Fink: status and roadmap

Anais Möller and Emille E. O. Ishida (LPC-Clermont)

Julien Peloton (CNRS/IJCLab)

On behalf of the Fink initiative

LSST Broker landscape

Fink in the broker landscape

Lasair

- Main added value is content + cross-match with static data base, ML under development
- Built to fulfill the needs of the British transient community
- Main users focused on UK telescopes

Alerce

- High emphasis in hierarchical classification, ML, interdisciplinarity
- Aim to explore the potential of follow-up facilities in Chile
- Hosts data challenges and hackathons

ANTARES

- High emphasis in the front-end and api development
- Important ML component being adapted, focus on early classification
- No specific events for community engagement

Fink in the broker landscape

Lasair

- Main added value is content + cross-match with static data base, ML under development
- Built to fulfill the needs of the British transient community
- Main users focused on UK telescopes

ANTARES

- High emphasis in the front-end and api development
- Important ML component being adapted, focus on early classification
- No specific events for community engagement

Alerce

- High emphasis in hierarchical classification, ML, interdisciplinarity
- Aim to explore the potential of follow-up facilities in Chile
- Hosts data challenges and hackathons

Fink

- State of the art ML techniques: adaptive ML and Bayesian NN
- Aim to fulfil the needs of the French+ community and explore the potential in the LSST data base hosted at CC
- Emphasis on community-driven science

Fink in the broker landscape

Lasair

- Main added value is content + cross-match with static data base, ML under development
- Built to fulfill the needs of the British transient community
- <u>Main users focused on UK telescopes</u>

ANTARES

- High emphasis in the front-end and api development
- Important ML component being adapted, focus on early classification
- <u>No specific events for community engagement</u>

Alerce

- High emphasis in hierarchical classification, ML, interdisciplinarity
- Aim to explore the potential of follow-up facilities in Chile
- Hosts data challenges and hackathons

Fink

- State of the art ML techniques: adaptive ML and Bayesian NN
- Aim to fulfil the needs of the French+ community and explore the potential in the LSST data base hosted at CC
- Emphasis on community-driven science

Fink important remark

Fink example modules

Supernova Classification

by Marco Leoni (IJCLab)

7

Fink example modules

Connection with other facilities: SVOM, GRANDMA

By Nicolas Leroy (IJCLab) Gravitational waves, Kilonova, GRBs

'Space-based multi-band astronomical Variable Objects Monitor'

FINK and GRANDMA

FINK and SVOM

Fink example modules

Fink modules under discussion

- First tests with microlensing
 - Tristan Blaineau

• Connections with other brokers

• Alexis Coleiro, Andrii Neronov, Volodymyr Savchenko

10

• Deblending

• Alexandre Boucaud

Next in line:

• Anomaly detection

Some Data Challenges...

- Forecasted: 10 million alerts per night...
 - Current serialisation implies
 ~82KB/alert, 800 GB/night,
 3PB in 2030.
- 98% of alerts must be transmitted with 60 seconds of readout...
 - ... and processed before the next night!
 Base Site
- Wires to send alerts worldwide are not infinitely big...

Concretely...

Fink challenges & design

Fink's design is driven by:

- Maximizing the scientific return on LSST and related experiments over the next decade: SVOM, CTA, Integral, KM3NET, ...
- Working efficiently at scales: real time and post-processing.
- Having a good integration with the current ecosystem: we are not alone!

Alert processing in Fink

Fink community

Science modules

C. Arnault, E. Ishida, M. Leoni, A. Möller + Fink community

Filters and data reduction

Communication protocols

Apache Avro:

- Data serialisation format for alerts
- Extremely efficient (header/data, compression, ...)
- Need a schema to decode the information

Apache Kafka:

- Stream-processing software platform (pub/sub)
- Distributed management of alerts (with his friend Zookeeper)
- Kafka can handle thousands of users with thousands of topics

User interface(s)

Two entry points for users:

- Fink streams: This workshop!
- Science DB: Graph oriented DB (J. Hrivnac).

EI16.1/0	029	99184:	✓ live Help					
Cluster by AMI Tag			Cluster by group size Expand all clusters					
overlap th	resh	nolds: 目	0%			0%		Context-sensitive m
tag level:	1	target:		filter:	.AOD.		Recreate	

J. Hrivnac, ATLAS

Joining information

Challenge: different data formats, different communication protocols.

Current solution:

- Use Comet to receive VOEvents
- Convert on-the-fly into a Fink-friendly stream
- Perform coincidence using a temporal window of few minutes

Status: (largely) experimental.

Prototype status

Deployed broker instance for R&D in the VirtualData Cloud (UPSaclay)

- Communication: Apache Kafka cluster (5 machines, 20 cores)
- Processing: Apache Spark cluster (11 machines, ~200 cores)
- Science DB: Apache HBase (1 machine, 6 cores).

Workshop goals

Tutorials to explore alert data and the Fink Kafka client:

- Exploring ZTF Alerts
- Connect to Fink alert streams
- Fink filters: how they work?
- Fink science modules & broker added values
- Fink and external alert streams

Throughout all tutorials, we will use **ZTF alert data** that are currently available and have similar structure to the expected one for LSST alerts.

Happy coding!

To do before starting...

Apply (small) patches done at midnight last night...

- 1. cd fink-client; git pull
- 2. cd fink-tutorials; git pull

Connection ID: on the whiteboard.

The full proposal for LSST

- Considered as private communication
- Max 10 pages
- Due June 15, 2020
- Expected content:
 - Scientific goals: specific science modules
 - Stream access: do you want the full stream? Can you forward smaller streams to secondary brokers?
 - Data products and services: user access, added values, follow-up strategies (if any)
 - Technical implementation

• Previous results

- Example data products
- Plans to engage the community to use your system
- Management Plan
 - Number of FTE during X years
 - Potential funding resources
- Proposing team (and their experiences)
- Result by August 2020