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A bit about 
me... Astrophysicist at CEA Paris-Saclay  

→ Fundamental science institute (DRF/IRFU) 
      → Astrophysics Department (DAp + AIM) 
           → High-energy Astrophysics group (LEPCHE)


• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA  Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (50% of time)


Other Background (apart from gamma-ray astro): 

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/perl(!) user, now essentially 100% python for 5+ years!

2

https://www.cta-observatory.org/ 
https://www.mpi-hd.mpg.de/hfm/HESS/ 

H.E.S.S. (Namibia)

https://github.org/cta-observatory/ctapipe 

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe


A bit about 
me... Astrophysicist at CEA Paris-Saclay  

→ Fundamental science institute (DRF/IRFU) 
      → Astrophysics Department (DAp + AIM) 
           → High-energy Astrophysics group (LEPCHE)


• High energy gamma rays, sources of cosmic ray acceleration

• HESS and CTA  Atmospheric Cherenkov Telescope consortia

• Coordinator of Data Processing and Preservation for CTA Observatory (50% of time)


Other Background (apart from gamma-ray astro): 

• Computational Physics

• Data analysis, processing, statistics

• Lots of scientific software development over the years...

• Was a hard-core C/C++/perl(!) user, now essentially 100% python for 5+ years!

2

https://www.cta-observatory.org/ 
https://www.mpi-hd.mpg.de/hfm/HESS/ 

Cherenkov Telescope Array  -  (Canary Islands + Chile) - artist's conception

https://github.org/cta-observatory/ctapipe 

https://www.cta-observatory.org/
https://www.mpi-hd.mpg.de/hfm/HESS/
https://github.org/cta-observatory/ctapipe


Topics we 
will cover 
in this 
lecture

Debugging: 

• What happens when a program runs?

• What is a debugger?

• How do you use a debugger?


➤ command-line 
➤ GUI 
➤ in a notebook 

Profiling: 

• Why profile your code?

• How to profile:


➤ Using timing loops 
➤ Function Call Profiling with cProfile 
➤ Memory Profiling  with memprof 
➤ Line profiling with lineprof
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... and in 
the next 
lecture

Now that your code is debugged and you know where 
the slow parts are....


Optimizing your code: 

• With Memoization

• With NumPy 

• With Numba

• [With Cython]


Parallelizing your code: 

• On a single machine with multiple cores

• On multiple machines
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What is your current approach?
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When you run a piece of code and: 
• get an error/crash/exception

• encounter an unexpected result

• want to know what the code is 

doing "under the hood"
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Our program 

def function_b(n): 
    x = 3.3 
    return sin(n * x * RAD_TO_DEG) 

def function_a(n): 
    return n * function_b(n) + 1 

if __name__ == "__main__": 
    RAD_TO_DEG = 180.0/np.pi 
    for ii in range(10): 
        function_a(ii) 
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First: how do programs run?

The Call Stack 

Local Memory 

Global Memory 
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First: how do programs run?

main programwe are here

The Call Stack 

Local Memory 

Global Memory 
RAD_TO_DEG = 57.29 
ii = 1
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Heap: 

• all global variables, dynamic memory

Stack: 

• All functions currently being executed 
and their local variables


• Single function's data is stored in a 
"Stack Frame", 


• Frames are stacked on top of each other 
to represent hierarchy (bottom of stack = 
outermost)
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Program flow and memory in e.g. C(++)

diagram from: http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html

python's memory scoping and stack  is at a higher 
level of abstraction than this, but conceptually is 

pretty similar

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html
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python's memory scoping and stack  is at a higher 
level of abstraction than this, but conceptually is 

pretty similar

Stack frames use memory 

+ all local variables. 

If the stack gets too big 
from too deeply nested 
function calls, you can run 

out of memory! This is 
called a "stack overflow"  

Python has a default stack size limit of  

    sys.getrecursionlimit()  

(3000 on my machine) 

That means that if you write a recursive 
function that  goes too deep, you will 
hit this limit.  It throws a 
RecursionError in that case

http://faculty.ycp.edu/~dhovemey/spring2007/cs201/info/exceptionsFileIO.html
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A debugger: 

• runs or attaches to a running piece of code or a program or one that has 
just crashed or had an exception


• allows you to view the value of any variable

• allows you to move through the execution of the code and inspect data!


