Deep Learning at Colliders Hands-on session

IN2P3 School Of Statistics 2021 18-29 Jan, 2021

Overview

Model Quantization

II. Likelihood Free Inference

III. Anomaly Detection

IV. Tracking with GNN

All hands-on are majorly inspired from already existing material, and reproduced with the authors agreement.

Successes are theirs, failures are mines...

Model Compression

Model inference can be accelerated by reducing the number and size of operations.

Mondel Quantization

Original Material:

- https://arxiv.org/abs/2006.10159
- https://github.com/google/qkeras
- https://indico.cern.ch/event/924283/sessions/353274/#20201203
- http://cern.ch/ssummers/hls4ml-tutorial

Hands-on Material:

https://github.com/vlimant/AIColliderSOS2021/tree/master/qKeras

Instructions:

- ✓ Start the notebook in colab from the github notebook.
- √ The advantage of quantization comes through an FPGA firmware (the <u>hls4ml tutorial</u> should be available)

Thanks to Sioni Summers et al. for the help putting this together

Acquiring Data

Use of variational auto-encoders directly on data to marginalize outlier events, for anomalous event hotline operation.

[doi:0.1007/JHEP05(2019)036]

- Machine learning since long deployed in the trigger for selected signatures.
- Further potential for background trigger rate reduction.
- Emerging opportunity for triggering on unknown signatures.
- More promising R&D and experiment adoption.

Anomaly Detection

Original Material:

- https://www.ggi.infn.it/ggilectures/ggilectures2021/
- https://github.com/pierinim/tutorials/tree/master/GGI_Jan2021/Lecture5

Hands-on Material:

https://github.com/vlimant/AIColliderSOS2021/tree/master/lhcAnomaly

Instructions:

- ✓ Start the notebook (AE or VAE) in colab from the notebook in github
- ✓ Explore changes in anomaly ROC when varying "beta"
- ✓ Quantize the model

Thanks to Maurizio Pierini et al. for the help putting this together

Reconstructing Data

Much more relevant work going on.

https://iml-wg.github.io/HEPML-LivingReview/

- Event reconstruction is pattern recognition to a large extend. Advanced machine learning techniques can help.
- Learn from the simulation, and/or data.
- Learn from existing "slow reconstruction" or simulation ground truth.
- Automatically adapt algorithm to new detector design.
- Image base methods evolving towards graph-based methods.
- Accelerating R&D to exploit full potential.

Tracking with GNN

Original Material:

• https://indico.cern.ch/event/852553/contributions/4062229/

Hands-on Material:

https://github.com/vlimant/AIColliderSOS2021/tree/master/gnnTracking

Instructions:

- ✓ Start the notebook in colab from the notebook in github (with GPU)
- ✓ First part of software installation is a little painful
- ✓ Get a feel for the complexity of GNN

Thanks to Xiangyang Ju et al. for the help putting this together

Theory Behind the Data

- Hypothesis testing is the core of HEP analysis.
- Intractable likelihood hinders solving the inverse problem.
- Going beyond the standard approach using machine learning and additional information from the simulator.
- More precise evaluation of the priors on theory's parameters.
- May involve probabilistic programming instrumentation of HEP simulator.
- R&D to bring this in the experiment.

https://github.com/probprog/pyprob

Likelihood Free Inference

Original Material:

- http://theoryandpractice.org/madminer-tutorial/intro
- https://github.com/diana-hep/madminer

Hands-on Material:

→Some GitHub url here

Instructions:

- ✓ Start the notebook in colab from the notebook in GitHub
- ✓ Get MG5_aMC_v2.8.3.tar at https://launchpad.net/mg5amcnlo
- ✓Upload and install mg5 to run the tutorial

Thanks to Gilles Louppe et al. for the help putting this together

