.29
ii = 1

Karl Kosack - ESCAPE School 2021

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2021

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

Stack frames use memory

+ all local variables.

If the stack gets too big
from too deeply nested
function calls, you can run

out of memory! This is
called a "stack overflow"

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2021

Heap:

• all global variables, dynamic memory

Stack:

• All functions currently being executed
and their local variables

• Single function's data is stored in a
"Stack Frame",

• Frames are stacked on top of each other
to represent hierarchy (bottom of stack =
outermost)

17

Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack is at a higher
level of abstraction than this, but conceptually is

pretty similar

Stack frames use memory

+ all local variables.

If the stack gets too big
from too deeply nested
function calls, you can run

out of memory! This is
called a "stack overflow"

Python has a default stack size limit of

 sys.getrecursionlimit()

(3000 on my machine)

That means that if you write a recursive
function that goes too deep, you will
hit this limit. It throws a
RecursionError in that case

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

Karl Kosack - ESCAPE School 2021

A debugger:

• runs or attaches to a running piece of code or a program or one that has
just crashed or had an exception

• allows you to view the value of any variable

• allows you to move through the execution of the code and inspect data!

➤ go to next line
➤ step into function
➤ go up or down one level of function calls (up and down the call stack)
➤ watch a variable for change
➤ keep running until a condition occurs

The basic use/concepts of debuggers is independent of language (a C++
debugger works the same as a python debugger)

18

What is a debugger?

Karl Kosack - ESCAPE School 2021

Text-mode debuggers:

• examples: gdb (c/c++), pdb (python)

• simple command-line interface, with text

commands

• good for quick debugging

GUI Debuggers:

• often integrated with nice interactive
development environments (IDEs)

• Allow point-and-click inspection of code and
variables

• Examples:

➤ GNU ddd [Data Display Debugger] (c/c++)
➤ PyCharm's debugger (python)
➤ VSCode's debugger (multiple languages)
➤ Emacs dap-mode (multiple languages)

19

Two levels of debugging interface
pdb

GNU ddd

Karl Kosack - ESCAPE School 2021

There are many ways to enter the text-mode
debugger PDB:

DEBUGGING AFTER AN EXCEPTION  
(my most common use case)

• 1) run a python program in ipython

• 2) it crashes with an exception

• 3) type %debug to enter PDB and jump to

where the exception occurred!

• (alternately run "ipython —pdb <script.py>")

20

Debugging python code

common PDB commands  
(and the same for gdb!):

• u(p), d(own) (move in the stack)

• bt (backtrace) == where

• cont(inue) running program

• n(ext) [next line]

• s(tep) into next operation (e.g. into
functions)

• l and ll (list + longlist) of code at point

• q (quit debugging)

• any python expression

• ? to show help!

Karl Kosack - ESCAPE School 2021

Use Case 2: no exception occurred, but you want to see what is
happening inside a function

• Brute-force: place this line where you want to halt the program and
start debugging:

| breakpoint() # for python version 3.7 and above

then run python as usual (e.g. python myscript.py)

• More work, but more flexible: run the script inside the debugger:

| python -m pdb myscript.py

➤ the script will not run, but rather start at the first statement and then wait
for you to type commands

➤ use next, step, cont to step through program
➤ set a breakpoint! (break <linenumber>) and continue to it!

21

Debugging python code

- DEMO -

Karl Kosack - ESCAPE School 2021

Use Case 2: no exception occurred, but you want to see what is
happening inside a function

• Brute-force: place this line where you want to halt the program and
start debugging:

| breakpoint() # for python version 3.7 and above

then run python as usual (e.g. python myscript.py)

• More work, but more flexible: run the script inside the debugger:

| python -m pdb myscript.py

➤ the script will not run, but rather start at the first statement and then wait
for you to type commands

➤ use next, step, cont to step through program
➤ set a breakpoint! (break <linenumber>) and continue to it!

21

Debugging python code

- DEMO -

TIP: You can control which debugger is used by setting the
environment variable PYTHONBREAKPOINT
(the default is pdb, the built-in python debugger

I prefer IPython's debugger, ipdb:

% mamba install ipdb
% export PYTHONBREAKPOINT=ipdb.set_trace
% python my_script_to_debug.py

Karl Kosack - ESCAPE School 2021

This is all nice and good, but it gets tedious for more than
simple debugging…

Solution: use a GUI debugger!

22

GUI Debugging

Click in margin
to set a
breakpoint

Open the "executable" part of the script and click the
"debug" icon in the toolbar

(may have to first create a debug config to tell what file
to run)

Karl Kosack - ESCAPE School 2021 23

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Karl Kosack - ESCAPE School 2021 23

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Drill deep down into any data structure!

