
Packaging and Distributing
Python Projects

Maximilian Nöthe

Astroparticle Physics, TU Dortmund

Summer School – 2021-06-10

overview

Introduction

Using setuptools

Versions and Semantic Versioning

Choosing a License

Publishing Binary Wheels

A new Alternative: poetry

Conda Packages and conda-forge

Conclusions and Recommendations

M. Nöthe – TU Dortmund Packaging 2

Warning

BIOHAZARD Copying commands or code from PDF files is
dangerous Radiation

Copy from the example files in the repository or type by hand.

Typing by hand is best for learning.

M. Nöthe – TU Dortmund Packaging 3

The Python Package Index

→ Python packages are published on the Python Package Index (https://pypi.org)
→ pip install foo will by default:

1. Search for a package named foo on PyPI
2. Download the best available distribution for your platform
3. Install all dependencies of the package
4. Install the package

→ There is https://test.pypi.org for people to test their packaging code before
publishing to “the real thing”.

→ It is also possible to self-host a python package index

M. Nöthe – TU Dortmund Packaging – Introduction 4

https://pypi.org
https://test.pypi.org

Source Distributions and Wheels

Source Distributions
→ .zip or .tar.gz archives of the

project
→ Simplest solution to publish your

package
→ If a package contains compiled

components, these need to be built at
installation time

Wheels
→ Standardized format for pre-built

python packages
→ Simple for pure-python packages (no

compiled components)
→ Platform-dependent wheels for

packages with compiled components
→ C-Extensions
→ Cython-Code
→ Wrappers for C or C++-Libraries
→ …

M. Nöthe – TU Dortmund Packaging – Introduction 5

Wheels

→ Platform dependent binary wheels must follow standards to be uploaded to PyPI
→ This is to ensure they run on many systems (not just on your computer)
→ Essentially:

→ Compile using the oldest C-Standard Library a package wants to support
→ Include all needed libraries in the wheel

More on how to actually build wheels for your own projects later.

M. Nöthe – TU Dortmund Packaging – Introduction 6

Using setuptools

M. Nöthe – TU Dortmund Packaging – Using setuptools 7

setuptools

→ setuptools is the most common solution for python packaging
→ Allows to declare package metadata, dependencies
→ Facilitates creation of files for distribution

M. Nöthe – TU Dortmund Packaging – Using setuptools 8

Example Package Structure

 eschool21_demo
 ├── eschool21_demo
 │ ├── tests
 │ │ ├── __init__.py
 │ │ └── test_fibonacci.py
 │ ├── fibonacci.py
 │ └── __init__.py
 ├── LICENSE
 ├── pyproject.toml
 ├── README.md
 ├── setup.cfg
 └── setup.py

Common convention: project directory equal or
very similar to package name:
→ numpy / numpy
→ PyTables / tables
→ python-dateutil / dateutil

M. Nöthe – TU Dortmund Packaging – Using setuptools 9

Example Package Structure

 eschool21_demo
 ├── eschool21_demo
 │ ├── tests
 │ │ ├── __init__.py
 │ │ └── test_fibonacci.py
 │ ├── fibonacci.py
 │ └── __init__.py
 ├── LICENSE
 ├── pyproject.toml
 ├── README.md
 ├── setup.cfg
 └── setup.py

Files in the base directory for metadata / build
configuration

README.md Project description

LICENSE Software license

pyproject.toml Common configuration for
python projects

setup.{py,cfg} setuptools specific project files

M. Nöthe – TU Dortmund Packaging – Using setuptools 9

pyproject.toml

→ Defines build-time dependencies of a python package
→ Uses the toml file format: https://github.com/toml-lang/toml
→ Defined in PEP 517 and PEP 518
→ Many other tools can also be configured through pyproject.toml,

e.g. black, poetry, ….

Minimal pyproject.toml file for projects using setuptools

 [build-system]
 # required packages *at build time*
 requires = ["setuptools", "wheel"]

 # the function e.g. pip will call to build our project.
 build-backend = "setuptools.build_meta"

M. Nöthe – TU Dortmund Packaging – Using setuptools 10

https://github.com/toml-lang/toml
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/

setup.py and setup.cfg

→ All metadata concerning your package can be specified in a setup.py file
→ Using code for configuration is generally not a good idea
→ Projects can run arbitrary python code in setup.py to setup the project

