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Start from the beginning …

What is learning?

“Learning is the process of converting experience into 
expertise”

Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning - from theory to algorithms, 2014, Cambridge University Press

Experience
(data)

Expertise
(knowledge)

Learner
( algorithm)
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Motivation

Why do we need machines 
to learn?

● Tasks there are too complex to explicitly 
program

● Tasks dealing with too large data 
volumes

● Tasks which require flexibility

Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning - from theory to algorithms, 2014, Cambridge University Press



Motivation

Why do we need machines 
to learn?

● Tasks there are too complex to explicitly 
program

● Tasks dealing with too large data 
volumes

● Tasks which require flexibility

Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning - from theory to algorithms, 2014, Cambridge University Press



Types of learning ...

Supervised Learning
Learn by example

Training sample

Features
+

Labels

Target sample

Feature
s

Learn
Apply

5



Machine Learning:
 

(a personal favorite) 
Supervised definition



Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Hypothesis: Naturex y
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A controlled example:

Papaya tasting
Binary classification

This is all the data 
we will input to the 
model  about the 

papayas in the real 
world!

11YouTube class on the papaya testing example: 
https://www.youtube.com/watch?v=b5NlRg8SjZg&list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO&index=2&t=0s

https://www.youtube.com/watch?v=b5NlRg8SjZg&list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO&index=2&t=0s


A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h
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Definition

Representativeness
Probability distribution, P

Sample, S1
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data training, target
χ set of all samples, x
Y set of possible labels, y
htrain learner:  yest;i = htrain(xi)
L Loss function

Data generation model:             
xi ~ Pχ

f → true labeling function, yi = f(xi)
Ldata,f  (h)  ≡  Px~data (htrain (x)≠ f(x))

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

+ Representativenes
s between training 

and target

Supervised ML model



Supervised ML model
data training, target
χ set of all samples, x
Y set of possible labels, y
htrain learner:  yest;i = htrain(xi)
L Loss function

Data generation model:             
xi ~ Pχ

f → true labeling function, yi = f(xi)
Ldata,f  (h)  ≡  Px~data (htrain (x)≠ f(x))

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

Machine Learning algorithm

+ Representativenes
s between training 

and target



https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/

Machine Learning 
algorithm

+ All things deep

https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/


Example of supervised ML algorithm

k-Nearest Neighbor (kNN)
Distance based



Example of supervised ML algorithm

Decision Trees

http://www.lewisgavin.co.uk/Machine-Learning-Decision-Tree/



Example of supervised ML algorithm

Random Forests
Ensemble method

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d



Example of supervised ML algorithm:

Deep Neural Network

Slide by Alexandre Boucaud, ADA IX, 2018l



data training, target
χ set of all samples, x
Y set of possible labels, y
htrain learner:  yest;i = htrain(xi)
L Loss function

Data generation model:             
xi ~ Pχ

f → true labeling function, yi = f(xi)
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Classical use I:

Photometric Redshift

Collister & Lahav, 2003

Random Forest Neural Network

Carliles et al., 2010  



Supervised Learning: an extreme regression example

Symbolic Regression

Pre-COIN paper:
Krone-Martins, Ishida & de Souza, MNRASL 443 (2014)

Final expression:

Mathematical atoms:
 +, - , x , / , pow

1 - Random construction of an 
analytical expression

2 - find the best parameters

3 - if result is better than previous 
keep it, otherwise discard it



http://rsta.royalsocietypublishing.org/content/370/1960/774
29

Classical use II:

SN Photometric classification



Classical use II:

SN Photometric classification

Ishida e de Souza, 2013     Pasquet et al., 
2019 

Nearest Neighbor Deep Neural Network

Pre-processing 
is super 

important!



Training sample

Images, colors, 
light curves, 

etc.
+

Classes
(spectra)

Target 
sample

Images, colors, 
light curves, 

etc.