Karl Kosack - ESCAPE School 2021 23

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

Karl Kosack - ESCAPE School 2021 23

GUI debugging

You can see all variables in the current
stack frame in this box

values also appear
right in the code!

(or on mouse-over)
currently at
this line

Move up and down
stack or lines

use the "data view"
to see values of
large arrays or
tables

Karl Kosack - ESCAPE School 2021 24

GUI Debuggers: what they usually look like

Code

Stack

Local Variables

Global VariablesOutput

Breakpoints + current line

So basically like what I showed before, but fully interactive!

Sometimes
also a "view"

of data
structures

print(event)

VSCode Debugger (ptvsd)

Emacs (M-x dap-debug)

note: need to install the debugger server first

mamba install -c conda-forge ptvsd

demo
Debugging with notebooks/ipython

Debugging with pdb
Debugging with a GUI (PyCharm)

Profiling
ESCAPE School, June 2021

Karl Kosack - ESCAPE School 2021

A way to identify where resources are used by a program:

• CPU resources (computation time)

• Memory resources

Debug problems in your code like hangs and memory leaks

Identify "hotspots" in your code that may be useful to
optimize (we'll talk about optimization later today!)

29

What is profiling?

Karl Kosack - ESCAPE School 2021

Simplest method: timeit

• no need to calculate start and stop
times, python's standard lib has a nice
module to help with that…

• easiest way is to use interactive
%timeit magic ipython function

DEMO NOTEBOOK

• Usage:
| %timeit <python statement>

Why not just roll your own?
| start = time.now()
| [code]
| stop = time.now()
| print(stop-start)
this measures only wall-clock time!

You want CPU time! 
(not dependent on other stuff you are running)

You want many trials, for statistics!

Note you can also import the `timeit` module and use it
similar to the magic %timeit function in non-notebook
scripts

30

Speed profiling 1: in a notebook

Karl Kosack - ESCAPE School 2021

A profiler is better than a simple %timeit, in that it checks the time in
all functions and sub-functions at once and generates a report.

Python provides several profilers, but the most common is cProfile
(note: gprof for c++)
Profile an entire script:

• Run your script with the additional options: 

| python -m cProfile -o output.pstats <script>

• this generates a binary data file (output.pstats) that contains
statistics on how often and for how long each function was called

• There is a built-in pstats module that displays it using a command-
line UI, but it's a bit difficult to use... but there are GUIs!

31

Speed profiling 2: profiler!

Karl Kosack - ESCAPE School 2021 32

Tip: use a gui to view stats output

Viewing with SnakeViz
| % conda install snakeviz
| % snakeviz output.pstats

• interactive call statistics viewer

• this is not the only one, but it's

nice and simple and runs in your
browser.

• Click and zoom to see the results

Real-world demo!

Karl Kosack - ESCAPE School 2021

You can also view pstats output with the
qcachegrind GUI application, (also for C++ C++
profiling output):

| % pip install pyprof2calltree
| % pyprof2calltree -i output.pstats -k

This will open qCacheGrind GUI
automatically

you need to first install qCacheGrind using
your package manage (it's not in Conda), e.g.

brew install qcachegrind (macOS with HomeBrew installed)

apt install qcachegrind (linux with Apt)

...

33

Another stats viewer

Karl Kosack - ESCAPE School 2021

You can also run the profiler directly on a statement in a
notebook.

• use the magic %prun function

| %prun <python statement>

• Pops up a sub-window with the results (the same as if you ran
cProfile and then pstats (though you don't get an interactive
viewer)

34

Profiling in a Notebook

Karl Kosack - ESCAPE School 2021

Sometimes you need more detail than function-level stats…  
What about time spent in each line of code?
The line_profiler module can help:

| % conda install line_profiler

• mark code with @profile:

| from line_profiler import profile

| @profile
| def slow_function(a, b, c):
| ...