➤ go to next line 
➤ step into function 
➤ go up or down one level of function calls (up and down the call stack) 
➤ watch a variable for change 
➤ keep running until a condition occurs 

The basic use/concepts of debuggers is independent of language (a C++ 
debugger works the same as a python debugger)

18

What is a debugger?
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Text-mode debuggers: 

• examples: gdb (c/c++),  pdb (python)

• simple command-line interface, with text 

commands

• good for quick debugging


GUI Debuggers: 

• often integrated with nice interactive 
development environments (IDEs)


• Allow point-and-click inspection of code and 
variables


• Examples: 

➤ GNU ddd [Data Display Debugger] (c/c++) 
➤ PyCharm's debugger (python) 
➤ VSCode's debugger (multiple languages) 
➤ Emacs dap-mode  (multiple languages)

19

Two levels of debugging interface
pdb

GNU ddd
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There are many ways to enter the text-mode 
debugger PDB: 

DEBUGGING AFTER AN EXCEPTION  
(my most common use case) 

• 1) run a python program in ipython

• 2) it crashes with an exception

• 3) type %debug   to enter PDB and jump to 

where the exception occurred!

• (alternately run "ipython —pdb <script.py>")


20

Debugging python code

common PDB commands  
(and the same for gdb!): 

• u(p), d(own)  (move in the stack)


• bt (backtrace)  == where


• cont(inue) running program


• n(ext) [next line]


• s(tep) into next operation (e.g. into 
functions)


• l and ll (list + longlist) of code at point


• q (quit debugging)


• any python expression


• ? to show help!
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Use Case 2: no exception occurred, but you want to see what is 
happening inside a function 

• Brute-force:  place this line where you want to halt the program and 
start debugging:

| breakpoint()      # for python version 3.7 and above 

then run  python as usual  (e.g. python myscript.py) 

• More work, but more flexible: run the script inside the debugger:

| python -m pdb  myscript.py 

➤ the script will not run, but rather start at the first statement and then wait 
for you to type commands 

➤ use next, step, cont  to step through program 
➤ set a breakpoint! (break <linenumber>) and continue  to it!

21

Debugging python code

- DEMO - 
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Debugging python code

- DEMO - 

TIP: You can control which debugger is used by setting the 
environment variable PYTHONBREAKPOINT 
(the default is pdb, the built-in python debugger 

I prefer IPython's debugger, ipdb: 

% mamba install ipdb 
% export PYTHONBREAKPOINT=ipdb.set_trace 
% python my_script_to_debug.py 
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This is all nice and good, but it gets tedious for more than 
simple debugging…   

Solution: use a GUI debugger!

22

GUI Debugging

Click in margin 
to set a 
breakpoint

Open the "executable" part of the script and click the 
"debug" icon in the toolbar

(may have to first create a debug config to tell what file 
to run)
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GUI debugging

You can see all variables in the current 
stack frame in this box

values also appear 
right in the code!

(or on mouse-over)
currently at 
this line

Move up and down 
stack or lines
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GUI debugging

You can see all variables in the current 
stack frame in this box

values also appear 
right in the code!

(or on mouse-over)
currently at 
this line

Move up and down 
stack or lines

Drill deep down into any data structure!
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GUI debugging

You can see all variables in the current 
stack frame in this box

values also appear 
right in the code!

(or on mouse-over)
currently at 
this line

Move up and down 
stack or lines

use the "data view" 
to see values of 
large arrays or 
tables
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GUI Debuggers: what they usually look like

Code

Stack

Local Variables

Global VariablesOutput

Breakpoints + current line

So basically like what I showed before, but fully interactive!



Sometimes 
also a "view" 

of data 
structures



print(event)

VSCode Debugger (ptvsd)

Emacs (M-x dap-debug) 

note: need to install the debugger server first

mamba install -c conda-forge ptvsd



demo
Debugging with notebooks/ipython 

Debugging with pdb 
Debugging with a GUI (PyCharm)
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A way to identify where resources are used by a program: 

• CPU resources (computation time)

• Memory resources 


Debug problems in your code like hangs and  memory leaks 

Identify "hotspots" in your code that may be useful to 
optimize (we'll talk about optimization later today!)