⇒ For simple projects, only use the setup.cfg
→ Editable installs currently require a minimal setup.py:

 from setuptools import setup

 # this is a workaround for an issue in pip that prevents editable installs
 # with --user, see https://github.com/pypa/pip/issues/7953
 import site, sys; site.ENABLE_USER_SITE = "--user" in sys.argv[1:]

 setup()

M. Nöthe – TU Dortmund Packaging – Using setuptools 11

setup.cfg

 [metadata]
 name = mypackage
 version = 0.1.0
 description = Example Package
 license = MIT
 # ... many more metadata options possible, see docs
 long_description = file: README.md
 long_description_content_type = text/markdown

 classifiers =
 # see https://pypi.org/classifiers/ for more
 License :: OSI Approved :: MIT License

 [options]
 packages = find: # automatically find python packages
 python_requires = >=3.6
 install_requires =
 astropy >= 4

M. Nöthe – TU Dortmund Packaging – Using setuptools 12

Building the Project

→ Install the build package (already available in the eschool21 environment):

 $ python -m pip install build

→ Run the build module in the project directory

 $ python -m build

→ You will get both the sdist and the wheel in the dist directory:

 $ ls -1 dist
 eschool21_demo-0.1.0-py3-none-any.whl
 eschool21_demo-0.1.0.tar.gz

M. Nöthe – TU Dortmund Packaging – Using setuptools 13

Upload to (Test-)PyPI

→ Create an Account at (Test-)PyPI
→ Install twine (already available in the eschool21 environment)

 $ python -m pip install twine

→ Run the upload (here to test.pypi.org):

 $ twine upload --repository testpypi dist/*

→ Go to your uploaded project and check everything is ok

For security reasons, PyPI does not allow replacing uploaded
files. You have to upload a new version.

M. Nöthe – TU Dortmund Packaging – Using setuptools 14

Upload to (Test-)PyPI

→ Create an Account at (Test-)PyPI
→ Install twine (already available in the eschool21 environment)

 $ python -m pip install twine

→ Run the upload (here to test.pypi.org):

 $ twine upload --repository testpypi dist/*

→ Go to your uploaded project and check everything is ok

For security reasons, PyPI does not allow replacing uploaded
files. You have to upload a new version.

M. Nöthe – TU Dortmund Packaging – Using setuptools 14

Entry Points

→ Console script entry points define scripts that get installed so they can be run from
the command line

setup.cfg

 [options.entry_points]
 console_scripts =
 fibonacci = eschool21_demo.__main__:main

M. Nöthe – TU Dortmund Packaging – Using setuptools 15

Including Data

→ To include non-code files into the source distribution and wheels you need to add

setup.cfg

 [options]
 include_package_data = True

→ And define these additional files in an additional file MANIFEST.in

M. Nöthe – TU Dortmund Packaging – Using setuptools 16

Versions and Semantic Versioning

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 17

Versioning your Projects

→ PEP 440 prescribes a versioning scheme for all python projects:

 [N!]N(.N)*[{a|b|rc}N][.postN][.devN]

N! Version epoch, extremely rare, needed only when switching the
versioning scheme

N(.N)* Version identifier as arbitrarily many numbers separated by a dot
aN|bN|rcN Pre-releases (alpha, beta, release candidate) for testing

.postN Post releases, no changes to actual code, but e. g. better docs / fixed
build system

.devN are development releases (N can be used e.g. to specify the number of
commits since the last released)

→ By default, pip will not consider pre- and dev-releases
→ Versions are sortable

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 18

https://www.python.org/dev/peps/pep-0440

Version examples

Versions in sorted order
 1.0.9
 1.1.0.dev10
 1.1.0a1
 1.1.0a2
 1.1.0b1
 1.1.0rc1
 1.1.0
 1.1.0.post1
 1.2.0

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 19

Semantic Versioning

→ See https://semver.org
→ SemVer uses a three part version like this:

MAJOR.MINOR.PATCH
→ Projects must increment:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards compatible manner
3. PATCH version when you make backwards compatible bug fixes

→ This makes depending on specific versions much easier

Caveats:
Many python projects do not strictly follow SemVer (e. g. numpy)

Many projects make breaking changes in MINOR updates until reaching 1.0.0

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 20

https://semver.org

Specifying Versions of Dependencies

→ One of the most important things for packages is defining the compatible versions of
the depedencies.