• Then run:

➤ % kernprof -l script_to_profile.py

• which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof

35

Line Profiling

File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s

Line # Hits Time Per Hit % Time Line Contents
==
 149 @profile
 150 def Proc2(IntParIO):
 151 50000 82003 1.6 13.5 IntLoc = IntParIO + 10
 152 50000 63162 1.3 10.4 while 1:
 153 50000 69065 1.4 11.4 if Char1Glob == 'A':
 154 50000 66354 1.3 10.9 IntLoc = IntLoc - 1
 155 50000 67263 1.3 11.1 IntParIO = IntLoc - IntGlob
 156 50000 65494 1.3 10.8 EnumLoc = Ident1
 157 50000 68001 1.4 11.2 if EnumLoc == Ident1:
 158 50000 63739 1.3 10.5 break
 159 50000 61575 1.2 10.1 return IntParIO

Karl Kosack - ESCAPE School 2021

As with cProfile and timeit, you can do line profiling
in a notebook:

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler

• Then, if you have a function defined, you must
"mark" it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses

function>

for example:

| %lprun -f myfunc myfunc(100,100)

Note you can mark more than one func

36

Line-profiling in a Notebook

Karl Kosack - ESCAPE School 2021

Use of CPU is not the only thing to worry about… what about
RAM? Let's first check for memory leaks…

| % conda install memory_profiler
| % mprof run python <script>
| % mprof plot

37

Memory Profiling

Karl Kosack - ESCAPE School 2021

Line # Hits Time Per Hit % Time Line Contents
==
 17 @profile
 18 def main():
 19 1 3.0 3.0 0.0 if len(sys.argv) >' 2:
 20 filename = sys.argv[1]
 21 else:
 22 1 485.0 485.0 0.0 filename = get_dataset_path("gamma_test_large.simtel.gz")
 24 1 3572651.0 3572651.0 9.8 with EventSource(filename, max_events=500) as source:
 26 1 438843.0 438843.0 1.2 calib = CameraCalibrator(subarray=source.subarray)
 27 2 249622.0 124811.0 0.7 process_images = ImageProcessor(
 28 1 2.0 2.0 0.0 subarray=source.subarray, is_simulation=source.is_simulation
 29)
 30 1 1363.0 1363.0 0.0 process_shower = ShowerProcessor(subarray=source.subarray)
 31 2 276938.0 138469.0 0.8 write = DataWriter(
 32 1 0.0 0.0 0.0 event_source=source, output_path="events.DL1.h5", overwrite=True
 33)
 35 111 11506526.0 103662.4 31.5 for event in tqdm(source):
 36 110 1313386.0 11939.9 3.6 calib(event)
 37 110 2353948.0 21399.5 6.4 process_images(event)
 38 110 14044245.0 127675.0 38.4 process_shower(event)
 39 110 2814913.0 25590.1 7.7 write(event)

Cumulative is nice, but we want to see
the memory for a particular function or
class…

• decorate the function you want to profile
(line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>

38

Memory Profiling in detail

Decorate what we
want to measure (no

import needed)

Output shows the time
spent in the line or block

(e.g. if , for)

Karl Kosack - ESCAPE School 2021

Again, you can do memory profiling using magic commands in an iPython
(Jupyter) notebook

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler

• Now you have access to several magic functions:

Like %timeit, but for memory usage:

| %memit <python statement>

or a more full-featured report:

| %mprun -f <function name> <statement>

Caveats:

• the peak memory usage shown in the notebook may not relate to the function
you are testing! It is the sum of all memory already allocated that has not yet
been garbage collected. (so look at the "increment" instead).

• %mprun only works if your functions are defined in a file (not a notebook) and
imported into the notebook

39

Memory Profiling in a Notebook

Karl Kosack - ESCAPE School 2021

Automatic Debugger breakpoints:

• you can automatically start the debugging if the code tries to
go above a memory limit, to see where the allocation is
happening:

| % python -m memory_profiler ——pdb-mmem=100 <script>

will break and enter debugger after 100 MB is allocated, on the line where the last
allocation occurred

Print out memory usage during program execution:
| from memory_profiler import memory_usage
| mem_usage = memory_usage(-1, interval=.2, timeout=1)
| print(mem_usage)
| [7.296875, 7.296875, 7.296875, 7.296875, 7.296875]

• see the docs. you can also write it to a log periodically, etc.

40

Memory Profiling: jump to debugger

demo

Optimization
ESCAPE School, June 2021

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

- Sir Tony Hoare?
or Donald Knuth?

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root
of all evil

- Sir Tony Hoare?
or Donald Knuth?

From a 1974 article on why GOTO statements are good

Karl Kosack - ESCAPE School 2021 47

Why optimize?

Karl Kosack - ESCAPE School 2021

However… once code is working, you do want it to be efficient!

• want a balance between usability/readability/correctness and
speed/memory efficiency

• These are not always both achievable, so err on the side of
usability

47

Why optimize?

Karl Kosack - ESCAPE School 2021

However… once code is working, you do want it to be efficient!