29

What is profiling?
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Simplest method: timeit 

• no need to calculate start and stop 
times, python's standard lib has a nice 
module to help with that… 

• easiest way is to use interactive 
%timeit  magic ipython function 

DEMO NOTEBOOK 

• Usage:  
| %timeit <python statement> 

Why not just roll your own? 
| start = time.now() 
| [code] 
| stop = time.now() 
| print(stop-start) 
this measures only wall-clock time!   

You want CPU time! 
(not dependent on other stuff you are running) 

You want many trials, for statistics! 

Note you can also import the `timeit` module and use it 
similar to the magic %timeit function in non-notebook 
scripts

30

Speed profiling 1: in a notebook
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A profiler is better than a simple %timeit, in that it checks the time in 
all functions and sub-functions at once and generates a report.

Python provides several profilers, but the most common is cProfile 
(note: gprof for c++) 
Profile an entire script: 

• Run your script with the additional options: 

| python -m cProfile -o output.pstats  <script> 

• this generates a binary data file (output.pstats) that contains  
statistics on how often and for how long each function was called


• There is a built-in pstats module that displays it using a command-
line UI, but it's a bit difficult to use... but there are GUIs!


31

Speed profiling 2: profiler!
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Tip: use a gui to view stats output

Viewing with SnakeViz 
| % conda install snakeviz 
| % snakeviz output.pstats 

• interactive call statistics viewer

• this is not the only one, but it's 

nice and simple and runs in your 
browser.


• Click and zoom to see the results

Real-world demo!
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You can also view pstats output with the 
qcachegrind GUI application, (also for C++ C++ 
profiling output):


| % pip install pyprof2calltree 
| % pyprof2calltree -i output.pstats -k 

This will open qCacheGrind  GUI 
automatically 

you need to first install qCacheGrind using 
your package manage (it's not in Conda), e.g.  

brew install qcachegrind   (macOS with HomeBrew installed)


apt install qcachegrind   (linux with Apt)


...

33

Another stats viewer
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You can also run the profiler directly on a statement in a 
notebook. 

• use the magic %prun function

| %prun <python statement> 

• Pops up a sub-window with the results (the same as if you ran 
cProfile and then pstats (though you don't get an interactive 
viewer)

34

Profiling in a Notebook
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Sometimes you need more detail than function-level stats…  
What about time spent in each line of code? 
The line_profiler module can help: 

| %  conda install line_profiler 

• mark code with @profile:

| from line_profiler import profile 

| @profile 
| def slow_function(a, b, c): 
|     ... 

• Then run:

➤ % kernprof -l script_to_profile.py 

• which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof

35

Line Profiling

File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
========================================================
   149                                           @profile
   150                                           def Proc2(IntParIO):
   151     50000        82003      1.6     13.5      IntLoc = IntParIO + 10
   152     50000        63162      1.3     10.4      while 1:
   153     50000        69065      1.4     11.4          if Char1Glob == 'A':
   154     50000        66354      1.3     10.9              IntLoc = IntLoc - 1
   155     50000        67263      1.3     11.1              IntParIO = IntLoc - IntGlob
   156     50000        65494      1.3     10.8              EnumLoc = Ident1
   157     50000        68001      1.4     11.2          if EnumLoc == Ident1:
   158     50000        63739      1.3     10.5              break
   159     50000        61575      1.2     10.1      return IntParIO
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As with cProfile and timeit, you can do line profiling 
in a notebook: 

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler 

• Then, if you have a function defined, you must 
"mark" it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses 

function> 

for example:


| %lprun -f myfunc myfunc(100,100) 