→ Projects can require smaller, larger, exactly equal and “compatible” versions
→ Projects can exclude versions
→ Versions may contain wildcards
→ Also defined in PEP 440

Depedency defintions

 pandas # no requirement on the version
 pandas >=1.0 # at least 1.0
 pandas >=1.0,<2.0.0a0 # at least 1.0 but smaller than 2.0.0a0
 pandas ==1.* # Any 1.x version
 pandas ~=1.1 # Any 1.x version >=1.1
 pandas ~=1.1.2 # Any 1.1.x version >=1.1.2
 pandas >=1.1,!=1.1.1 # Exclude 1.1.1 (had a bug?)

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 21

https://www.python.org/dev/peps/pep-0440/#version-specifiers

Extras
→ You can use extras to define sets of optional dependencies
→ Usefull especially for test and docs dependencies
→ Consider providing an all extra to make it simple
→ Extras can be requested in []

 $ pip install "package[extra1,extra2]"

setup.cfg

 [options.extras_require]
 tests =
 pytest
 pytest-cov
 docs =
 sphinx
 all =
 %(tests)s
 %(docs)s

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 22

Avoiding duplicated version definitions

→ A common problem is that version information is needed at multiple locations
→ The git tag
→ The package version (e. g. in setup.py or CMakeLists.txt)
→ Accessible version in the code (e. g. eschool21_demo.__version__)

→ Not having this information duplicated avoids errors
→ Setuptools supports reading this from the code
→ Tools like setuptools_scm can extract version information from git tags,

but is a bit complicated to setup correctly

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 23

Defining the version in code

eschool21_demo/__init__.py

 from .fibonacci import fibonacci

 __version__ = '0.1.0.post1'
 __all__ = ['fibonacci']

setup.cfg

 [metadata]
 version = attr: eschool21_demo.__version__

This also works when __init__.py already imports dependencies, since setuptools is
not actually importing the variable but parses the code.

M. Nöthe – TU Dortmund Packaging – Versions and Semantic Versioning 24

Choosing a License

M. Nöthe – TU Dortmund Packaging – Choosing a License 25

Software Licenses

→ Disclaimer: I am a Physicist, not a Lawyer
→ Software licenses have two main purposes

1. Define what other people are allowed to do with your software
2. Free the authors from liability / waving warranties

→ There are several “standard” free and open source licenses,
endorsed by the Open Source Initiative: https://opensource.org/licenses

→ These licenses range from
→ very short to very long
→ very restrictive to very permissive

→ “Free as in freedom, not as in free beer.”

M. Nöthe – TU Dortmund Packaging – Choosing a License 26

https://opensource.org/licenses

The MIT License

MIT License

Copyright (c) 2021 ESCAPE

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M. Nöthe – TU Dortmund Packaging – Choosing a License 27

GPL and LGPL

→ Allows redistribution, modification, running, ...
→ Requires that source code is always published for binary distributions
→ Requires that derivative works are licensed under the same or a compatible license

(copyleft)
→ If linking linking libraries constitutes a derivative work is contentious
→ The LGPL explicitly allows proprietary software to link LGPL licensed libraries

M. Nöthe – TU Dortmund Packaging – Choosing a License 28

Scientific Software

→ Opinion: The scientific method requires all code and data to be accessible
→ Reproducibility
→ Peer review

→ This is most often not the case, but starting to get traction
→ Journals requiring release of software and data alongside publications
→ General trend towards more open development / open source scientific software
→ “Replication Crisis”

M. Nöthe – TU Dortmund Packaging – Choosing a License 29

Publishing Binary Wheels

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 30

Example Project using cython and numpy

→ Demo project in school21/packaging/eschool21_cython_demo
→ Using cython and numpy’s cython API to build a C-extension
→ We need Cython and numpy at build time
→ We need to compile against the oldest supported numpy version

pyproject.toml

 [build-system]
 requires = ["setuptools", "wheel", "Cython", "oldest-supported-numpy"]
 build-backend = "setuptools.build_meta"

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 31

Publishing Binary Wheels

WindowsWindows
With python >= 3.5, things got a lot easier

1. Install Visual Studio C/C++ Compilers and Windows SDK
2. Install all versions of python you want to support
3. Build the wheel for each version of python
4. Upload to PyPI

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 32

Publishing Binary Wheels

�macOS
Decide the oldest supported macOS version (10.9 is most common)

1. Install compilers using xcode install --select
2. Install all versions of python you want to support (e.g. using pyenv or brew)
3. export MACOSX_DEPLOYMENT_TARGET=10.9
4. Build the wheel for each version of python
5. Upload to PyPI

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 33

Publishing Binary Wheels

LINUX Linux

→ The many different Linux distributions and versions make things a bit harder
→ Standardized wheels to make sure they run on “manylinux” distributions
→ Essentially you have to compile with the oldest glibc you want to support
→ e. g. manylinux2014 is based on CentOS 7, glibc 2.17

The python packaging authority (PyPA) provides docker containers for each of these
standards, which is the best way of building these, see
https://github.com/pypa/python-manylinux-demo.