• want a balance between usability/readability/correctness and
speed/memory efficiency

• These are not always both achievable, so err on the side of
usability

Some things:

• Python is interpreted (though some compilation happens), and
can therefore be slow

• For-loops in particular are 100 - 1000x slower than C loops…

• There are some nice ways to speed up code, however, and get

close to low-level language speed

47

Why optimize?

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

48

Slowness of Python

http://pypy.org

Karl Kosack - ESCAPE School 2021

Not an inherent problem with the language

• python ≠ CPython!

➤ but CPython does generally get faster each

release

• other python implementations exist that are trying
to solve the general speed problem:

➤ pypy - pypy.org fully JIT-compiled python
➤ pyston - optimized CPython from Facebook
➤ other efforts to remove bottlenecks from CPython

(no GIL, etc)

48

Slowness of Python

So one option to optimization is:

Do nothing!

Wait for a faster implementation, or a
new version of CPython to be released,
or swap in a completely different
implementation!

http://pypy.org

Karl Kosack - ESCAPE School 2021

Advantages of PyPy:

• all PyPy code is JIT-compiled with LLVM

• support for most (but not all) of NumPy

• some support for C-extensions, but not all c-

code can be run yet

• supports (so far) Python language up to

version 3.7.9

Disadvantages:

• Works well speeding-up pure-python code,
but scientific code is often a mix of Numpy/
scipy/c-code: it's often slower than CPython!

• C-extensions not fully supported
49

Some notes on PyPy
Just In time →

compiled when used,
not before

A compiler framework
similar to GCC, the
default on macOS

But... there is a lot you can do to
make your python code faster

now.

Karl Kosack - ESCAPE School 2021

1) Make sure code works correctly first

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization:

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop!

3) Profile the code to identify bottlenecks in a more scientific way

• Profile time spent in each function, line, etc

• Profile memory use

4) try to re-write as little as possible to achieve improvement
5) refactor if it is still problematic…

• some times the design is what is making the code slow... can it be
improved? (e.g.: flat better than nested!)

51

Steps to optimization

Karl Kosack - ESCAPE School 2021

Basic principle: don't recompute things you computed already!

Instead, compute them once, and just return the pre-computed
result when asked. (trade memory for speed)

The hard way:

• keep a dictionary keyed by the input to a function with the
output as the value. If the key exists, return the value:

52

Speeding up code 1: Memoization

RESULTS_CACHE = {}

def memoized_compute(x):
 if x in RESULTS_CACHE:
 return RESULTS_CACHE[x]
 result = do_some_large_computation(x)
 RESULTS_CACHE[x] = result

It works, but is ugly and not very
pythonic...

Also if there are many values of
x, you will use a lot of memory

Karl Kosack - ESCAPE School 2021

The better way: as usual, python already has you covered!

• use functools.lru_cache  
→ built-in memoization as a decorator

• Specify (roughly) the expected maximum size of the cache

➤ it will still work if you go over it, but just not be as efficient

• It uses (a hash of) all inputs to the function as the key

53

Speeding up code 1: Memoization

RESULTS_CACHE = {}

def memoized_compute(x):
 if x in RESULTS_CACHE:
 return RESULTS_CACHE[x]
 result = do_some_large_computation(x)
 RESULTS_CACHE[x] = result

from functools import lru_cache

@lru_cache(maxsize=1000)
def do_some_large_computation(x):
 # slow code here
 return result

LRU: Least Recently Used:
Throw away cached items

that were not accessed
recently, if memory gets slim

(one method for caching,
there are many others)

Karl Kosack - ESCAPE School 2021

For-loops are slow! (in pure python)
Use NumPy vector operations as much as possible → they are optimized already!

• don't call a function on many small pieces of data when you can call it on an
array all at once

• numpy is implemented in C & Fortran and it uses fast numerical libraries,
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)

• usually just vectorizing your code to avoid some for-loops, will give you great
performance.

➤ bad:

| for ii in range(100):
| x = ii*0.1
| y[ii] = f(x)

➤ Good:
| x = np.linspace(0,10,100)
| y = f(x)

54

Speeding up code 2: Numpy

Karl Kosack - ESCAPE School 2021

For-loops are slow! (in pure python)
Use NumPy vector operations as much as possible → they are optimized already!

• don't call a function on many small pieces of data when you can call it on an
array all at once

• numpy is implemented in C & Fortran and it uses fast numerical libraries,
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)

• usually just vectorizing your code to avoid some for-loops, will give you great
performance.

➤ bad:

| for ii in range(100):
| x = ii*0.1
| y[ii] = f(x)

➤ Good:
| x = np.linspace(0,10,100)
| y = f(x)

54

Speeding up code 2: Numpy

This requires practice, and feels very
strange at first if you are coming
from C programming!