Note you can mark more than one func

36

Line-profiling in a Notebook
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Use of CPU is not the only thing to worry about… what about 
RAM?  Let's first check for memory leaks… 

| % conda install memory_profiler 
| % mprof run python <script> 
| % mprof plot 

37

Memory Profiling
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Line #      Hits         Time  Per Hit   % Time  Line Contents 
============================================================== 
    17                                           @profile 
    18                                           def main(): 
    19         1          3.0      3.0      0.0      if len(sys.argv) >' 2: 
    20                                                   filename = sys.argv[1] 
    21                                               else: 
    22         1        485.0    485.0      0.0          filename = get_dataset_path("gamma_test_large.simtel.gz") 
    24         1    3572651.0 3572651.0      9.8      with EventSource(filename, max_events=500) as source: 
    26         1     438843.0 438843.0      1.2          calib = CameraCalibrator(subarray=source.subarray) 
    27         2     249622.0 124811.0      0.7          process_images = ImageProcessor( 
    28         1          2.0      2.0      0.0              subarray=source.subarray, is_simulation=source.is_simulation 
    29                                                   ) 
    30         1       1363.0   1363.0      0.0          process_shower = ShowerProcessor(subarray=source.subarray) 
    31         2     276938.0 138469.0      0.8          write = DataWriter( 
    32         1          0.0      0.0      0.0              event_source=source, output_path="events.DL1.h5", overwrite=True 
    33                                                   ) 
    35       111   11506526.0 103662.4     31.5          for event in tqdm(source): 
    36       110    1313386.0  11939.9      3.6              calib(event) 
    37       110    2353948.0  21399.5      6.4              process_images(event) 
    38       110   14044245.0 127675.0     38.4              process_shower(event) 
    39       110    2814913.0  25590.1      7.7              write(event)

Cumulative is nice, but we want to see 
the memory for a particular function or 
class… 

• decorate the function you want to profile 
(line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>

38

Memory Profiling in detail

Decorate what we 
want to measure (no 

import needed)

Output shows the time 
spent in the line or block 

(e.g. if , for)
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Again, you can do memory profiling using magic commands in an iPython 
(Jupyter) notebook 

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler 

• Now you have access to several magic functions:

Like %timeit, but for memory usage:


| %memit <python statement> 

or a more full-featured report:


| %mprun -f <function name> <statement> 

Caveats: 

• the peak memory usage shown in the notebook may not relate to the function 
you are testing! It is the sum of all memory already allocated that has not yet 
been garbage collected. (so look at the "increment" instead).  


• %mprun only works if your functions are defined in a file (not a notebook) and 
imported into the notebook

39

Memory Profiling in a Notebook
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Automatic Debugger breakpoints: 

• you can automatically start the debugging if the code tries to 
go above a memory limit, to see where the allocation is 
happening:

| % python -m memory_profiler ——pdb-mmem=100  <script> 

will break and enter debugger after 100 MB is allocated, on the line where the last 
allocation occurred


Print out memory usage during program execution: 
| from memory_profiler import memory_usage 
| mem_usage = memory_usage(-1, interval=.2, timeout=1) 
| print(mem_usage) 
|     [7.296875, 7.296875, 7.296875, 7.296875, 7.296875] 

• see the docs. you can also write it to a log periodically, etc.
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Memory Profiling: jump to debugger
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“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil

- Sir Tony Hoare? 
or Donald Knuth?



“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is the root 
of all evil

- Sir Tony Hoare? 
or Donald Knuth?

From a 1974 article on why GOTO statements are good
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Why optimize?
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However… once code is working, you do want it to be efficient! 

• want a balance between usability/readability/correctness and 
speed/memory efficiency


• These are not always both achievable, so err on the side of 
usability
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However… once code is working, you do want it to be efficient! 

• want a balance between usability/readability/correctness and 
speed/memory efficiency


• These are not always both achievable, so err on the side of 
usability


Some things: 

• Python is interpreted (though some compilation happens), and 
can therefore be slow


• For-loops in particular are 100 - 1000x slower than C loops…

• There are some nice ways to speed up code, however, and get 

close to low-level language speed
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Why optimize?
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Not an inherent problem with the language 

• python ≠ CPython!

➤ but CPython does generally get faster each 

release  

• other python implementations exist that are trying 
to solve the general speed problem:

➤ pypy  - pypy.org fully JIT-compiled python 
➤ pyston - optimized CPython from Facebook 
➤ other efforts to remove bottlenecks from CPython 

(no GIL, etc)

48

Slowness of Python

http://pypy.org
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Slowness of Python

So one option to optimization is: 

Do nothing!  