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 34

https://github.com/pypa/python-manylinux-demo

Publishing Binary Wheels – Including dependencies

→ Binary wheels are only allowed to link externally against basic system libraries
defined in PEP 513/PEP 599.

→ All other libraries must be included in the wheel
→ auditwheel (LINUX) and delocate (�) take care of this
→ No off-the-shelve solution for Windows
→ cibuildwheel offers CI build configurations for wheels for all platforms

Inside the manylinux docker container

 $ auditwheel repair --plat manylinux2014_x86_64 <wheel> -w <outputdir>

M. Nöthe – TU Dortmund Packaging – Publishing Binary Wheels 35

https://www.python.org/dev/peps/pep-0513/
https://www.python.org/dev/peps/pep-0599/
https://github.com/pypa/auditwheel
https://github.com/matthew-brett/delocate
https://github.com/pypa/cibuildwheel

A new Alternative: poetry

M. Nöthe – TU Dortmund Packaging – A new Alternative: poetry 36

Poetry

poetry aims to provide a complete solution for dependency management and packaging

+ Configured completely in pyproject.toml
+ Automatic creation of virtual environments with all dependencies
+ Exact versions of all dependencies (including transitive) using a “lock file”
+ Building and publishing packages
+ Initial setup of new projects
− No support for binary extensions / wheels yet

M. Nöthe – TU Dortmund Packaging – A new Alternative: poetry 37

live demo

M. Nöthe – TU Dortmund Packaging – A new Alternative: poetry 38

Conda Packages and conda-forge

M. Nöthe – TU Dortmund Packaging – Conda Packages and conda-forge 39

Conda Packages

→ Conda packages for python packages should always start from a buildable package
using the tools introduced before

→ Then, we only need to define build- and runtime depedencies as well as metadata in
a yaml file meta.yaml

 $ conda build <path to recipe directory>
 $ anaconda upload <path to package>

→ conda-forge provides CI infrastructure to automatically build conda packages for
open source projects

M. Nöthe – TU Dortmund Packaging – Conda Packages and conda-forge 40

https://conda-forge.org/

Conclusions and Recommendations

M. Nöthe – TU Dortmund Packaging – Conclusions and Recommendations 41

Conclusions and Recommendations

→ Always make sure your code is a valid python package and declares its dependencies
→ Publishing sdists / any-wheels to PyPI is free and easy

→ your code is just a pip install away
→ Choose a permissive FOSS License for scientific software (MIT or BSD 3-Clause)
→ When you expect your users to rely on conda, also publish conda packages
→ conda-forge is highly recommended, as it automatizes this process greatly
→ When using compiled python extensions, consider publishing wheels and/or conda

packages
→ Much easier installation for your users, but may be a bit complicated to setup

→ Consider using poetry instead of setuptools for applications / libraries without
compiled components

→ The python packaging landscape has improved greatly in the last couple of years,
check carefully if guides you find are still up-to-date

M. Nöthe – TU Dortmund Packaging – Conclusions and Recommendations 42

Further Reading

PyPA User Guide https://packaging.python.org
setuptools docs https://setuptools.readthedocs.io/

poetry https://python-poetry.org/

conda-forge https://conda-forge.org/
conda build docs https://docs.conda.io/projects/conda-build

cibuildwheel https://github.com/pypa/cibuildwheel
auditwheel https://github.com/pypa/auditwheel
delocate https://github.com/matthew-brett/delocate

manylinux demo https://github.com/pypa/python-manylinux-demo

M. Nöthe – TU Dortmund Packaging – Conclusions and Recommendations 43

https://packaging.python.org
https://setuptools.readthedocs.io/
https://python-poetry.org/
https://conda-forge.org/
https://docs.conda.io/projects/conda-build
https://github.com/pypa/cibuildwheel
https://github.com/pypa/auditwheel
https://github.com/matthew-brett/delocate
https://github.com/pypa/python-manylinux-demo

	Introduction
	Using setuptools
	Versions and Semantic Versioning
	Choosing a License
	Publishing Binary Wheels
	A new Alternative: poetry
	Conda Packages and conda-forge
	Conclusions and Recommendations