Take some time to look through the
NumPy and SciPy API documentation
- there are tons of interesting functions
to help you!

Karl Kosack - ESCAPE School 2021

Takes python code and directly uses introspection to compile it with LLVM

• Pretty automatic, but doesn't always help! Still need code written in a way that
can be optimized (for-loops are actually good here, it can't do much with numpy
operations since they are already compiled code)

• Can generate NumPy "ufuncs" directly (function that works on scalars but is run
on all elements of an array), which are too slow to write in python normally.

• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs!

from numba import jit
from numpy import arange

jit decorator tells Numba to compile this function.
The argument types will be inferred by Numba when function is called.
@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

|

55

Speeding up code 3: Numba

just add this decorator,
and it's magic (nearly)

Aside:
Some
caveats for
Numba

Numba operates in two modes:

• No-Python Mode:

➤ gives large performance boost
➤ but only supports basic python types and a subset of

numpy/scipy operations

• Object Mode

➤ fall-back if No Python mode fails
➤ supports any python object
➤ but gives little or not speed up in most situations

Tip:

• To force it to use No-Python mode

➤ set nopython=True in the options
➤ better: use @njit

• @njit will fail if the code cannot be optimized by
numba, and it will tell you why!

• There is some discussion that @njit will become the
default in the future 56

Karl Kosack - ESCAPE School 2021

from timeit import default_timer as timer
from matplotlib.pylab import imshow, jet, show, ion
import numpy as np

from numba import jit

@jit
def mandel(x, y, max_iters):
 """
 Given the real and imaginary parts of a
 complex number,
 determine if it is a candidate for membership
 in the Mandelbrot
 set given a fixed number of iterations.
 """
 i = 0
 c = complex(x,y)
 z = 0.0j
 for i in range(max_iters):
 z = z*z + c
 if (z.real*z.real + z.imag*z.imag) >= 4:
 return i

 return 255

@jit
def create_fractal(min_x, max_x, min_y, max_y, image, iters):
 height = image.shape[0]
 width = image.shape[1]

 pixel_size_x = (max_x - min_x) / width
 pixel_size_y = (max_y - min_y) / height
 for x in range(width):
 real = min_x + x * pixel_size_x
 for y in range(height):
 imag = min_y + y * pixel_size_y
 color = mandel(real, imag, iters)
 image[y, x] = color

 return image

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)
s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer()
print(e - s)
imshow(image)

example from the Numba docs

note that you need to "jit" not only the parent function, but any function that it calls
that needs to be sped up. Otherwise, only Object Mode can work!

57

More numba caveats:

Karl Kosack - ESCAPE School 2021

Numba supports a large number of NumPy functions (and even some scipy):

• It does not actually call NumPy code!

• it re-implements it in a way that is compilable with LLVM.

So what is the point? Isn't NumPy really optimized already?

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end:

x = np.arange(1000)
result = A * x**2 + B * x + C

• More control over parallelization (See next lecture)

58

Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

in C, you might do this all in one loop, with no extra
memory needed:

for (i=0; i<x.size; i+*) {
 result[i] = A*x[i]*x[i] + B*x[i] + C;
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html

Karl Kosack - ESCAPE School 2021

Numba includes a lot of advanced features and options to jit that can help speed things
up

• e.g. specify the input and output type mapping, rather than infer it

• Easy NumPy Ufunc generation with vectorize and guvectorize (generalized)

➤ e.g. let you write code that operates on 1D array, and broadcast it to N-dimensional arrays

• Options like target='GPU' for producing CUDA code or similar

• Parallelization onto multiple threads with parallel=True (see next lecture)

59

Advanced Numba

import numpy as np

from numba import guvectorize

@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)')
def move_mean(a, window_arr, out):
 window_width = window_arr[0]
 asum = 0.0
 count = 0
 for i in range(window_width):
 asum += a[i]
 count += 1
 out[i] = asum / count
 for i in range(window_width, len(a)):
 asum += a[i] - a[i - window_width]
 out[i] = asum / count

arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print(move_mean(arr, 3)) example from the Numba docs

Karl Kosack - ESCAPE School 2021

Write good clean code first!

Identify bottlenecks in speed and memory with profiling tools

• don't worry so much about things that are not called often!

• try to narrow it down to the most critical parts of code

Use numpy, cython, numba or other technologies to improve
the bottleneck

• try not to obfuscate the code to achieve speed! Readability
still counts.

60

Summary

Demo