Wait for a faster implementation, or a 
new version of CPython to be released, 
or swap in a completely different 
implementation!

http://pypy.org
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Advantages of PyPy: 

• all PyPy code is JIT-compiled with LLVM 

• support for most (but not all) of NumPy

• some support for C-extensions, but not all c-

code can be run yet 

• supports (so far) Python language up to 

version 3.7.9 

Disadvantages: 

• Works well speeding-up pure-python code, 
but scientific code is often a mix of Numpy/
scipy/c-code: it's often slower than CPython! 

• C-extensions not fully supported
49

Some notes on PyPy
Just In time → 

compiled when used, 
not before

A compiler framework 
similar to GCC, the 
default on macOS



But... there is a lot you can do to 
make your python code faster 

now. 
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1) Make sure code works correctly  first 

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization: 

• how often is a function called? Is it useful to optimize it?

• If it is not called often and finishes with reasonable time/memory, stop! 


3) Profile the code to identify bottlenecks in a more scientific way 

• Profile time spent in each function, line, etc

• Profile memory use


4) try to re-write as little as possible to achieve improvement 
5) refactor if it is still problematic… 

• some times the design  is what is making the code slow... can it be 
improved?  (e.g.: flat better than nested!) 
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Steps to optimization
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Basic principle: don't recompute things you computed already!

Instead, compute them once, and just return the pre-computed 
result when asked.  (trade memory for speed)


The hard way: 

• keep a dictionary keyed by the input to a function with the 
output as the value.  If the key exists, return the value:
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Speeding up code 1: Memoization

RESULTS_CACHE = {} 

def memoized_compute(x): 
    if x in RESULTS_CACHE: 
        return RESULTS_CACHE[x] 
    result = do_some_large_computation(x) 
    RESULTS_CACHE[x] = result 

It works, but is ugly and not very 
pythonic... 


Also if there are many values of 
x, you will use a lot of memory
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The better way: as usual, python already has you covered! 

• use functools.lru_cache   
→ built-in memoization as a decorator


• Specify (roughly) the expected maximum size of the cache

➤ it will still work if you go over it, but just not be as efficient 

• It uses (a hash of) all inputs to the function as the key
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Speeding up code 1: Memoization

RESULTS_CACHE = {} 

def memoized_compute(x): 
    if x in RESULTS_CACHE: 
        return RESULTS_CACHE[x] 
    result = do_some_large_computation(x) 
    RESULTS_CACHE[x] = result 

from functools import lru_cache 

@lru_cache(maxsize=1000) 
def do_some_large_computation(x): 
    # slow code here 
    return result 

LRU: Least Recently Used: 
Throw away cached items 

that were not accessed 
recently, if memory gets slim


(one method for caching, 
there are many others)
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For-loops are slow! (in pure python) 
Use NumPy vector operations as much as possible → they are optimized already! 

• don't call a function on many small pieces of data when you can call it on an 
array all at once


• numpy is implemented in C & Fortran and it uses fast numerical libraries, 
optimized for your CPU (e.g. Intel Math Kernel Library MKL, BLAS, LAPACK etc)


• usually just vectorizing your code to avoid some for-loops, will give you great 
performance.

➤ bad: 

| for ii in range(100): 
|     x = ii*0.1 
|     y[ii] = f(x) 

➤ Good: 
| x = np.linspace(0,10,100) 
| y = f(x)
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Speeding up code 2: Numpy
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Speeding up code 2: Numpy

This requires practice, and feels very 
strange at first if you are coming 
from C programming! 

Take some time to look through the 
NumPy and SciPy API documentation 
- there are tons of interesting functions 
to help you!
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Takes python code and directly uses introspection to compile it with LLVM 

• Pretty automatic, but doesn't always help! Still need code written in a way that 
can be optimized (for-loops are actually good here, it can't do much with numpy 
operations since they are already compiled code)


• Can generate NumPy "ufuncs" directly (function that works on scalars but is run 
on all elements of an array), which are too slow to write in python normally.