Lea
rn

Apply

In astro, training means spectra

Ideal Supervised learning 
situation
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In astro, training means spectra

Real astro-supervised learning 
situation

Target sample

Training 
sample

Apply

Learn
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   Representativeness

From COIN Residence Program #4,   Ishida et al., 2019, MNRAS, 483 (1), 2–18



   Representativeness

From COIN Residence Program #4,   Ishida et al., 2019, MNRAS, 483 (1), 2–18

Can machines learn 
better, with fewer 
labelled examples, if 

they are carefully 
chosen?



Active Learning
Optimal classification, minimum training
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AL for SN classification
Static results

Ishida et al., 2018 - arXiv:astro-ph/1804.03765 - from CRP #4

Active Learning

Passive Learning

Canonical 
strategy



Time Domain
Survey evolution

1.    Feature extraction        
done daily with available        
observed epochs until 
then.

2.    Query sample is also         
re-defined daily:         
objects with r-mag < 24

3.    No need for an initial 
       training sample

Ishida et al., 2018 - arXiv:astro-ph/1804.03765 - from CRP #4
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Do we even need a training set? 

From COIN Residence Program #4,   Ishida et al., 2019, MNRAS, 483 (1), 2–18

Active Learning

Passive Learning

Canonical strategy

The arrow 
shows 

traditional
Full light-curve
results with full

SNPCC spec
1103 spectra



The queried sample
Partial LC, no training, time domain, batch

SNPCC spec:                 Queried sample:                        Telescope time: 
1103 objects                   800 objects                              Queried/spec = 0.999  

Ishida et al., 2018 - arXiv:astro-ph/1804.03765 - from CRP #4



Take home messages:

Astronomy needs

optimized training samples 
for

Machine Learning 
applications

Given the volume and complexity of upcoming data 

Machine Learning is not optional

However, it should be used with parsimony …
Using off-the-shelve algorithms is not advisable!





Extra slides



Basic concepts of Machine Learning:

Clustering and Anomaly 
Detection

anomalies

“An anomaly is an observation which deviates so much from the other observations 
as to arouse suspicions that it was generated by a different mechanism”

Hawkins, 1980



A strategy
Active Anomaly Detection

Isolation 
Forest

List of 
anomalies

Spec. check  object 
with highest anomaly 

score

If yes: check next obj in the 
anomaly score board

If no: update the weights to 
accommodate the new 
information

Das, S., Wong, W-K., Dietterich, T., Fern, A. and Emmott, A. (2016). Incorporating Expert Feedback into 
Active Anomaly Discovery in the Proceedings of the IEEE International Conference on Data Mining
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Active Anomaly Detection
In the open supernova catalog

Ishida et al., 2019
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What comes next?

The Large Synoptic Survey Telescope

Camera: 3.2 Giga pixels and 1.65m

Primary mirror: 8.4m
Field of view: 3.5 deg, 40x full moon

Data production :15 TB/night 
(3yr LSST=internet today)

~10 million alerts/night
30.000 type Ia SN/yr (today ~1000)

Expected ~ 1000 spectra/yr (~ 3%)

Photometric obs:
~minute 

Spectroscopic obs:
>= 1 hour (e.g. SDSS)
Multi-fiber spec.
Pointing is not trivial
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5

Confirmed sources
New source!

3

Cross-Match
Correlate to other experiments 
and catalogs

1 LSST raw alert data
Difference image analysis  
~1TB/night expected.

4

Spectroscopic 
Observations

Organise follow-up

2

Process Alerts
Broker core algorithms

Typical journey of an alert

The LSST alert stream

Diagram by Julien Peloton, LAL
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2Process Alerts

3Cross-Match

4Spectroscopic Observations

5
Confirmed 
sources

1
LSST Raw 
alert data

What comes next?

Fink: a community broker based on 
Active Learning and Spark

https://fink-broker.readthedocs.io/en/latest/

Diagram by Julien Peloton, LAL

https://fink-broker.readthedocs.io/en/latest/


Beck et al., astro-ph:1701.08748, MNRAS 2017