• Can even compile to GPU code for nVidia CUDA and AMD ROC GPUs! 

from numba import jit 
from numpy import arange 

# jit decorator tells Numba to compile this function. 
# The argument types will be inferred by Numba when function is called. 
@jit 
def sum2d(arr): 
    M, N = arr.shape 
    result = 0.0 
    for i in range(M): 
        for j in range(N): 
            result += arr[i,j] 
    return result 

a = arange(9).reshape(3,3) 
print(sum2d(a)) 

|
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Speeding up code 3: Numba

just add this decorator, 
and it's magic (nearly)



Aside: 
Some 
caveats for 
Numba

Numba operates in two modes: 

• No-Python Mode:

➤ gives large performance boost 
➤ but only supports basic python types and a subset of 

numpy/scipy operations 

• Object Mode 

➤ fall-back if No Python mode fails 
➤ supports any python object 
➤ but gives little or not speed up in most situations 

Tip:

• To force it to use No-Python mode


➤  set nopython=True in the options 
➤ better: use @njit 

• @njit will fail if the code cannot be optimized by 
numba, and it will tell you why! 

• There is some discussion that @njit will become the 
default in the future 56
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from timeit import default_timer as timer 
from matplotlib.pylab import imshow, jet, show, ion 
import numpy as np 

from numba import jit 

@jit 
def mandel(x, y, max_iters): 
    """ 
    Given the real and imaginary parts of a  
    complex number, 
    determine if it is a candidate for membership  
    in the Mandelbrot 
    set given a fixed number of iterations. 
    """ 
    i = 0 
    c = complex(x,y) 
    z = 0.0j 
    for i in range(max_iters): 
        z = z*z + c 
        if (z.real*z.real + z.imag*z.imag) >= 4: 
            return i 

    return 255 

@jit 
def create_fractal(min_x, max_x, min_y, max_y, image, iters): 
    height = image.shape[0] 
    width = image.shape[1] 

    pixel_size_x = (max_x - min_x) / width 
    pixel_size_y = (max_y - min_y) / height 
    for x in range(width): 
        real = min_x + x * pixel_size_x 
        for y in range(height): 
            imag = min_y + y * pixel_size_y 
            color = mandel(real, imag, iters) 
            image[y, x] = color 

    return image 

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8) 
s = timer() 
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20) 
e = timer() 
print(e - s) 
imshow(image)

example from the Numba docs

note that you need to "jit" not only the parent function, but any function that it calls 
that needs to be sped up.   Otherwise, only Object Mode can work!
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More numba caveats:
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Numba supports a large number of NumPy functions (and even some scipy): 

• It does not actually call NumPy code!

• it re-implements it in a way that is compilable with LLVM.


So what is the point?  Isn't NumPy really optimized already? 

• Minimize intermediate results!

➤ numpy operations often have to allocate memory for data that is not needed in the end: 

x = np.arange(1000) 
result = A * x**2 + B * x + C 

• More control over parallelization (See next lecture) 
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Numba with NumPy

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html 

in C, you might do this all in one loop, with no extra 
memory needed:


for (i=0; i<x.size; i+*) { 
    result[i] = A*x[i]*x[i] + B*x[i] + C; 
}

https://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
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Numba includes a lot of advanced features and options to jit that can help speed things 
up 

• e.g. specify the input and output type mapping, rather than infer it

• Easy NumPy Ufunc generation with   vectorize  and guvectorize (generalized)  

➤ e.g. let you write code that operates on 1D array, and broadcast it to N-dimensional arrays 

• Options like target='GPU' for producing CUDA code or similar

• Parallelization onto multiple threads with parallel=True (see next lecture)
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Advanced Numba

import numpy as np 

from numba import guvectorize 

@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)') 
def move_mean(a, window_arr, out): 
    window_width = window_arr[0] 
    asum = 0.0 
    count = 0 
    for i in range(window_width): 
        asum += a[i] 
        count += 1 
        out[i] = asum / count 
    for i in range(window_width, len(a)): 
        asum += a[i] - a[i - window_width] 
        out[i] = asum / count 

arr = np.arange(20, dtype=np.float64).reshape(2, 10) 
print(arr) 
print(move_mean(arr, 3)) example from the Numba docs
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Write good clean code first! 

Identify bottlenecks in speed and memory with profiling tools 

• don't worry so much about things that are not called often!

• try to narrow it down to the most critical parts of code


Use numpy, cython, numba or other technologies to improve 
the bottleneck 

• try not to obfuscate the code to achieve speed! Readability 
still counts. 
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Summary



Demo


